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We update the constraints on possible features in the primordial inflationary density perturbation
spectrum by using the latest data from the WMAP7 and ACT Cosmic Microwave Background
experiments. The inclusion of new data significantly improves the constraints with respect to older
work, especially to smaller angular scales. While we found no clear statistical evidence in the data for
extensions to the simplest, featureless, inflationary model, models with a step provide a significantly
better fit than standard featureless power-law spectra. We show that the possibility of a step in the
inflationary potential like the one preferred by current data will soon be tested by the forthcoming
temperature and polarization data from the Planck satellite mission.

I. INTRODUCTION

Current cosmological observations can be explained
in terms of the so-called concordance ΛCDM model in
which the primordial fluctuations are created during an
early period of inflationary expansion of the Universe.
In particular, the spectrum of anisotropies of the cosmic
microwave background (CMB) is in excellent agreement
with the inflationary prediction of adiabatic primordial
perturbations with a nearly scale-invariant power spec-
trum [1–5]. In its simplest implementation, inflation is
driven by the potential energy of a single scalar field, the
inflaton, slowly rolling down towards a minimum of its
potential; curvature perturbations, that constitute the
primordial seeds for structure formation, are originated
during the slow roll from quantum fluctuations in the
inflaton itself. The scale invariance of the spectrum is
directly related to the flatness and smoothness of the in-
flaton potential, that are necessary to ensure that the
slow-roll phase lasts long enough to solve the paradoxes
of the Big Bang model.

However, in more general inflationary models, there
is the possibility that slow roll is briefly violated. This
naturally happens in theories with many interacting
scalar fields, as it is the case, for example, in a class
of multifield, supergravity-inspired models [6, 7], where
supersymmetry-breaking phase transitions occur during
inflation. These phase transitions correspond to sudden
changes in the inflaton effective mass and can be mod-
eled as steps in the inflationary potential. If the transi-
tion is very strong, it can stop the inflationary phase as
it happens in the usual hybrid inflation scenario; on the
contrary, inflation can continue but the inflationary per-
turbations and thus the shape of the primordial power
spectrum are affected. Departures from the standard
power-law behaviour can also be caused by changes in
the initial conditions due to trans-planckian physics [8–
10] or to unusual initial field dynamics [11, 12]

A violation of slow-roll will possibly lead to detectable
effects on the cosmological observables, or at least to the

opportunity to constraint these models by the absence
of such effects. In particular, step-like features in the
primordial power spectrum have been shown [13, 14] to
lead to characteristic localized oscillations in the power
spectrum of the primordial curvature perturbation. Such
oscillations have been considered as a possible explana-
tion to the “glitches” observed by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) in the temperature
anisotropy spectrum of the CMB, although the WMAP
team notes that these could be caused simply by having
neglected beam asymmetry, the gravitational lensing of
the CMB, non-gaussianity in the CMB maps and other
“small” (<∼ 1%) contributions to the covariance matrix.
In the following we will assume that these features have
indeed a cosmological origin as in the class of extended
models described above and we will use CMB data to con-
strain the phenomenological parameters describing the
step in the inflaton potential.

Constraints on oscillation in the primordial perturba-
tion spectrum, as well as best-fit values for the step pa-
rameters, have been previously derived in Refs. [15–17].
Here we improve on the previous analyses in several as-
pects. First, we use more recent CMB data, in particular
the WMAP 7-year and the Atacama Cosmology Tele-
scope (ACT) data. This allows us to derive tighter con-
straints on the parameters; in particular we get an upper
limit on the step height (related to the amplitude of os-
cillations) that is independent on the position of the step
itself in the prior range considered. We also find a clear
correlation between the position and the height of the
step. Secondly, we generate mock data corresponding to
the model providing the best-fit to the WMAP data, and
use these data to assess the ability of the Planck satellite
to detect the presence of oscillations in the primordial
spectrum.

