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By using the theory of dynamical systems, solitary and periodic travelling wave solutions for a coupled quadratic

nonlinear system are studied. Under different parameter conditions, explicit formulas of solitary wave solutions and

periodic wave solutions are obtained. Moreover, Some known results in the literature are generalized.
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1. Introduction

Recently, an important result in nonlinear optics

was obtained that a classical nonlinear optical effect

in the form of the second harmonic generation (SHG

in short) induced by a quadratic nonlinear medium

rather than cubic ones. That is, a pump wave at the

fundamental harmonic (FH) wave generates its sec-

ond harmonic (SH) wave with the double frequency.

Solitary waves in quadratic nonlinear materials have

attracted growing attention because of the potential

applications in many branches , such as switching de-

vices and signal routing , and laser systems containing

quadratic nonlinear crystal, and so on[1-3]. The SHG

process can be derived from Maxwell’s equations in

the quadratic nonlinear medium. In the spatial case,

the simplest mathematical model about SHG in a 1-

D medium is described by the following normalized

system [4]

{

i∂u
∂z

+ ∂2u
∂x2 − u + u∗υ = 0,

2i∂υ
∂z

+ ∂2υ
∂x2 − αυ + u2

2 = 0,
(1)

where u(x, z), υ(x, z) are the envelope functions of the

FH and SH waves, respectively. The asterisk ∗ means

complex conjugate, x and z are the transverse and

propagating coordinate, respectively. α corresponds

to normalized wave number mismatch.

Some stationary soliton solutions and elliptic

function solutions of the system (1) have been ob-

tained by various powerful methods, For example,

variational approach [5], the direct trial method [6-

7] and Lie group method [8] etc. By using the gauge

transformation [1], some soliton wave solutions and

periodic travelling wave solutions have been obtained.

Recently, Lin and his co-workers [9] obtained some ex-

plicit periodic and solitary wave solutions for system

(1) by applying the Bäcklund transformation and the

trial method. Unfortunately, all the above results ob-

tained are not complete since they did not study the

bifurcation behavior of phase portraits for the corre-

sponding travelling wave equations. In this paper, we

consider bifurcation problem of solitary waves and pe-

riodic waves for system (1), by applying the theory of

dynamical systems [10-14]. Under different parameter

conditions, all explicit formulas of periodic and soli-

tary wave solutions can be easily obtained.

2. Preliminaries

To look for the travelling wave solutions of system

(1), we take the following transformation











u(x, z) = U(ξ)eiη,

υ(x, z) = φ(ξ)e2iη ,

ξ = kx − wz, η = k1 − w1z,

(2)

Substituting (2) into (1), we can obtain

{

k2 d2U
dξ2 + (w1 − k2

1 − 1)U + Uφ = 0,

k2 d2φ
dξ2 + (4w1 − 4k2

1 − α)φ + U2

2 = 0,
(3)

Moreover, we have the parameter relation w = 2k1k.

We assume that U = aφ, where a is a constant,
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then under the constraint conditions

a2 = 2, w1 − k2
1 =

α − 1

3
, (4)

Eq. (3) becomes an equation

d2φ

dξ2
+

α − 4

3k2
φ +

1

k2
φ2 = 0. (5)

Denote that dφ
dξ

= y, then Eq. (5) becomes the follow-

ing two-dimensional dynamical system

{

dφ
dξ

= y,
dy
dξ

= 4−α
3k2 φ − 1

k2 φ2.
(6)

So under the parameter conditions (4), the phase or-

bits defined by the vector fields of system (6) deter-

mine all travelling wave solutions of (1). That is, a

homoclinic orbit of system (6) corresponds to a soli-

tary wave solution of system (1),a heteroclinic orbit of

system (6) corresponds to a kink (or antikink) wave

solution. Similarly, a periodic orbit of system (6) cor-

responding to a periodic travelling wave solution of

system (1). Thus, to investigate all bifurcations of

solitary waves, kink (or anti-kink) waves and periodic

waves of (1), we should find all bounded solutions of

system (6) depending on the parameter space of this

system. The bifurcation theory of dynamical systems

[11] will play an important role in our study.

In this letter, we first consider the dynamical be-

haviour of system (6) and then obtain two class of

explicit parametric representations of homoclinic or-

bits and periodic orbits of system (6) under different

parameter conditions. At last, we will give the exact

explicit formulas of periodic and solitary wave solu-

tions for system (1).

3. The parametric representa-

tions of phase orbits of system

(6)

In this section, We consider the dynamics of phase

orbits of system (6) in its parameter space. Obviously,

there exists two critical points of system (6) at O(0, 0)

and A(4−α
3 , 0). Moreover, system (6) is a Hamiltonian

system with Hamiltonian

H(φ, y) =
y2

2
+

α − 4

6k2
φ2 +

φ3

3k2
= h, (7)

where h is a Hamiltonian constant.

Combining the theory of dynamical system with

Jacobian elliptic functions[15], we can obtain the fol-

lowing conclusions.

