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Abstract

In this paper, we consider Navier-Stokes equations in thin 3D thin domain with more general

Navier-friction boundary conditions (2.4) (compare with boundary condition in [1]). We prove
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and existence of attractor of strong solutions, we generalize the results in [1].
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1 Introduction

As is well known, the existence and uniqueness theory of 2D Navier-Stokes equations is well un-

derstood with suitable assumptions on the initial data and forces. However, there is no general

existence and uniqueness result for strong solutions to 3D Navier-Stokes equations. In general, we

have a global solution for small data, or a short-time solution for arbitrary data (see [10]). Thus a

natural question arises, namely can we use the thinness of the three-dimensional domain in order

to improve the global existence results of strong solution? The study of global existence of strong

solutions of Navier-stokes equations on the thin domains originates in a series of papers [7] [8] by

Hale and Raugel. In thin 3D domains, inspired by the methods developed in [7] [8], Raugel and Sell

[3] [4] proved global existence of strong solutions for large initial data and forcing terms in the case

of periodic boundary conditions (PP) or mixed boundary conditions (PD).i.e. periodic conditions
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in the vertical thin direction and homogeneous Dirichlet conditions on the lateral boundary. Raugel

and Sell use, as an essential tool, the vertical mean operator M , which allows to decompose every

function u into the sum of a function Mu which does not depend on the vertical variable x3 and a

function (I−M)u with vanishing vertical mean and thus to apply more precise Sobolev and Poincaré

inequalities. In fact, Raugel and Sell demonstrate that the initial data and forcing are allowed to

grow at a faster rate as ε → 0 than the classical results would allow. After these initial results, a

series of papers which improved the results on the size of the initial data and external forces was

made in [9,10,13,14].

For all the above boundary conditions,the mean vertical operator has advantage of commutativity

with differential operators ∂
∂xi

, i = 1, 2, 3, the Stokes operator Aε. However, in the case of Navier-

friction boundary conditions these underlying properties do not hold true.

The Navier boundary conditions appear already in the original paper of Navier [15], who claimed

that the tangential component of the viscous stress at the boundary should be proportional to the

tangential velocity. It was rigorously justified as a homogenization of the no-slip condition on a rough

boundary (see [12]). In [16] the author introduce an elementary derivation of an explicit form of the

Navier boundary condition for general regions Ω, that is,

u = −k(x)wN(x) on ∂Ω (1.1)

where w is the vorticity matrix wi,k = uj
xk
− uk

xj
and N(x) is the unit outer normal on ∂Ω. In [17]

Lions,Temam and Wang introduce the Navier conditions in terms of an interface condition(also see

[2] for the study of such an interface condition in the case of a thin product domain). The authors

in [1] consider the Navier-friction boundary conditions,
u3 = 0, 1

ε
∂uα

∂x3
+ uα = 0 on Γt,

u3 = 0, ∂uα

∂x3
= 0 on Γb, α = 1, 2,

u is periodic in the directions x1, x2 with period ω.

by constructing the new average operatorMε and its complement Nε based on the spectral decompo-

sition for the corresponding Stokes operator Aε. The authors in [2] proposed to leave the traditional

framework to dealing with the Stokes operator Aε with divergence free constraint for its domain

.i.e.divu = 0,and to work with operator Dε = −ν∆ε with the prescribed boundary conditions. How-

ever, In [1] [2],constructing the eigenvalue and eigenfunction of Stokes operator Aε is required. The

author consider the more general boundary Γε = (xh, εg(xh)) in [6].

In this paper, we consider the global-in-time of the strong solutions to the 3D Navier-stokes

equations in thin 3D domains Ωε = Ω × (0, ε) = (0, l1) × (0, l2) × (0, ε), 0 < ε ≤ 1, with periodic

conditions on the lateral boundary Γl = ∂Ω × (0, ε) and friction boundary conditions on the thin

vertical direction Γt = Ω×{x3 = ε}, Γb = Ω×{x3 = 0}. We consider the more general Navier-friction
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boundary conditions (2.4) which is equivalent to (1.1). For more general Navier-friction boundary

conditions,it is difficult to utilize the technique in [1][2] to construct the spectrum of the corresponding

Stokes operator Aε with Navier-friction boundary conditions. Inspiried by the methods in [6] and

[2],we define the new mean operator of vector field as (2.10), we deduce a “good” estimate of the

trilinear term |
∫

Ωε
(u ·∇u) ·4udx| by decomposing the vector u into v+w and by using the smallness

properties of w as well as the fact that v depends only on the horizontal variable x
′
, we improve the

results in [1].

This paper is arranged as follows. In section 2, we recall the 3D Navier-stokes equations and

its mathematical setting and the new vertical mean operators Mε and its properties. In section

3, we deduce some essential auxiliary inequality.In section 4 , we deduce a “good” estimate of the

trilinear term. Section 5 gives the proof of the global existence of strong solutions of (2.1)-(2.4) for

large initial data and forcing term. Finally, in section 6, we show the existence of a compact local

attractor to system(2.1)-(2.4).

2 Preliminaries

Let Ωε ⊆ R3 and Ωε = Ω × (0, ε) = (0, l1) × (0, l2) × (0, ε), 0 < ε < 1, we consider the following

Navier-Stokes equations in Ωε,

∂u

∂t
− ν4u + (u · ∇)u +∇p = f(x, t) in Ωε × (0,∞), (2.1)

divu = 0, in Ωε × (0,∞), (2.2)

u(x, 0) = u0(x), in Ωε × {t = 0}, (2.3)

where ν > 0 is the kinematic viscosity and f(x, t) is the body force, u = (u1, u2, u3) is the velocity

vector at point x and time t, p(x, t) is the pressure. To specify boundary conditions, we separate

the boundary of Ωε as follows,

Γl = ∂Ω× (0, ε), Γt = Ω× {ε}, Γb = Ω× {0}.

We will assume the Navier-friction boundary conditions as follows,
(u1, u2, u3) = −k(x

′
)
(

∂u1

∂x3
, ∂u2

∂x3
, 0

)
, on Γt,

(u1, u2, u3) = k(x
′
)
(

∂u1

∂x3
, ∂u2

∂x3
, 0

)
, on Γb,

u is perodic in the directions x1, x2.i.e.on Γl.