The paper is organized as follows: in Section II we de-
scribe the evolution of perturbations in interrupted slow
roll and the phenomenological model used to describe
a step in the inflationary potential. In Section III we
discuss the analysis method adopted. In Section IV we
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present the results and in Section V we derive our con-
clusions.

II. INFLATIONARY PERTURBATIONS IN

MODELS WITH INTERRUPTED SLOW ROLL

Steps in the potential can naturally appear in “multi-
ple inflation” models, where the inflaton field φ is gravi-
tationally coupled to a “flat direction” field ρ (belonging
to the visible sector of the theory), i.e. a direction in field
space along which the potential vanishes. The ρ-field can
undergo a symmetry-breaking phase transition and ac-
quire a vacuum expectation value 〈ρ〉. The gravitational
coupling between the ρ and the inflaton field will cause
the effective mass-squared of the latter to change; for ex-
ample, in the case in which the coupling between the two
fields is described by a term λφ2ρ2/2 in the Lagrangian,
the inflaton mass-squared after the phase transition will
become m2

eff(φ) = m2
0 + λ〈ρ2〉. It is worth noticing that

the presence of flat field directions also opens the possi-
bility to have inflation with a curved trajectory in field
space; however, in the following, we will disregard this
scenario.
The exact behaviour of the inflaton mass will depend

by the dynamics of the phase transition; however, this
is so fast that the ρ-field reaches the minimum of its
potential very rapidly. It is then very reasonable to model
the inflaton mass in a phenomenological way as

m2
eff(φ) = m2

[

1 + c tanh

(

φ− b

c

)]

. (1)

Here, the parameter b is of the order of the critical value
of the inflaton field for which the phase transition occurs,
c is the height of the step (related to the change in the
inflaton mass) and d is its width (related to the duration
of the phase transition). In the following we shall work
in Planck units (c = h̄ = G = 1), so that all dimensional
quantities like b and d should be multiplied by the planck
mass Mp ≃ 1.22× 1019GeV in order to get their values
in physical units.
Let us now briefly recall how to compute the spectrum

of primordial perturbations, as discussed in details by
Adams et al. [13]. For the moment, we do not specify
the exact form of the inflaton potential V (φ); we will
return on this in the next Section. In the case of scalar
perturbations, it is useful to define the gauge-invariant
quantity [18] u ≡ −zR, where z = aφ̇/H , a is the scale
factor, H is the Hubble parameter, R is the curvature
perturbation, and dots denote derivatives with respect
to the cosmological time t. The Fourier components of u
evolve according to:

u′′

k +

(

k2 − z′′

z

)

uk = 0 , (2)

where k is the wavenumber of the mode, and primes de-
note derivatives with respect to conformal time η. When

k2 ≫ z′′/z, the solution to the above equation tends to

the free-field solution uk = e−ikη/
√
2k.

In the slow-roll approximation, z′′/z ≃ 2a2H2. How-
ever, in the models considered here this expectation can
be grossly violated near the phase transition, and the
time evolution of z has to be derived by solving the equa-
tions for the inflaton field and for the Hubble parameter:

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (3)

3H2 =
φ̇2

2
+ V (φ) . (4)

Once the form of the potential is given, these can be
integrated to get H and φ, and thus z, as a function of
time. At this point, it is possible to integrate Eq. (2)
to get uk(η) for free-field initial conditions when k2 ≫
z′′/z. Finally, knowing the solution for the mode k, the
power spectrum of the curvature perturbation PR can be
computed by means of

PR =
k3

2π

∣

∣

∣

uk

z

∣

∣

∣

2

(5)

evaluated when the mode crosses the horizon. The re-
sulting spectrum for models with a step in the potential
is essentially a power-law with superimposed oscillations;
thus, asymptotically, the spectrum will recover the famil-
iar kns−1 form typical of slow-roll inflationary models.
In practice, however, one has to relate the horizon size

at the step with a physical wavenumber. For a general
wavenumber k⋆ one can write k⋆ ≡ a⋆H⋆ = aende

−N⋆H⋆,
where a⋆ and H⋆ are the scale factor and the Hubble
parameter at the time the mode crossed the horizon,
aend is the scale factor at the end of inflation, and N⋆

is the number of e-fold taking place after the mode left
the horizon. We choose N⋆ = 50 for the pivot wavenum-
ber k⋆ = k0 = 0.0025Mpc−1. A different choice would
correspond to a translation in the position of the step in
φ and would thus be highly degenerate with b. For this
reason we do not treat N⋆ as a free parameter, consistent
with what has been done in previous studies [16, 17].

