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Abstract: In this paper, we use an analytical approach to study the dynamics

of the simplest forms of refuge using by prey. Here we incorporate prey refuge

in a widely known continuous model—the Lotka-Volterra model. We will eval-

uate the effect of prey refuge with regard to the local stability of equilibrium

points in the first quadrant and equilibrium density values. The results show

that the effect of prey refuge can enhance the stability of equilibrium points

and equilibrium density of prey and predator populations.
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1 Introduction5

Interspecies interactions are the primary subject of ecology, in which predation is one of the

most inportant factors influencing the consequences of natural selection[1]. Research on preda-

tion system is always the popular issue in contemporary theoretical ecology[2]. Results based

on simple, non-spatial systems show that increasing the productivity or carrying capacity of
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prey result in the so called ”paradox of enrichment”, forcing the equilibrium density of prey and10

predator to move from a stable state to limit cycles which characterize as periodic oscillations in

population densities[2,3,4]. However, dynamics of the natural predation systems are always not

consistent with the predictions of such theoretical models[5,6]. There are several reasons for this

discrepancy, such as the rescue effect of the prey[7], the presence of predator interferences[8,9],

and the effect of predator pursuit(PE) and prey evasion(PE)[2]. Besides the above factors, prey15

refuge is recognized as playing an important role in determining the dynamics of predator-prey

models. This was initially done by modifying the originally simple predator-prey models and

the most widely reported conclusions were the community equilibrium being stabilized and the

equilibrium density of prey and/or predator was enhanced by the addition of prey refuges[10-16].

The effect of prey refuge on population growth is complex in nature, but for modeling and20

mathematical analysising, it can be considered as constituted by two components: the first

one is a primary effect. Secondary effects could conclude trade-offs and by-products of the prey

refuging that could be either advantageous or disadvantageous, even detrimental for the involved

populations[15]. The primary effect comprises the reduction of death rate of prey population due

to decreasing in predation success. Thus, the first effect impacts positively on the population25

growth of prey and negatively on that of predators. One of the classic secondary effects is the

reduction in the birth rate of prey population due to the sub-optimal states of resources and

conditions in their refuges[17].

As a comparatively larger extent, the effect of prey refuge has been incorporated as a new

ingredient of simple predator-prey models and it’s major influencing on the community stability30

and the equilibrium density have been studied many ecologists[12,14-16,17-19]. In [15], which

incorporated the effect of prey refuge in the well-known Rosenzweig-MacArthur model and

obtained that there is a trend from limit cycles through non-zero stable point up to predator

extinction and prey stabilizing at it’s carrying capacity as hidden prey increasing in proportion or
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number. In [16], which obtained that the non-zero equilibrium point could change from unstable35

state surrounded by a stable limit cycle to globally asymptotically stable state as increasing in

the refuge using by prey, they also found a clear stabilizing effect on the community equilibrium.

In [18], which used a model with a constant proportion of prey using refuge(founded on complex

assumptions) and found a clear stabilizing effect and an increase of the equilibrium density of

prey.40

The model we will use here to incorporate the primary effect of prey refuge is a natural

extension of the Lotka-Volterra model with prey self-limitation and Holling |‖ functional re-

sponse. There is a huge variety of predator-prey models presenting in the ecological literature,

one of those best known and understood in the mathematical and biological terms is likely to

be the Lotka-Volterra model. For consistence with the previous works on this researching filed,45

we will consider refuge as an environmental place where predation rate is lower than any other

places. Here the ways in which the effect of refuge using by prey has been incorporated in the

predator-prey model is to consider either a constant proportion or a constant number of prey

population being protected from predation.

This paper is organized as follows. In the next section, we formulate the basic model. the50

main results are given in the third section. In the fourth section, we discuss the main results

presented in the third section. the proof of the theorem can be seen in the appendix.