(2.4)

where x
′ ∈ Ω. On the other hand, we assume on k(x

′
) as follows,k(x

′
) is periodic with respect to x

′
,

C1ε ≤ |∇k−1(x
′
)| ≤ C2ε, C3ε ≤ k−1(x

′
) ≤ C4ε.

(2.4)
′
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Where C1, C2, C3, C4 are independent of ε. We require in addition that the initial u0 and f(x, t) satisfy

(H)
∫

Ωε
udx =

∫
Ωε

fdx = 0.

For the mathematical setting of the Navier-Stokes equations, we consider the Hilbert space Hε ⊆
L2(Ωε), such that

Hε = {u ∈ L2(Ωε) : divu = 0, u is periodic in x1 and x2, u satisfies the contions(H)}.

The scalar inner product on Hε is denoted by (·, ·), the associated norms is a general L2 norm and

is denoted by ‖ · ‖L2(Ωε).

We now define the space

H1 = {u ∈ H1(Ωε) : divu = 0, u satisfies (2.4) and the conditions(H)}.

We also define Vε, a closed subspace of H1(Ωε) as follows

Vε = H1 ∩H1(Ωε)

.

Let Pε denote the classical Helmholtz-Leray ( orthogonal ) projection of L2(Ωε) onto Hε.

In this paper, we will use various norm,such as ‖ · ‖L2 , ‖ · ‖H1 , ‖ · ‖H2 , ‖ · ‖Lq ,etc.The subscripts

should read as: L2 = L2(Ωε)
3, H1 = H1(Ωε)

3, H2 = H2(Ωε)
3 etc. For functions f = f(x, t) ∈

L∞(0,∞; L2(Ωε)
3), we define the norm ‖f‖∞ by

‖f‖∞ = sup
t>0

|f(·, t)|,

where one uses the essential superum.

We also introduce the bilinear form E(·, ·) on Vε × Vε as follows

E(u, u∗) =

∫
Ωε

∇u · ∇u∗dx +

∫
Γt∪Γb

k−1(x
′
)u · u∗dx

′
, for all u, u∗ ∈ Vε.

We have the following result.

Theorem 2.1.There exist c0, c
∗
0 such that, for any ε ∈ (0, 1],

c0‖u‖2
H1 ≤ E(u, u) ≤ c∗0‖u‖2

H1 , for all u ∈ H1. (2.5)

Proof. We remark that

E(u, u) = ‖∇u‖2
L2 +

∫
Γt∪Γb

k−1(x
′
)u2dx

′
. (2.6)

Using lemma 3.4 and lemma 3.5 and k(x
′
) satisfies conditions required above, we easily deduce the

right side of (2.5). The left side of (2.5) is the directly result lemma 3.1 and (2.6). The proof of

lemma is completed.
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Since by Theorem 2.1, the bilinear form E(·, ·) is a coercive continuous symmetric bilinear form

on the space Vε, one can define by using the essential function theory the Stokes operator Aε as the

isomorphism from Vε onto the dual V ∗
ε of Vε.

〈Aεu, v〉V ∗
ε ,Vε = E(u, v), ∀v ∈ Vε.

One can also extend Aε as a linear operator on Hε. The domain D(Aε) ≡ {u ∈ Vε : Aεu ∈ Hε} is

exactly the space H2(Ωε) ∩ Vε. the Stokes operator Aε is given by

Aεu = −Pε∆u ∀u ∈ D(Aε).

It is evident that Aε is self-adjoint, and also we can claim that Aε has compact bounded inverse

in Hε, which is a direct consequence of the compactness of embedding Vε into Hε. therefore, by

essential function analysis, the set of all its eigenfunctions constructs a complete normal base of

Hε and we can define its fractional powers. For 0 ≤ s ≤ 2, we denote by V s
ε the space D(A

s
2
ε ),

equipped with the natural norm ‖ · ‖V s
ε
≡ ‖ · ‖s ≡ ‖A

s
2
ε · ‖L2(Ωε), in fact, Vε = D(A

1
2
ε ), the following

equality holds

(Aεu, u)L2 =
1

2
E(u, u), for any u ∈ D(Aε) (2.7)

.

Let Bε be the bilinear form on Vε defined, for (u, v) ∈ Vε × Vε, by

〈Bε(u, v), w〉V ∗
ε ,Vε =

∫
Ωε

(u · ∇)v · wdx, ∀w ∈ Vε.

With these notions we can write the Navier-Stokes equations as a differential equation in V ∗
ε :

∂u

∂t
+ νAεu + Bε(u, u) = Pεf, u(0) = u0. (2.8)

Here ∂u
∂t

denotes the derivative (in the sense of distributions) of u with respect to t.

We now recall the mean value operator M in the vertical direction which acts on the scalar

functions defined on Ωε and is given by (see [3,4]):

(Mf)(x1, x2) =
1

ε

∫ ε

0

f(x1, x2, s)ds, ∀f ∈ L2(Ωε). (2.9)

We remark that, for 1 ≤ p ≤ ∞, M : Lp(Ωε) → Lp(Ωε) is a bounded linear operator of norm 1.We also

recall that M is an orthogonal projection of L2(Ωε) (for this property as well as for other properties,

see [3] [4]).

Next we introduce the notion of mean value for vectors.If u = (u1, u2, u3) belongs to Hε, then u is

tangent to the boundary and, in particular, u3|Γt∪Γb
= 0, which implies by the poincaré inequality

that ‖u3‖L2 ≤ ε‖u3‖H1 . This indicates that taking the vertical mean value of the third component
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is not of real interest. Since the third component is small of order ε, therefore, we introduce the

following mean value operator Mε acting on L1(Ωε)
3:

Mεu(x
′
) = (Mu1, Mu2, 0), for all u ∈ L1(Ωε)

3. (2.10)

We remark that, as above, Mε : Lp(Ωε)
3 → Lp(Ωε)

3 is a bounded linear operator of norm

1. Clearly, Mε and I−Mε are orthogonal projections in (L2(Ωε))
3. Moreover, from boundary condi-

tions (2.4), we obtain that: MεHε ⊂ Hε(in particular,Mεu is divergence free and tangent to the boundary).

however, it do not commute with ∂
∂x3

and Aε. Using these properties and the fact that Pε is an or-

thogonal projection onto Hε, one shows that

MεPεu = PεMεu, ∀u ∈ (L2(Ωε))
3. (2.11)

3 The several auxiliary estimates:

We denote C by positive constants thorough this paper, which is independent of ε and may change

from line to line, the constants are fixed once and for all. We start with a series of simple preliminary

lemma,first of all, let us observe that the Poincaré inequality holds true with constants.