III. ANALYSIS METHOD

We compare the theoretical predictions of a class of
inflationary models with a step in the inflaton potential
with observational data. We use a modified version of
the CAMB code that solves Eqs. (2)–(4) numerically us-
ing a Bulirsch-Stoer algorithm in order to compute the
initial perturbation spectrum (5) and, from that, the
CMB anisotropy spectrum for given values of the rele-
vant parameters describing the model. CAMB is then in-
terfaced with a modified version of the Markov Chain
Monte Carlo (MCMC) package CosmoMC [19], that we
use to find the best-fit value of the parameters, to recon-
struct their posterior probability density function, and to
infer constraints on the parameter themselves.
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Models. We consider a chaotic inflation potential of
the form V (φ) = m2

eff(φ)φ
2/2. Using Eq. (1), this corre-

sponds to a potential

V (φ) =
1

2
m2φ2

[

1 + c tanh

(

φ− b

c

)]

. (6)

The potential uniquely defines the spectrum of pertur-
bations PR. The parameters that define the primordial
spectrum and the initial conditions for the evolution of
cosmological perturbations are then the inflaton mass m
and the step parameters b, c and d. The inflaton mass
sets the overall scale for the potential and consequently
for the amplitude of the perturbations; it can then be
traded, in the Monte Carlo analysis, for the more famil-
iar parameter As, i.e., the amplitude of the primordial
spectrum at the pivot wavenumber k0 = 0.0025Mpc−1.
On the other hand, as already noted above, a step in the
potential produces a perturbation spectrum with oscilla-
tions superimposed over a smooth power law. In the case
of the potential (6), the underlying power-law has a fixed
spectral index ns = 0.96.
The results obtained in the case of a specific poten-

tial will be, by definition, model-dependent. However, as
argued in Ref. [17], the issue of model dependence can
be alleviated in a phenomenological way by restoring the
spectral index as a free parameter, i.e., by defining the
“generalized” spectrum Pgen

R
as

Pgen
R

(k) = Pch
R
(k)×

(

k

k0

)ns−0.96

, (7)

where Pch
R
(k) is the spectrum induced by the chaotic po-

tential (6). Since the latter has a overall tilt of 0.96, ns

will describe the overall tilt of the generalized spectrum.
Summarising, we consider two classes of models. Mod-

els belonging to the first class (referred to as class A) cor-
responding to the potential (6), are described by eight
parameters: the physical baryon and cold dark matter
densities ωb = Ωbh

2 and ωc = Ωch
2, the ratio θ be-

tween the sound horizon and the angular diameter dis-
tance at decoupling, the optical depth to reionization τ ,
the parameters b, c and d of the step-inflation model,
and the overall normalization of the primordial power
spectrum As (equivalent to specifying m2 as discussed
above). Models in the second class, referred to as class
B, correspond to the generalized step model (7) and are
described by the effective tilt ns in addition to the eight
parameters of the first class. In both cases, we consider
purely adiabatic initial conditions, impose flatness and
neglect neutrino masses. We limit our analysis to scalar
perturbations.
Priors. Apart from the hard-coded priors of CosmoMC

on H0 (40 km s−1 Mpc−1 < H0 <100 km s−1 Mpc−1)
and the age of the Universe (10 Gyr < t0 < 20 Gyr),
we impose flat priors on ωb, ωc, θ, τ and, when con-
sidered, ns and a logarithmic prior on As. As we shall
see, for these parameters the width of the posterior is
much smaller than the prior range, so that the latter is