2 The basic model

In this paper, we assume that populations change continuously with time, uniformly distrib-

ute over space and have neither sex structure or stage structure. Therefore, we will consider the

following Lotka-Volterra type predator-prey model with prey self-limitation and Holling type |‖

functional response, where the population growth of prey is logistic in the absence of predation
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and the functional response is hyperbolic:

ẋ(t) = rx(1− x

K
)− αx2y

β2 + x2

ẏ(t) = b(
pαx2

β2 + x2
− c)y

(1)

Here, x(t) and y(t) are the density of prey and predator populations at time t, respectively. The

other parameters have the following biological meanings: r is the intrinsic per capita growth55

rate of prey population; K is the prey environmental carrying capacity; c is the per capita death

rate of predators; p is the conversion rate denoting the number of newly born predators for each

captured prey. the function
αx2

β2 + x2
is a saturating functional response of the kind of Holling

type |‖ and represents the amount of prey killed per unit time by an individual predator, where

α, β are all positive. Noting that predators do not exhibit self-interference since
∂f

∂y
= 0, but60

when predators apply the ratio-dependent functional response, they will exhibit the negative

self-interference. As a bioeconomic model, b is the stiffness parameter that measures the speed

with which the effort reacts in the perceived cent flow[14,20,21]. Here the predator reproductivity

rate responds only to the rate of prey killed by predators, thus obeying the principle of biomass

conversion.65

This paper extends the above model by incorporating the effect of prey refuge. According to

Maynard Simth[12], there exists a quantity xr of prey population that occupies a refuge. This

quantity is considered from two alternative points of views[22]: (1) the quantity of hidden prey

is proportional to the size of prey population, i.e. xr = γx. (2) the quantity of refuged prey is a

constant, i.e. xr = R. The quantity of hidden prey depends on the capacity of places found in70

the habitat. According to Collings[18], we have the following model incorporating the effect of

prey refuge:

ẋ(t) = rx(1− x

K
)− α(x− xr)2y

β2 + (x− xr)2

ẏ(t) = b(
pα(x− xr)2

β2 + (x− xr)2
− c)y

(2)
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Considering the existence of the equilibria and feasibility of the system (2), throughout this

paper, we assume that: c < pα < 2c.

3 Statement of the main results75

Case 1: A constant proportion of prey using refuge:

when considering xr = γx(0 ≤ γ < 1), the model (2) becomes the following form:

ẋ(t) = rx(1− x

K
)− α(1− γ)2x2y

β2 + (1− γ)2x2

ẏ(t) = b(
pα(1− γ)2x2

β2 + (1− γ)2x2
− c)y

(3)

Which can be rewrited as :

ẋ(t) = rx(1− x

K
)− αx2y

β̄2 + x2

ẏ(t) = b(
pαx2

β̄2 + x2
− c)y

(4)

Where β̄ =
β

1− γ
, that is, the only change relative to the model (1) is the new value of

parameter β. It is easy to show that the system (4) is topologically equivalent to the system80

(3). When γ → 0, the new parameter β̄ is close to the original one, while γ → 1, the value of

the parameter β̄ increases indefinitely.

The equilibrium points of model (4) are: E0(0, 0), EK(K, 0), Ẽ(x̃, ỹ), where x̃ =
β̄
√

c√
pα− c

;

ỹ =
prβ̄

√
c(K

√
pα− c− β̄

√
c)

Kc(pα− c)
, If K

√
pα− c− β̄

√
c = 0, the equilibrium point Ẽ(x̃, ỹ) collapses

with the point EK(K, 0). Using the following change of variables

ϕ : (R+
0 )2 ×R → (R+

0 )2 ×R, ϕ(x, y, t) = (Kx̄,
Kr

α
ȳ,

x2 + A2

r
t̄)

and rewriting x̄, ȳ, t̄ as x, y, t, we obtain another form of model (4):

ẋ(t) = x(1− x)(x2 + A2)− x2y

ẏ(t) = B(x2 − C(x2 + A2))y
(5)
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Which has only three parameters, where A =
β̄

K
, B =

bpα

r
, C =

c

pα
. The system (5)

is topologically equivalent to the system (4) since detDϕ(x, y, t) =
K2(x2 + A2)

α
> 0. The85

equilibrium points of this model are: E0(0, 0), E1(1, 0), Ē(x̄, ȳ), where x̄ =
A
√

C√
1− C

, ȳ =

A(
√

1− C −A
√

C)
(1− C)

√
C

. The equilibrium point Ē(x̄, ȳ) is positive if and only if M =
√

1− C −

A
√

C > 0. If M = 0, the positive equilibrium point collapses with the equilibrium point E1(1, 0),

and if M < 0, the equilibrium point Ē(x̄, ȳ) lies in the fourth quadrant.