Lemma 3.1. There exist positive constants C, which is independent of ε, such that for every ϕ ∈
H1(Ωε) with

∫
Ωε

ϕdx = 0, the following inequality hold true:

‖ϕ‖L2 ≤ C‖∇ϕ‖L2 , for all ε ∈ (0, 1]. (3.1)

Proof. Let ϕε(x) = ϕ(x
′
, εx3), then, ϕε is a function defined on domain Ω1 = Ω × (0, 1) and has

vanishing mean, the standard Poincaré inequality therefore gives

‖ϕε‖L2(Ω1) ≤ C‖∇ϕε‖L2(Ω1)

for some constant C independent of ε. Expressing this relation in terms of ϕ, we obtain

ε−
1
2‖ϕ‖L2(Ωε) ≤ Cε−

1
2

(
‖∂1ϕ‖2

L2(Ωε)
+ ‖∂2ϕ‖2

L2(Ωε)
+ ε2‖∂3ϕ‖2

L2(Ωε)

) 1
2
,

which implies (3.1) , the proof of lemma is completed.

Lemma 3.2. Let ϕ be a function in H1(Ωε) satisfy Mϕ ≡ 0, then,

‖ϕ‖L2 ≤ ε‖∂3ϕ‖L2 , for all ε ∈ (0, 1].

Proof. We notice that
∫

Ωε
ϕ(x

′
, x3)dx3dx

′
= 0, which implies that

‖ϕ‖2
L2 =

∫
Ωε

ϕ(x
′
, x3)

∫ x3

0

∂3ϕ(x
′
, y3)dy3dx3dx

′

≤
( ∫

Ωε

ϕ2(x
′
, x3)dx3Dx

′
) 1

2
( ∫

Ωε

(

∫ x3

0

∂3ϕ(x
′
, y3)dy3)

2dx3dx
′
) 1

2

≤ ε‖ϕ‖L2‖∂3ϕ‖L2 .
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which completes the proof.

Lemma 3.3. Let ϕ be a function in H1(Ωε), then,

‖ϕ‖L2 ≤ ‖Mϕ‖L2 + ε‖∂3ϕ‖L2 , for all ε ∈ (0, 1].

Proof. The proof of lemma follows directly from the lemma 3.2:

‖ϕ‖L2 ≤ ‖Mϕ‖L2 + ‖(I −M)ϕ‖L2

≤ ‖Mϕ‖L2 + ε‖∂3ϕ‖L2

= ‖Mϕ‖L2 + ε‖∂3ϕ‖L2 .

Lemma 3.4. For any ε ∈ (0, 1] and for any ϕ ∈ H1(Ωε) and satisfy (2.4), we have

‖ϕ(x
′
, ε)‖L2(Γt) ≤ 2ε−

1
2‖Mϕ‖L2(Ωε) +

√
5ε

1
2‖∂3ϕ‖L2(Ωε), (3.2)

‖ϕ(x
′
, 0)‖L2(Γb) ≤ 2ε−

1
2‖Mϕ‖L2(Ωε) +

√
5ε

1
2‖∂3ϕ‖L2(Ωε). (3.3)

Proof. We first note that

‖ϕ(x
′
, ε)‖2

L2(Γt)
=

∫
Ω

ϕ2(x
′
, ε)dx

′

= ε−1

∫
Ω

∫ ε

0

∂x3(x3ϕ
2(x))dx3dx

′
.

Using lemma 3.3 and the Young inequality, we infer from the previous equality that

‖ϕ(x
′
, ε)‖2

L2(Γt)
= ε−1‖ϕ‖2

L2(Ωε)
+ 2ε−1

∫
Ωε

x3ϕ(x)∂x3ϕ(x)dx

≤ 2ε−1‖ϕ‖2
L2(Ωε)

+ ε‖∂3ϕ‖2
L2(Ωε)

≤ 4ε−1‖Mϕ‖2
L2(Ωε)

+ 5ε‖∂3ϕ‖2
L2(Ωε)

which implies the inequality (3.2).

To prove the second inequality,we only instead of ∂x3(x3ϕ
2(x)) with ∂x3((x3 − ε)ϕ2(x)) in the

proof of (3.2), the detail is omitted. The proof of lemma is completed.

Remark 3.1.Using the same method, for ϕ ∈ H2(Ωε), we also easily deduce that∫
Γt∪Γb

|∇ϕ|2dx
′ ≤ Cε−1‖∇ϕ‖2

L2 + Cε‖ϕ‖2
H2 .

Lemma 3.5. For ε ∈ (0, 1], for any ϕ ∈ H2(Ωε) and for i = 1, 2, one has

‖∂iϕ‖L2 ≤ ‖Mϕ‖H1(Ωε) + ε‖∂i∂3ϕ‖L2(Ωε).

Proof. We note that M∂iϕ = ∂iMϕ, for i = 1, 2, the proof of lemma is direct result of lemma 3.3.
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Lemma 3.6. There exist a positive constant C, which is independent of ε, such that,for

all ε ∈ (0, 1] and for any function ϕ ∈ H2(Ωε), one has

‖Mϕ‖L2(Ωε) ≤ ‖ϕ‖L2(Ωε), ‖Mϕ‖H1 ≤ C‖ϕ‖H1 , ‖Mϕ‖H2 ≤ C‖ϕ‖H2 .

Proof. The first relation follows simply by noting that the operator M is nothing else but the

L2 orthogonal projection onto the space of functions independent of the x3, to prove the last two

inequalities, by using again the formula ∂iMϕ = M∂iϕ, ∂i∂jMϕ = M∂i∂jϕ, i, j = 1, 2, together

with lemma 3.4, we easy deduce the conclusion.