not really relevant. For the step parameters, the situa-
tion is complicated by the fact that the likelihood (and
the posterior) does not go to zero in certain directions of
the subspace. This happens in particular for very small
values of c, for which the spectrum becomes indistin-
guishable from a power law, and for values of b either too
large or too small so that the features in the spectrum
are moved outside the range of observable scales. Then
we choose for b a flat prior 13 ≤ b ≤ 15, that roughly en-
compasses said range. In the case of c and d, since we do
not have any a priori information on these parameters,
not even on their order of magnitude, we find convenient
to consider a logarithmic prior on both of them. Hence,
we take −6 ≤ log c ≤ −1 and −2.5 ≤ log d ≤ −0.5.
Additionally, since the combination c/d2 is better con-
strained by the data than d alone, we also impose a prior
−5 ≤ log(c/d2) ≤ 3. Finally, we recall that, since the
posteriors for b, log c and log d do not necessarily vanish
at the edge of the prior range, all integrals of the prob-
ability density function depend on the extremes of inte-
gration and are thus somewhat ill-defined. Care should
then be taken when quoting confidence limits in the b,
log c and log d subspaces.
Datasets. We perform the statistical analysis for

each of the models by comparing the theoretical predic-
tions to two different datasets. The first includes the
WMAP 7-year temperature and polarization anisotropy
data (WMAP7). The likelihood is computed using the
the WMAP likelihood code publicly available at the
LAMBDA website http://lambda.gsfc.nasa.gov/.
We marginalize over the amplitude of the Sunyaev-
Zel’dovich signal. The second dataset includes the
WMAP7 data with the addition of the small-scale CMB
temperature anisotropy data from the ACT experiment.
For the ACT dataset we also consider two extra pa-
rameters accounting for the Poisson and clustering point
sources foregrounds components. The ACT dataset is
considered up to ℓmax = 2500.
Other than deriving the limits on the models from

existing data, we also assess the ability of future ex-
periments, in particular of the Planck satellite, to im-
prove these constraints. In order to do this, we simulate
“mock” data corresponding to the step model that yields
the best-fit to the WMAP 7 and then perform a statis-
tical analysis on these data as if they were real. The
forecast method we use is identical to the one presented
in [20] and we refer to this paper for further details and
references. The synthetic dataset is generated by consid-
ering for each Cℓ a noise spectrum given by:

Nℓ = w−1 exp(ℓ(ℓ+ 1)8 ln 2/θ2b), (8)

where θb is the full width at half maximum (FWHM)
of the beam assuming a Gaussian profile and where w−1

is the experimental power noise related to the detectors
sensitivity σ by w−1 = (θbσ)

2. The experimental param-
eters are reported in Table I.
Together with the primary anisotropy signal we also
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Experiment Channel FWHM ∆T/T ∆P/T
Planck 70 14’ 4.7 6.7

fsky = 0.85 100 10’ 2.5 4.0
143 7.1’ 2.2 4.2

TABLE I. Planck [21] experimental specifications. Chan-
nel frequency is given in GHz, FWHM in arcminutes and
noise per pixel for the Stokes I (∆T/T), Q and U parameters
(∆P/T) is in [106µK/K], where T = TCMB = 2.725K. In the
analysis, we assume that beam uncertainties and foreground
uncertainties are smaller than the statistical errors.
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FIG. 1. Model likelihood as a function of b for model A (thin
curves) and B (thick curves) using WMAP7 data (dashed
curves) and the WMAP7+ACT dataset (solid curves)

take into account information from CMB weak lensing,
considering the power spectrum of the deflection field Cdd

ℓ

and its cross correlation with temperature maps CTd
ℓ .

Analysis. We derive our constraints from paral-
lel chains generated using the Metropolis-Hastings algo-
rithm. We use the Gelman and Rubin R parameter to
evaluate the convergence of the chains, demanding that
R − 1 < 0.03. The one- and two-dimensional posteriors
are derived by marginalizing over the other parameters.