(1) Assume that α < 4

In this case, the origin O and A are saddle point

and center of system (6), respectively. We see from (6)

and (7) that corresponding to the level curves defined

by H(φ, y) = h = 0, a homoclinic orbit connecting

the origin of system (6) has the following parametric

representation:

φ(ξ) =
4 − α

2
sech2(

√
12 − 3α

6|k| ξ). (8)

When h ∈ ( (α−4)3

162k2 , 0), there exists a family of

periodic closed orbits of system (6) having the level

curves H = h. Denote that

y2 = 2h+
4 − α

3k2
φ2− 2

3k2
φ3 =

2

3k2
(r1−φ)(φ−r2)(φ−r3),

(9)

where h ∈ ( (α−4)3

162k2 , 0), and rj(j = 1, 2, 3) are func-

tions of h. Thus, from (6) and (7) ,we can obtain that

the family of periodic closed orbits which defined by

H = h have the following parametric representations:

φ(ξ) = r1 − (r1 − r2)sn
2[

√
r1 − r3√

6|k|
ξ, m]. (10)

where sn(x, m) is the Jacobian elliptic function with

the modulus m ∈ (0, 1) and m =
√

r1−r2

r1−r3

. Clearly,

φ(ξ) is a periodic function with period T (m) =
2
√

6|k|√
r1−r3

K(m), where K(m) is the complete elliptic in-

tegral of the first kind.

(2) Assume that α > 4

In this case, the origin O and A are center and

saddle points of system (6), respectively. We see from

(6) and (7) that corresponding to the level curves de-

fined by H(φ, y) = h = (α−4)3

162k2 , a homoclinic orbit

connecting the saddle point A of system (6) has the

following parametric representation:

φ(ξ) =
α − 4

6
[1 − 3tanh2(

√
3α − 12

6|k| ξ)]. (11)

When h ∈ (0,
(α−4)3

162k2 ), there exists a family of

periodic closed orbits of system (6) having the level

curves H = h. Denote that

y2 = 2h+
4 − α

3k2
φ2− 2

3k2
φ3 =

2

3k2
(β1−φ)(φ−β2)(φ−β3),

(12)

where h ∈ (0,
(α−4)3

162k2 ), and βj(j = 1, 2, 3) are func-

tions of h. Thus, similar to case (1), we can obtain
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that the family of periodic closed orbits which defined

by H = h have the following parametric representa-

tions:

φ(ξ) = β1 − (β1 − β2)sn
2[

√
β1 − β3√

6|k|
ξ, m0]. (13)

Where the modulus m0 =
√

β1−β2

β1−β3

.Clearly, the period

of φ(ξ) is T (m0) = 2
√

6|k|√
β1−β3

K(m0).

4. Main results

Based on the above analysis , we can obtain the

main results of this paper as follows.

Theorem Suppose that the conditions

w = 2k1k, w1 − k2
1 =

α − 1

3
, (14)

hold, and ri, βi(i = 1, 2) are defined by (9) and (12)

, then the system (1) have the following exact and

explicit formulas of bounded travelling wave solutions

(1) When α < 4, we have

(i)Solitary wave solutions

{

u(x, z) = ±
√

2(4−α)
2 sech2(

√
12−3α
6|k| ξ)eiη,

υ(x, z) = 4−α
2 sech2(

√
12−3α
6|k| ξ)e2iη,

(15)

(ii)periodic wave solutions







u(x, z) = ±
√

2[r1 − (r1 − r2)sn
2(

√
r1−r3√
6|k| ξ, m)]eiη,

υ(x, z) = r1 − (r1 − r2)sn
2[

√
r1−r3√
6|k| ξ, m]e2iη.

(16)

where ξ = kx − wz, η = k1 − w1z, m =
√

r1−r2

r1−r3

.

(2) When α > 4, we have

(i)Solitary wave solutions

{

u(x, z) = ±
√

2(α−4)
6 [1 − 3tanh2(

√
3α−12
6|k| ξ)]eiη,

υ(x, z) = α−4
6 [1 − 3tanh2(

√
3α−12
6|k| ξ)]e2iη,

(17)

(ii)periodic wave solutions







u(x, z) = ±
√

2[β1 − (β1 − β2)sn
2(

√
β1−β3√
6|k| ξ, m0)]e

iη,

υ(x, z) = β1 − (β1 − β2)sn
2[

√
β1−β3√
6|k| ξ, m0]e

2iη.

(18)

where ξ = kx − wz, η = k1 − w1z, m0 =
√

β1−β2

β1−β3

.

To our knowledge, the exact explicit solitary and

periodic solutions (15)-(18) we obtained in this paper

have not been found before.

5. Conclusions

In summary, we have derived many families of

exact travelling wave solutions of the quadratic non-

linear system (1), including exact solitary and peri-

odic waves, based on the method of dynamical sys-

tem and bifurcation theory. The paper is shown that

the method is suitable to seek exact travelling wave

solutions of non-integrable coupled nonlinear partial

differential equations. From the above analysis, we

believe that this method can be extended and applied

to other nonlinear evolution equations.
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