Theorem 3.7. There exists a positive constant C, which is independent of ε, and ε0 ≤ 1 such

that, for all ε ∈ (0, ε0], and for all u ∈ Vε, the functions w = (I −Mε)u satisfy,

‖w‖L2 ≤ Cε‖∂3w‖L2 , for all ε ∈ (0, ε0], (3.4)

and, if moreover u belongs to H2(Ωε)
3 and satisfy (2.4), then

‖∇w‖L2 ≤ Cε‖∇2w‖L2 + Cε‖u‖L2 . (3.5)

Proof. Inequality (3.4)follows directly from Lemma 3.2 since Mw1 ≡ Mw2 ≡ 0 and w3|Γt ≡ u3|Γt ≡
w3|Γb

≡ u3|Γb
≡ 0. To prove (3.5), we take different cases. First,for i = 1, 2, we have that

∂x3wi = ∂x3ui =

∫ x3

0

∂2
x3

ui(x
′
, ξ)dξ + k−1(x

′
)ui(x

′
, 0),

where we have used the boundary conditions (2.4).By using (2.4)
′
,we find

‖∂3wi‖2
L2 ≤ Cε2‖∂2

3wi‖2
L2 +

∫
Ωε

k−2(x
′
)u2

i (x
′
, 0)dx

≤ Cε2‖∂3wi‖2
L2 + Cε3

∫
Γb

u2
i (x

′
, 0)dx

′

From Lemma 3.4, we infer from the previous inequality that

‖∂3wi‖2
L2 ≤ Cε2‖∂2

3wi‖2
L2 + Cε2‖ui‖2

L2 + Cε4‖∂3wi‖2
L2 ; (3.6)

On the other hand, we remark that

∂xi
w3 = ∂xi

u3 − ∂xi
u3(x

′
, 0)

=

∫ x3

0

∂x3∂xi
u3dξ.

Therefore we obtain

‖∂xi
w3‖2

L2 ≤ Cε2‖∂3∂xi
u3‖2

L2 . (3.7)

Next, for i, j ∈ {1, 2} since M∂jwi ≡ ∂jMwi ≡ 0 ,we deduce from Lemma 3.2 that

‖∂jwi‖L2 ≤ Cε‖∂xj
∂3wi‖L2 ≤ Cε‖∇2w‖. (3.8)
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Finally,the estimate for ∂3w3 follows immediately from the above bounds together with the divergence

free condition

‖∂3w3‖L2 = ‖∂1w1 + ∂2w2‖L2 ≤ Cε‖∇2w‖L2 . (3.9)

Therefore (3.6)-(3.9) imply (3.5), the proof of theorem is completed.

The next result is a regularity type estimate for u.

Theorem 3.8.There exist a positive constant ε0, with 0 < ε0 < 1 and a positive constant C,

which is independent of ε,such that,for all u ∈ Vε ∩H2(Ωε)
3 satisfying the Navier friction boundary

conditions (2.4), one has

‖u‖H2 ≤ C‖4u‖L2 + C‖u‖H1 , for all ε ∈ (0, ε0]. (3.10)

Proof. First of all, we deduce the estimate of ‖∇2u‖2
L2 ,

‖∇2u‖2
L2 =

3∑
i,j=1

∫
Ωε

∂i∂ju · ∂i∂jdx

= −
3∑

i,j=1

∫
Ωε

∂ju · ∂2
i ∂judx +

3∑
j=1

∫
Γt∪Γb

N3∂ju · ∂3∂judsx

=
3∑

i,j=1

∫
Ωε

∂2
j u · ∂2

i udx−
3∑

i=1

∫
Γt∪Γb

N3∂3u · ∂2
i udsx +

3∑
j=1

∫
Γt∪Γb

N3∂ju · ∂3∂judsx

= ‖4u‖2
L2 −

2∑
i=1

∫
Γt∪Γb

N3∂3u∂2
i udsx +

2∑
i=1

∫ 2

i=1

N3∂iu∂3∂iudsx

=

∫
Ωε

|4u|2dx + I1 + I2,

where we integrated twice by parts and used the boundary conditions (2.4) , where N3 is the unit

exterior normal on Γt and Γb respectively. We now give the estimate of I1 and I2 respectively.

Estimate of I1.Using boundary conditions (2.4) and the conditions (2.4)
′
, one has

|I1| ≤ |
2∑

i,k=1

∫
Γt

∂3uk∂
2
i ukdx

′|+ |
2∑

i,k=1

∫
Γb

∂3uk∂
2
i ukdx

′| = I11 + I12
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It suffices to estimate I11,

|I11| = |
2∑

i,k=1

∫
Γt

k−1(x
′
)uk∂

2
i ukdx

′|

≤ |
2∑

i,k=1

∫
Γt

∂iuk∂i(k
−1(x

′
)uk)dx

′|

≤
2∑

i,k=1

∫
Γt

|∂i(k
−1(x

′
))||∂iuk||uk|dx

′
+

∫
Γt

k−1(x
′
)|∂iuk|2dx

′

≤ Cε

∫
Γt

|∂iuk|2dx
′
+ Cε

∫
Γt

u2
kdx

′

≤ Cε‖u‖2
H2 + C‖u‖2

H1 ,

where we have used Lemma 3.4.

Estimate of I2.

|I2| ≤ |
2∑

i,k=1

∫
Γt

∂iuk∂i∂3ukdx
′|+ |

2∑
i,k=1

∫
Γb

∂iuk∂i∂3ukdx
′|

≤
2∑

i,k=1

∫
Γt

|∂iuk∂i(k
−1(x

′
)uk)|dx

′
+

∫
Γb

|∂iuk∂i(k
−1(x

′
)uk)|dx

′

Using again Lemma 3.4 and the conditions (2.4)
′
, we easily deduce from inequality that

|I2| ≤ Cε‖u‖2
H2 + C‖u‖2

H1 .

From the estimates of I1 and I2, we obtain

‖∇2u‖2
L2 ≤ ‖4u‖2

L2 + C0ε‖u‖2
H2 + C‖u‖2

H1

where C0 and C are positive constants which do not depend on ε, One then finds that

‖u‖2
H2 ≤ ‖4u‖2

L2 + C0ε‖u‖2
H2 + C‖u‖2

H1

We can choose ε1 to satisfy 0 < ε1 ≤ 1 and C0ε1 ≤ 1
2
, One then obtains, for 0 < ε ≤ ε1,

1

2
‖u‖2

H2 ≤ ‖4u‖2
L2 + C‖u‖2

H1 ,

Which implies (3.10).