IV. RESULTS AND DISCUSSION

We first consider the WMAP7 and WMAP7+ACT
datasets. We find that the ΛCDM fit to both datasets

TABLE II. Best fit values for the parameters of the primordial
spectrum.

Model A Model A Model B Model B
Parameter WMAP7 WMAP7+ACT WMAP7 W7+ACT

b 14.23 14.25 14.24 14.25
log c -3.11 -2.71 -2.97 -2.67
log d -1.58 -1.60 -1.65 -1.45
ns – – 0.953 0.959

log[1010As] 3.08 3.06 3.07 3.08

χ2 7469.4 7489.6 7467.9 7491.4

can be improved by the inclusion of a step in the infla-
tionary potential, in both cases when the scalar spectral
index is being fixed to ns = 0.96 (Model A), and when it
is being treated as a free parameter (Model B). The best-
fit values for the step parameters are reported in Table
II. We also show the full likelihood for b in Fig. 1. It
can be seen that in all cases the maximum in the likeli-
hood occurs for b ≃ 14.2; as we show below, this is due
to oscillations placed in correspondence to the WMAP
glitches at ℓ ∼ 20 and ℓ ∼ 40 and thus able to improve,
for suitable values of the other parameters, the goodness-
of-fit with respect to the vanilla ΛCDM model. We found
that in case of the WMAP7 analysis the best fit vanilla
Λ-CDM model is at about ∆χ2

eff ∼ 6 from the global best
fit with features.

As long as bayesian statistics is concerned, the actual
probability density distribution for a parameter is not
given by the likelihood (the probability of the data given
the parameters) but instead by the posterior (the prob-
ability of the parameters given the data). In Fig. 2 we
show the one-dimensional posterior distributions for the
step parameters b, log c and log d. It can be noted that
the posterior for b has a peculiar shape, presenting a peak
for b ≃ 14.2 and a fairly wide dip for b <∼ 14. The peak
traces the peak in the likelihood discussed above. The
decrease for b < 14 is instead due to the fact that, low-
ering b, the oscillations are moved to larger multipoles
where they tend to spoil the ΛCDM fit unless c is set to
a very small value.

This is clearly illustrated in Fig. 3, where we compare
the WMAP7 data with three realizations of the CMB
spectrum: the ΛCDM best fit to the WMAP data, the
generalized step model best fit to the same data (corre-
sponding to the third column of Table II), and a gener-
alized step model with the same parameters as the best
fit, with the exception of b that is set to b = 13.9. It is
clear, especially from the second panel, that for b = 14.2
the oscillations improve the fit in the region 20 <∼ ℓ <∼ 50.
On the other hand, when b = 13.9 the height of the first
peak is diminished so that the predicted spectrum is com-
pletely at variance with the data. The posterior does not
drop to zero because it still exist a fair amount of param-
eter space, i.e., models with low c, than can fit the data
even with the oscillations placed in the “wrong” place.
The posterior going to a constant value at the edges of
the prior range is instead related to the oscillations being
moved out of the observable scales. The inclusion of the
ACT data in addition to WMAP7 helps in constraining
small values of b, i.e., oscillations at small scales (large
ℓ’s).

The shape of the log c posterior is typical of a quantity
parametrizing the amplitude of a non-standard effect: it
is constant for “small” values of the parameter (when
the step model becomes indistinguishable from standard
ΛCDM), and then rapidly vanishes above a critical value.
It can be seen that the probability density becomes half
of its asymptotic value at c = 0 for c ≥ 10−2. Finally,
the posterior for log c clearly shows that this parameter
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FIG. 2. One-dimensional posterior probability density for b (left panel), log c (middle panel) and log d (right panel) for model
A (thin curves) and B (thick curves) using WMAP7 data (dashed curves) and the WMAP7+ACT dataset (solid curves)

is largely unconstrained by data.