Theorem1: Let A,B, C are all positive, then we have:90

(1) If 0 < A <
(2C − 1)

√
1− C

2C
√

C
, the system (5) has a unique limit cycle surrounding the

positive equilibrium point Ē(x̄, ȳ).

(2) If
(2C − 1)

√
1− C

2C
√

C
< A <

√
1− C√

C
, the system (5) has a locally asymptotically stable

equilibrium point Ē(x̄, ȳ) at the first quadrant.

(3) If
√

1− C√
C

< A < 1, the system (5) has a stable equilibrium point E1(1, 0) and the95

equilibrium point Ē(x̄, ȳ) lies in the fourth quadrant.

Proof: The Jacobia matrix of system (5) at the equilibrium point E1(1, 0) is:



−(1 + A2) −1

0 B(A
√

C +
√

1− C)M




When M =
√

1− C−A
√

C > 0, the equilibrium point E1(1, 0) is a saddle point. Otherwise,

the equilibrium point E1(1, 0) is locally stable. For the positive equilibrium point, the Jacobia

matrix is:100




A2N

(1− C)
√

1− C
− A2C

1− C

2A2BM√
1− C

0




where N = 2C(
√

1− C − A
√

C)−√1− C, Det(J) =
2A4BCM√

1− C
> 0, therefore, the sign of

the eigenvalues depends only on Tr(J) =
A2N

(1− C)
√

1− C
, then we have:
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(1) If N > 0, the positive equilibrium point is unstable and a limit cycle exists according to

the Poincare-Bendison theorem.

(2) If N < 0, the positive equilibrium point is locally asymptotically stable.105

(3) If N = 0, the positive is a central point, i.e. neutrally stable cycles.

Figuring out the parameter A explicitly, we obtain the above theorem.

Clearly, the parameter B does not have any influences on the stability properties and equi-

librium densities of this system.

In reference to the original parameters, the above results can be expressed as follows:110

Theorem2: Let p, α, β, γ, c are all positive constant, then we have:

(1) If 0 < γ < 1 − 2βc
√

c

K(2c− pα)
√

pα− c
, the prey and predator populations stably oscillate

around the unique positive equilibrium point.

(2) If 1 − 2βc
√

c

K(2c− pα)
√

pα− c
< γ < 1 − β

√
c

K
√

pα− c
, the two populations tend to reach a

locally stable equilibrium point in the first equdrant.115

(3) If 1− β
√

c√
K
√

pα− c
< γ < 1, the prey population reaches it’s carrying capacity and the

predators are extinct eventually.

Case 2: A constant number of prey using refuge:

When considering xr = R(0 ≤ R < K), a different model is obtained. Under this assumption,

we have :120

ẋ(t) = rx(1− x

K
)− α(x−R)2y

β2 + (x−R)2

ẏ(t) = b(
pα(x−R)2

β2 + (x−R)2
− c)y

(6)

The equilibrium points of system (6) are: E0(0, 0), EK(K, 0), Ẽ(x̃, ỹ), where x̃ =
β
√

c√
pα− c

,

ỹ =
pr(R

√
pα− c + β

√
c)[(K −R)

√
pα− c− β

√
c]

Kc(pα− c)
. If (K −R)

√
pα− c−β

√
c = 0, the equilib-

rium point Ẽ(x̃, ỹ) collapse with EK(K, 0). Using the following changes of variables:
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ϕ : (R+
0 )2 ×R → (R+

0 )2 ×R, ϕ(x, y, t) = (Kx̄,
Kr

α
ȳ,

D2 + (x−A)2

r
t̄)

and rewriting x̄, ȳ, t̄ as x, y, t, we obtain the following model:

ẋ(t) = x(1− x)(D2 + (x−A)2)− (x−A)2y

ẏ(t) = B((x−A)2 − C(D2 + (x−A)2))y
(7)