We now go back to the study of the Stokes operator Aε = −Pε4, we remark that −Pε4 6= −4 in

general. The estimates we give below will be used later for deriving a priori estimates of the strong

solutions to problem (2.1)-(2.4).
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Lemma 3.9. There exists a positive constant C, which is dependent of ε, such that,for all ε ∈
(0, 1], for any vector u ∈ Hε ∩H2(Ωε)

3 that satisfies the boundary conditions (2.4), one has

‖(I − Pε)4u‖L2 ≤ Cε
1
2‖u‖H1 + Cε

3
2‖u‖H2 , for all ε ∈ (0, 1]. (3.11)

Proof. By the properties of the Leray projection Pε, we know that there exits some scalar func-

tion q ∈ L2(Ωε) such that

4u− Pε4u = ∇q.

We can assume without loss of generality that q has vanishing mean on Ωε (if not, we set q̃ =

q −
∫

Ωε
qdx).Clearly, q is periodic in x

′− direction and satisfies the relation

4q = 0, N · ∇q|∂Ωε ≡ N · 4u|∂Ωε .

where N is the unit exterior normal of ∂Ωε. Duo to the characterization of D(Aε), we have also

that ∇q ∈ L2(Ωε)
3, after some simply calculation we find that

4u3 = −(∂1∂3u1 + ∂2∂3u2), on Γt ∪ Γb.

Using the Navier-friction boundary conditions (2.4) for this u, we obtain

∂3q(x) = ∂1(k
−1(x

′
)u1) + ∂2(k

−1(x
′
)u2) on Γt,

∂3q(x) = −(∂1(k
−1(x

′
)u1) + ∂2(k

−1(x
′
)u2)) on Γt.

We can now go to the estimate of ∇q.

We integrate by parts, using the boundary conditions of q to deduce that

‖∇q‖2
L2 =

∫
Ωε

∇q · ∇qdx = −
∫

Ωε

4q · qdx +

∫
Γt∪Γb

q[∂1(k
−1(x

′
)u1)) + ∂2(k

−1(x
′
)u2)]dx

′

=

∫
Γt∪Γb

q[∂1(k
−1(x

′
)u1)) + ∂2(k

−1(x
′
)u2)]dx

′
. (3.12)

Therefore, using the trace theorem and Lemma 3.1, we obtain that

‖q‖L2 ≤ C‖q‖H1 ≤ C‖∇q‖L2 , (3.13)

where C is independent of ε. To estimate (3.12), it suffices to estimate the term
∫

Γt
|∂i(k

−1(x
′
)ui))|2dx

′
,

for i ∈ {1, 2}.∫
Γt

|∂i(k
−1(x

′
)ui))|2dx

′ ≤ 2

∫
Γt

|∂i(k
−1(x

′
))|2|ui|2dx

′
+ 2

∫
Γt

k−2(x
′
)|∂iui|2dx

′

= I1 + I2. (3.14)

From Lemma 3.4 , Lemma 3.5, Remark 3.1 and the conditions (2.4)
′
, we deduce that

I1 ≤ Cε(‖u‖2
L2 + ‖∂3u‖2

L2), (3.15)

I2 ≤ Cε‖u‖2
H1 + Cε3‖u‖2

H2 . (3.16)
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Thanks to (3.12)-(3.16) , we infer from (3.11) that,

‖∇q‖2
L2 ≤ C(ε

1
2‖u‖H1 + ε

3
2‖u‖H2)‖∇q‖L2 ,

which imply (3.11),the proof of lemma is completed.

We next recall three auxiliary inequalities, which are very useful for constructing the strong

solutions of problem (2.1)-(2.4).

Lemma 3.10. There exist positive constants ε0 and C (independent of ε) such that, for

any ε ∈ (0, ε0], the following inequalities hold. For any ϕ ∈ H1(Ωε) such that Mϕ ≡ 0,

‖ϕ‖Lq ≤ Cε
3
q
− 1

2‖∇ϕ‖L2 , for all q ∈ [2, 6]. (3.17)

In particular, for w = (I −Mε)u, where u ∈ Vε, one has,

‖w‖Lq ≤ Cε
3
q
− 1

2‖∇w‖L2 , for all q ∈ [2, 6]. (3.18)

Moreover, if u ∈ H2(Ωε)
3 ∩ Vε satisfies the boundary conditions (2.4), we have,

‖∇w‖Lq ≤ Cε
3
q
− 1

2 (‖w‖H2 + ‖u‖L2), for all q ∈ [2, 6]. (3.19)

Proof. Inequality (3.17) with q = 2 follows from Lemma 3.2. Consider the case when q = 6. We

recall the anisotropic Ladyzhenskaya’s inequality in [9]. Let Ω = Π3
i=1(ai, bi), there exists an absolute

constant C0 such that for all u ∈ H1(Ω)

‖u‖L6(Ω) ≤ C0Π
3
i=1

( 1

bi − ai

‖u‖L2(Ω) + ‖ ∂u

∂xi

‖(L2(Ω))3

) 1
3
. (3.20)

Apply (3.20) to w, we obtain

‖w‖L6(Ωε) ≤ C1

(1

ε
‖w‖L2(Ωε) + ‖ ∂w

∂x3

‖(L2(Ωε))3

) 1
3
Π2

j=1

(
‖w‖L2(Ωε) + ‖ ∂w

∂xj

‖(L2(Ωε))3

) 1
3

≤ C1‖∇w‖L2 , ∀u ∈ Vε,

where we have used Lemma 3.1 and Lemma 3.2, C1 is independent of ε. By interpolation be-

tween L2(Ωε)

and L6(Ωε), we obtain the inequality (3.17). The inequality (3.18) is an obvious consequence of

(3.17).

Using (3.18), we write,for i, j ∈ {1, 2, 3},

‖∂iwj‖Lq ≤ C(‖M∂iwj‖Lq + ‖(I −M)∂iwj‖Lq)

≤ C(‖M∂iwj‖Lq + ε
3
q
− 1

2‖w‖H2). (3.21)
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By the two-dimensional Gagliarddo-Nirenberg inequality and Lemma 3.5 and (3.5) of Theorem 3.7,

we obtain that

‖M∂iwj‖Lq ≤ Cε
1
q ‖M∂iwj‖

2
q

L2(Ω)‖M∂iwj‖
1− 2

q

H1(Ω)

≤ Cε
1
q
− 1

2‖M∂iwj‖
2
q

L2(Ωε)
‖M∂iwj‖

1− 2
q

H1(Ωε)

≤ Cε
3
q
− 1

2 (‖w‖H2 + ‖u‖L2). (3.22)

The inequalities (3.21) and (3.22) imply the inequality (3.19).