We do not quote one-dimensional confidence limits on
the parameters because, as noted in Sec. III, the pos-
teriors do not vanish at the edge of the prior range and
in this case the confidence limits depend on the integra-
tion range chosen. However, for illustrative purposes, in
Fig. 4 we show the 2-dimensional 95% confidence regions,
computed assuming that the posterior vanishes outside
the prior range, in the (b − log c) plane. It is clear from
the plots that there is a region below b = 14 where the
data are more sensitive to the value of c; this is related as
noted above to the oscillations being placed in the region
where the data are more accurate and favour a smooth
spectrum over one with oscillations.

The results presented here are fully compatible with
the analysis made by [22] where the WMAP5 dataset was
considered. The apparently different value for the best
fit b parameter found in that paper is due to the differ-
ent choice of the pivot scale (k0 = 0.05Mpc−1 instead of
k0 = 0.0025Mpc−1 as assumed in our analysis). We have
checked that performing the analysis on the WMAP7
dataset with the assumption of k0 = 0.05Mpc−1 results
in a best fit value of b ∼ 14.7 in agreement with the
results of [22].

Finally, we show our results on the sensitivity of Planck
to the step parameters. We have assumed as a fidu-
cial model a generalized step model with b = 14.2,
log c = −2.97, log d = 1.65, ns = 0.953, As = 2.16×10−9

(basically corresponding to the Model B best-fit to the
WMAP7 data, i.e, the third column of Tab. II). The one-
dimensional posteriors for b, log c and log d are shown in
Fig. 5, while in Tab. III we report the mean values for
the primordial spectrum parameters together with their
2σ error. As we can see the prior range dependence goes
away with Planck data and we can quote marginalised
credible intervals. We also show the two-dimensional pos-
teriors for the step parameters in Fig. 6. It is evident
that the Planck data will greatly increase the precision
to which the step parameters can be measured; in par-
ticular, a detection of oscillations will be possible.
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FIG. 3. Upper panel: CMB anisotropy spectrum for the
ΛCDM (red solid line) and generalized step model (blue long
dashed line) best fits, and for a step model with b = 13.9
(black short dashed line), compared with the WMAP7 data.
Lower panel: Zoom of the region 15 ≤ ℓ ≤ 60, showing the
improved fit of the step model.

V. CONCLUDING REMARKS

We have considered inflation models with a small-
amplitude step-like feature in the inflaton potential. Fea-
tures of these kind can be due for example to phase
transitions occurring during the slow roll in multi-field
inflationary models. In these models the primordial per-
turbation spectrum has the form of a power-law (as in
the standard featureless case) with superimposed oscilla-
tions, localized in a finite range of scales that basically
depends on the position of the step in the potential. We
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and from top to bottom: class A, WMAP7+ACT; class B,
WMAP7+ACT; class A, WMAP7; class B, WMAP7.

TABLE III. Parameter constraints from Planck.

Parameter Model A Model B
b 14.200 ± 0.010 14.200 ± 0.011

log c −3.00± 0.32 −3.00 ± 0.34
log d −1.66± 0.22 −1.64 ± 0.23
ns 0.96 (fixed) 0.957 ± 0.007

log[1010As] 3.073 ± 0.016 3.074 ± 0.016

have compared the theoretical predictions of a specific
model, i.e., chaotic inflation, and of a more general phe-
nomenological model to the WMAP7 and ACT data, in
order to find constraints on the parameter describing the
model. We have also studied the possibility of detecting
the oscillations with the upcoming Planck data in the
case they really exist.
We have found that models with features can improve

the fit to the WMAP7 data when the step in the potential
is placed in such a way as to produce oscillations in the
region 20 <∼ ℓ <∼ 60, where the WMAP7 data shows some
glitches. We found no further evidence for small scales
glitches from the recent ACT data, this is fully consistent
with the recent analysis of [5]. We have also found that
models with too high a step are excluded by the data.
Finally, assuming as a fiducial model the generalized step
model that provides the best fit to the WMAP7 data, we
have found that the Planck data will allow to measure
the parameters of the model with remarkable precision,
possibly confirming the presence of glitches in the region
20 <∼ ℓ <∼ 60.
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from the mock Planck data, for models of class A (dashed curves) and B (solid curves).
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