Which has only four parameters, where A =
R

K
, B =

b

r
,C =

c

pα
, D =

β

K
. The system (7)125

is topologically equivalent to the the system (6) since detDϕ(x, y, t) =
K2(D2 + (x−A)2)

α
> 0.

the equilibrium point of system (7) are: E0(0, 0), E1(1, 0), Ē(x̄, ȳ), where x̄ = A +
D
√

C√
1− C

,

ȳ =
(A
√

1− C + D
√

C)[(1−A)
√

1− C −D
√

C]
C(1− C)

. If S = (1 − A)
√

1− C − D
√

C > 0, the

equilibrium point Ē(x̄, ȳ) is a positive equilibrium point. We interest only in the point E1(1, 0)

and Ē(x̄, ȳ) since x > A.130

Theorem3: Let S = (1−A)
√

1− C −D
√

C.

(1) If S > 0, the equilibrium point E1(1, 0) is a saddle point and the equilibrium point

Ē(x̄, ȳ) is the unique positive equilibrium point of system (7).

(2) If S < 0, the equilibrium point E1(1, 0) is locally asymptotically stable and the equilib-

rium point Ē(x̄, ȳ) lies in the fourth quadrant.135

(3) If S = 0, the equilibrium point Ē(x̄, ȳ) collapses with the point E1(1, 0), which is locally

stable.

Proof: The Jacobia matrix of system (7) at the equilibrium point E1(1, 0) is:



−[(1−A)2 + D2] −(1−A)2

0 B[(1−A)
√

1− C + D
√

C)]S




then Tr(J) = −((1−A)2 +D2) < 0, Det(J) = −B[(1−A)2 +D2][(1−A)
√

1− C +D
√

C)]S.

(1) If S > 0, then Det(J) < 0, the point E1(1, 0) is a saddle point.140
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(2) If S < 0, then Det(J) > 0, the point E1(1, 0) is locally asymptotically stable and the

equilibrium point Ē(x̄, ȳ) lies in the fourth quadrant.

(3) If S = 0, the equilibrium point Ē(x̄, ȳ) collapses with the point E1(1, 0) which is locally

stable.

Theorem4: Let S = (1−A)
√

1− C −D
√

C > 0 and T̄ = [2A(C −√1− C) + (2C145

− 1)D
√

C][(1−A)
√

1− C −D
√

C]−D
√

C(D
√

C + A
√

1− C), then we have:

(1) If T̄ > 0, the positive equilibrium point Ē(x̄, ȳ) is unstable and surrounded by a limit

cycle.

(2) If T̄ < 0, the positive equilibrium point Ē(x̄, ȳ) is locally asymptotically stable.

Proof: The Jacobia matrix of system (7) at the equilibrium point Ē(x̄, ȳ) is:150




DT̄

(1− C)
√

C(1− C)
− D2C

1− C

2BD(A
√

1− C + D
√

C)S√
C(1− C)

0




Where T̄ = [2A(C − √1− C) + (2C − 1)D
√

C][(1 − A)
√

1− C − D
√

C] − D
√

C(D
√

C +

A
√

1− C). Clearly, Det(J) > 0, then the sign of the eigenvalues depends only on Tr(J) =

DT̄

(1− C)
√

C(1− C)
, and we obtain that

(1) If T̄ > 0, the positive equilibrium point Ē(x̄, ȳ) is unstable and surrounded by a limit

cycle.155

(2) If T̄ < 0, the positive equilibrium point Ē(x̄, ȳ) is locally asymptotically stable.

Clearly, the parameter B does not have any influences on the stability properties and equi-

librium densities of system (7).

In terms of the original parameters, the above results reveal the following conclusions:

Theorem5: Let p, α, β, c, K,R are all positive, then we have:160

(1) If 0 < R <
K
√

pα− c− β
√

c√
pα− c

, the predators are depleted and the prey population tends

to reach it’s carrying capacity.
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(2) If
K
√

pα− c− β
√

c√
pα− c

< R < K, the equilibrium point E1(1, 0) is a saddle point.