Lemma 3.11. (Agmon’s inequality) There exist positive constants ε0 and C (independent of ε),

such that for all ε ∈ (0, ε0], the following inequality holds for w = (I−Mε)u,where u ∈ H2(Ωε)
3∩Vε,

‖w‖L∞ ≤ Cε
1
2‖w‖H2 + Cε

1
2‖u‖L2 . (3.23)

Proof. We recall the Agmon’s inequality from the anisotropic Agmon’s inequality [9]. Let Ω =

Π3
i=1(ai, bi), there exists an absolute constant C0 such that for all u ∈ H2(Ω)

‖u‖L∞(Ω) ≤ C0‖u‖
1
4

L2(Ω)Π
3
i=1

( 1

(bi − ai)2
‖u‖L2(Ω) +

1

bi − ai

‖ ∂u

∂xi

‖L2(Ω) + ‖∂2u

∂x2
i

‖L2(Ω)

) 1
4
. (3.24)

Apply (3.7) to wi, i = 1, 2, 3,

‖wi‖L∞ ≤ C1‖wi‖
1
4

L2(Ωε)

( 1

ε2
‖wi‖L2(Ωε) +

1

ε
‖∂wi

∂x3

‖L2(Ωε) + ‖∂2wi

∂x2
3

‖L2(Ωε)

) 1
4

× Π2
j=1

(
‖wi‖L2(Ωε) + ‖∂wi

∂xj

‖L2(Ωε) + ‖∂2wi

∂x2
j

‖L2(Ωε)

) 1
4

≤ C1ε
1
2‖w‖H2 + Cε

1
2‖u‖L2 , (3.25)

where we have used Lemma 3.2 and Theorem 3.7, C1 is independent of ε. The proof of Lemma is

completed.

Lemma 3.12. There exist positive constants ε0 and C (independent of ε), such that for all ε ∈
(0, ε0], the following estimate holds for any v = Mεu, where u ∈ H2(Ωε)

3 ∩ Vε,

‖v‖L4 ≤ Cε−
1
4‖v‖

1
2

L2‖v‖
1
2

H1 , and ‖∇v‖L4 ≤ Cε−
1
4‖v‖

1
2

H1‖v‖
1
2

H2 . (3.26)

Proof. By the two-dimensional Gagliardo-Nirenberg inequality we infer that

‖v‖L4(Ωε) = ε
1
4‖v‖L4(Ω) ≤ Cε

1
4‖v‖

1
2

L2(Ω)‖v‖
1
2

H1(Ω) = Cε−
1
4‖v‖

1
2

L2(Ωε)
‖v‖

1
2

H1(Ωε)
.

The proof of the second inequality of (3.26) follows in the same way.
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4 Estimates for trilinear form:

In this section,we will deduce a “good” estimate of the trilinear term |
∫

Ωε
(u ·∇u) ·4udx| by decom-

posing the vector u into v + w and by using the smallness properties of w as well as the fact that

v depends only on the horizontal variable x
′
. we start with the following simple result.

Lemma 4.1 There exist positive constants ε0 and C such that,for all ε ∈ (0, ε0], for any U ∈
L2(Ωε)

3, any U∗ ∈ H1(Ωε)
3, and any w = (I −Mε)u with u ∈ D(Aε),one has

|
∫

Ωε

(w ·∇U∗)Udx| ≤ Cε
1
2‖U∗‖H1‖w‖H2‖U‖L2 + Cε

1
2‖U∗‖H1‖u‖L2‖‖U‖L2 , for all ε ∈ (0, ε0]. (4.1)

Proof. Applying the Hölder inequality and Lemma 3.11, we deduce that

|
∫

Ωε

(w ·∇U∗)Udx| ≤ ‖w‖L∞‖∇U∗‖L2‖U‖L2 ≤ Cε
1
2‖U∗‖H1‖w‖H2‖‖U‖L2 +Cε

1
2‖U∗‖H1‖u‖L2‖‖U‖L2 ,

which proves the inequality (4.1).

First, we estimate the term |
∫

Ωε
(v · ∇u) · 4udx|. Integrating this term by parts, we obtain

∫
Ωε

(v · ∇u) · 4udx = −
3∑

i,j,k=1

∫
Ωε

vi∂i∂kuj∂kujdx −
3∑

i,j,k=1

∫
Ωε

∂kvi∂iuj∂kujdx

+
3∑

i,j=1

∫
Γt∪Γb

vi∂iuj∂3ujN3dsx. (4.2)

We claim that the first term in the right hand side of (4.2) vanish. Indeed, integrating by parts,

using the facts that v ·N = 0 on ∂Ωε and that the divergence of v vanishes in Ωε, we obtain that

3∑
i,j,k=1

∫
Ωε

∂kvi∂iuj∂kujdx = −1

2

3∑
i,j,k=1

∫
Ωε

∂ivi(∂kuj)
2dx = 0.

Thus (4.2) reduces to the equality∫
Ωε

(v · ∇u) · 4udx = −
3∑

i,j,k=1

∫
Ωε

∂kvi∂iuj∂kujdx +
3∑

i,j=1

∫
Γt∪Γb

vi∂iuj∂3ujN3dsx. (4.3)

We now estimate each term in the right hand side of (4.3) as follows.

3∑
i,j,k=1

∫
Ωε

∂kvi∂iuj∂kujdx =
3∑

i,j,k=1

∫
Ωε

∂kvi∂i(vj + wj)∂k(vj + wj)dx

=
2∑

i,j,k=1

∫
Ωε

∂kvi∂ivj∂kvjdx +
2∑

i,j,k=1

∫
Ωε

∂kvi(∂ivj∂kwj + ∂iwj∂kvj)dx

+
2∑

i=1

3∑
j,k=1

∫
Ωε

∂kvi∂iwj∂kwjdx, (4.4)
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where we have used v3 = 0. We claim that the first term in the right hand side of (4.4) vanishes.

Indeed, using divv = ∂1v1 + ∂2v2 = 0, we easy obtain that

2∑
i,j,k=1

∫
Ωε

∂kvi∂ivj∂kvjdx =

∫
Ωε

[(∂1v1)
3 + ∂1v1(∂1v2)

2 + ∂1v2∂2v1∂1v1 + (∂1v2)
2∂2v2

+ (∂2v2)
3 + ∂2v2(∂2v1)

2 + ∂2v1∂1v2∂2v2 + (∂2v1)
2∂1v1]dx = 0. (4.5)

By using Theorem 3.7 and Lemma 3.12 and Hölder inequality, we find

|
2∑

i,j,k=1

∫
Ωε

∂kvi(∂ivj∂kwj + ∂iwj∂kvj)dx| ≤ C‖∇v‖2
L4(Ωε)

‖∇w‖L2

≤ Cε
1
2‖v‖H1‖v‖H2(‖w‖H2 + ‖u‖L2). (4.6)

By using (3.19)(with q = 4) and Hölder inequality, we obtain that

|
2∑

i=1

3∑
j,k=1

∫
Ωε

∂kvi∂iwj∂kwjdx| ≤ C‖v‖H1‖∇w‖2
L4

≤ Cε
1
2‖v‖H1(‖w‖2

H2 + ‖u‖2
L2). (4.7)

Next, we estimate term |
∑3

i,j=1

∫
Γt∪Γb

vi∂iuj∂3ujN3dsx|. By using ∂iu3|Γt∪Γb
= 0, for i = 1, 2 and the

boundary conditions (2.4), we find

|
3∑

i,j=1

∫
Γt∪Γb

vi∂iuj∂3ujN3dsx| ≤ |
2∑

i,j=1

∫
Γt

vi∂iujk
−1(x

′
)ujdx

′|+ |
2∑

i,j=1

∫
Γb

vi∂iujk
−1(x

′
)ujdx

′|. (4.8)

We now only estimate the first term in the right side of (4.8), the estimate of the second term follows

in the same way.∫
Γt

vi∂iujk
−1(x

′
)ujdx

′
= ε−1

∫
Γt

∫ ε

0

vi∂3(x3∂iujuj)k
−1(x

′
)dx3dx

′

= ε−1

∫
Ωε

k−1(x
′
)vi∂iujujdx + ε−1

∫
Ωε

k−1(x
′
)x3vi∂3∂iujujdx

+ ε−1

∫
Ωε

k−1(x
′
)x3vi∂iuj∂3ujdx, i, j ∈ {1, 2}. (4.9)

First, we estimate the first term in the right side of (4.9).

|ε−1

∫
Ωε

k−1(x
′
)vi∂iujujdx| ≤ C

∫
Ωε

|vi∂ivjvj|dx + C

∫
Ωε

|vi∂ivjwj|dx

+ C

∫
Ωε

|vi∂iwjvj|dx + C

∫
Ωε

|vi∂iwjwj|dx (4.10)

By using Lemma 3.12 and Hölder inequality, we find∫
Ωε

|vi∂ivjvj|dx ≤ C‖v‖2
L4‖∇v‖L2

≤ Cε−
1
2‖v‖L2‖v‖2

H1 . (4.11)
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Applying Lemma 3.2, Lemma 3.12, Lemma 3.6 and Hölder inequality, we get∫
Ωε

|vi∂ivjwj|dx ≤ ‖v‖L4‖∇v‖L4‖w‖L2

≤ Cε
1
2‖v‖

1
2

L2‖v‖H1‖v‖
1
2

H2‖w‖H1

≤ Cε
1
2‖u‖2

H1‖u‖H2 . (4.12)

From Lemma 3.12, Lemma 3.6,(3.8) and Hölder inequality, we deduce that∫
Ωε

|vi∂iwjvj|dx ≤ ‖v‖2
L4‖∂iwj‖L2

≤ Cε
1
2‖v‖L2‖v‖H1‖w‖H2

≤ Cε
1
2‖u‖2

H1‖u‖H2 . (4.13)

By using Lemma 3.12 Lemma 3.6 (3.8), (3.18) and Hölder inequality, we obtain that∫
Ωε

|vi∂iwjwj|dx ≤ ‖v‖L4‖∂iwj‖L2‖w‖L4

≤ Cε
3
4‖v‖

1
2

L2‖v‖
1
2

H1‖w‖H2‖w‖H1

≤ Cε
3
4‖u‖2

H1‖u‖H2 . (4.14)

Next,we will give the estimates of the last two terms in the right side of (4.9) respectively.Arguing

as in the proof of (4.13) (4.14), we easily obtain the following estimates,

|ε−1

∫
Ωε

k−1(x
′
)x3vi∂3∂iujujdx| ≤ Cε

∫
Ωε

|vi∂3∂iujvj|dx + Cε

∫
Ωε

|vi∂3∂iujwj|dx

≤ Cε
1
2‖u‖2

H1‖u‖H2 . (4.15)

|ε−1

∫
Ωε

k−1(x
′
)x3vi∂iuj∂3ujdx| ≤ Cε

∫
Ωε

|vi∂ivj∂3uj|dx + Cε

∫
Ωε|vi∂iwj∂3uj|dx

≤ Cε
1
2‖u‖2

H1‖u‖H2 . (4.16)

In the next theorem ,we summarize all the estimates that we just have performed. Combining

(4.3)-(4.16) and Lemma 3.6, we deduce the following result.

Theorem 4.2.There exist positive constants ε0 and C (independent of ε ), such that, for all ε ∈
(0, ε0], for any u ∈ D(Aε), with v = Mεu, we have,

|
∫

Ωε

(v · ∇u)4udx| ≤ Cε
1
2‖u‖H1‖u‖H2(‖u‖H2 + ε−1‖u‖L2).
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5 Global existence of strong solution:

We are now able to establish the global existence of the strong solutions to problem (2.1)-(2.4) for a

large set of initial data and forcing terms.

Theorem 5.1.There exist positive constants ε0, k0, k1, K0, K1 such that, for any ε ∈ (0, ε0], for

any forcing term f ∈ L∞(0,∞; L2(Ωε)
3), and for any initial datum u0 ∈ Vε, that satisfy

‖u0‖H1 ≤ k0ε
− 1

2 , ‖Mεu0‖L2 ≤ k1,

‖f‖∞ ≤ K0ε
− 1

2 , ‖Mεf‖∞ ≤ K1, (5.1)

the Navier-Stokes equations (2.1)-(2.4) have unique global strong solution u(t) with

u ∈ C0([0, ∞); Vε) ∩ L∞(0,∞; Vε) ∩ L2
loc(0, T ; H2(Ωε))

and

‖u(t)‖H1 ≤ C∗ε−
1
2 , for all t ≥ 0. (5.2)

Remark 5.1.Since f = Pεf +∇q and that we can replace ∇p by ∇p +∇q in the equation (2.1), we

may assume without loss of generality that f = Pεf .