(3) If R =
K
√

pα− c− β
√

c√
pα− c

, the equilibrium point Ẽ(x̃, ỹ) collapse with EK(K, 0) which is

locally stable.165

Theorem6: Let
K
√

pα− c− β
√

c√
pα− c

< R < K and T = [(2c−pα)
√

c−2R
√

pα(c−
√

pα(pα− c))][(K

−R)
√

pα− c]− pαβ
√

c(pα
√

pα− c + β
√

c), then we have:

(1) If T > 0, the prey and predator populations stably oscillate around the unique positive

equilibrium point.

(2) If T < 0, the two populations tend to reach a stably coexisting state.170

4 Discussion

The generally reported results were the effect of prey refuge had the stabilizing effect on sim-

ple predator-prey models, particularly when a constant number of hidden prey is considered[8,10,12-

16]. Nevertheless, other results obtained from different models show no such dynamics[17,18].

On the other hand, the effect of prey refuge could increase the equilibrium density of prey175

population or that of prey and predator populations[15,18]. The refuge can be important for

biological control of a pest, however, increasing the amount of refuge can lead to population out-

break, for example, Hoy[23] mentioned that ”hotspots” of high spider mite density in almond

orchards can trigger orchards-wide outbreaks. These hotspots are areas in which the predator is

not successfully controlling the prey and therefore can be considered as refuga. In this paper, we180

considered the impact of prey refuge on the dynamic consequences of the predator-prey model

with prey self-limitation and Holling type |‖ functional repones. We note that the parameter B

has no influences on the equilibrium densities of prey and predators and stability properties of

the system, since the parameter B does not take part on the determination of equilibrium points

and the sign of the trace or determinant of the Jacobia matrix evaluated at the equilibria.185

The equilibrium density of prey increases as refuge using by prey increases, and/or predation
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inefficiency increases. we refer to the predation inefficiency as the parameter C, which represents

the ratio of predator death rate to the product of the predator conversion rate and parameter

α. If a constant proportion of prey using refuge, the predator’s equilibrium density increases

as refuge using by prey increases, and then decreases. The equilibrium density reaches it’s190

maximum value if A =
√

1− C

2
√

C
, i.e. the equilibrium density of prey is equal to

K

2
. If a constant

number of prey using refuge, it is easy to show that under a restricted set of conditions we

also predict an increase in the predator’s equilibrium density. This occurs when the equilibrium

density of prey is less than
K

2
. Therefore, the equilibrium density of predator population increase

with the constant proportion or number of prey using refuge, only when that of prey is less than195

K

2
.

Secondly, as can be seen from our results, if refuge using by prey is high, the model predicts

that prey population reaches it’s carrying capacity and predator goes extinct, a behavior also

observed by Collings[18] and González-Olivares and Ramos-Jiliberto[15] for a certain parameter

space. Thirdly, the refuge using by prey can increase the stability of the community equilibrium200

in the first quadrant, which agrees with most previous results on simple models[8,15,16,18]. In

this paper, stabilization or increase of stability refers to cases where a community equilibrium

point changes from a repeller to an attractor due to changes in the value of controlled parame-

ter(see [15]). Three kind of states can be reached: unstable state surrounded by a limit cycle,

stable coexistent state and prey population reaches it’s carrying capacity and while predators205

extinct.

If a constant number of prey using refuge, it is difficult to figure out the value of the parameter

R explicitly, the consequences are more complex than that of a constant proportion prey using

refuge. Populations oscillate can occur only under a very restricted set of conditions(T > 0).

We can see from the theorem 6, if very few prey hiding in the refuge, the prey and predator210

populations can oscillate stably around the equilibrium point in the first quadrant. Our results
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also predict that predator must capture and digest their prey efficiently to survive form the

habitat in which prey build the refuge where resources and/or conditions are sub-optimal.

Although our results are reasonable under a restricted set of assumptions derived from the

basic model. they are robust and comparable to previous conclusions. We expect the dynamic215

consequences to be studied if more realistic information is added to the model. For instance,

prey population and/or predators have the stage structure—the immature stage and the mature

stage, or predators apply the ratio-dependent functional response.
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