Proof. Let u = u(t) ∈ C0(0, T (u0, f)); Vε be the strong solutions of (2.1)-(2.4) which is assumed to

exist on some maximal interval [0T (u0, f)). The existence of such an interval for a given u0 ∈ Vε can

be proved as in the classical case of the Navier-Stokes equations , such the strong solution is unique

on the time interval of existence within the class of weak solutions (see[10]). We recall that u(t) also

belongs to L2((0, T ); D(Aε)) for any 0 < T < T (u0, f). Our purpose is to show that T (u0, f) is

actually equal to +∞.

Taking the scalar product in L(Ωε) of (2.1) and applying the Green formula , we obtain

1

2

d

dt
‖u‖2

L2 + νE(u, u) = (f, u)L2 . (5.3)

Since Mε is an orthogonal projection on L(Ωε)
3, one has

(f, u)L2 = ((I −Mε)f, (I −Mε)u)L2 + (Mεf, Mεu)L2 .

Using the inequality (2.5), Lemma 3.6 , Theorem 3.7 and Hölder inequality, we deduce from (5.3)

that, for ε ∈ (0, ε0],

1

2

d

dt
‖u‖2

L2 +
c0

2
‖u‖2

H1 ≤ ‖w‖L2‖(I −Mε)f‖L2 + ‖v‖L2‖Mεf‖L2

≤ C(ε‖u‖H1‖f‖L2 + ‖Mεf‖L2‖u‖L2).

Using the Young inequality, we infer from the above inequality that there exists positive con-

stant C (independent of ε ),such that, for 0 < α ≤ c0
4
, and for ε ∈ (0, ε0],

d

dt
‖u‖2

L2 + α‖u‖2
L2 +

c0

2
‖u‖2

H1 ≤ c1(ε
2‖f‖2

L2 + ‖Mεf‖2
L2). (5.4)
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Multiplying (5.4) by eαs and integrating the result from 0 to t , we obtain, for t ∈ [0, T ),

‖u(t)‖2
L2 +

c0

2

∫ t

0

eα(s−t)‖u(s)‖2
H1ds ≤ e−αt‖u0‖2

L2 + c1α
−1(1− e−αt)(ε2‖f‖2

∞ + ‖Mεf‖2
∞). (5.5)

We first point out that A
1
2
ε u and d

dt
A

1
2
ε belongs to L2((0, T ); Vε and to L2((0, T ); V ∗

ε ) respectively,

and thus, by (2.7) and by Lemma 1.2 of Chapter 3 of [10], we have

d

dt
E(u, u) =

d

dt
‖A

1
2
ε u‖2

L2 = 2(
d

dt
u, Aεu)L2 .

Taking the scalar product in L2(Ωε) of (2.1) with Aεu = −Pε4u and using the above equality, we

find
1

2

d

dt
E(u, u) + ν‖Pε4u‖2

L2 =

∫
Ωε

(u · ∇u)Pε4udx−
∫

Ωε

f · Pε4udx. (5.6)

Noting the decomposition∫
Ωε

(u · ∇u)Pε4udx =

∫
Ωε

(v · ∇u)Pε4udx +

∫
Ωε

(w · ∇u)Pε4udx

and applying Lemma 4.1 together with the Young inequality, we obtain

|
∫

Ωε

(u · ∇u)Pε4udx| ≤ |
∫

Ωε

(v · ∇u)Pε4udx|+ ν

8
‖Pε4u‖2

L2 + Cε‖u‖2
H1(‖w‖2

H2 + ‖u‖2
L2).

Therefore,(5.6) and the Young inequality imply that

1

2

d

dt
E(u, u) +

3ν

4
‖Pε4u‖2

L2 ≤ |
∫

Ωε

(v · ∇u)Pε4udx|+ Cε‖u‖2
H1(‖w‖2

H2 + ‖u‖2
L2) + C‖f‖2

L2 , (5.7)

or also, by the Theorem 3.9,

1

2

d

dt
E(u, u) +

3ν

4
‖4u‖2

L2 ≤ |
∫

Ωε

(v · ∇u)Pε4udx|+ Cε‖u‖2
H1(‖w‖2

H2 + ‖u‖2
L2)

+ Cε‖u‖2
H1 + Cε3‖u‖2

H2 + C‖f‖2
L2 , (5.8)

It remains to estimate the term |
∫

Ωε
(v · ∇u)Pε4udx|.Using the decomposition∫

Ωε

(v · ∇u)Pε4udx =

∫
Ωε

(v · ∇u)(Pε − Id)4udx +

∫
Ωε

(v · ∇u)4udx,

and applying the Lemma 3.9 and the Theorem 4.2, we find

|
∫

Ωε

(v · ∇u)Pε4udx| ≤ C‖v · ∇u‖L2(ε
1
2‖u‖H1 + ε

3
2‖u‖H2)

+ Cε
1
2‖u‖H1‖u‖H2(‖u‖H1 + ε−1‖u‖L2). (5.9)

Applying Lemma 3.10 and 3.12, and using the interpolation inequality

‖v‖H1 ≤ C‖v‖
1
2

L2‖v‖
1
2

H2 ≤ C‖u‖
1
2

L2‖u‖
1
2

H2 ,
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, and using the decomposition ∇u = ∇v +∇w, we obtain

‖v · ∇u‖L2 ≤ C‖v‖L4(‖∇v‖L4 + ε
1
4‖w‖H2 + ε

1
4‖u‖L2)

≤ Cε−
1
2‖u‖L2‖u‖H2 + C‖u‖

1
2

L2‖u‖
1
2

H1‖u‖H2 . (5.10)

Using (5.9) and (5.10), we infer from (5.8) that, for ε ∈ (0, ε0],

1

2

d

dt
E(u, u) +

3ν

4
‖4u‖2

L2 ≤ Cε‖u‖2
H1‖u‖2

H2 + Cε‖u‖2
H1 + Cε3‖u‖2

H2

+ Cε
1
2‖u‖H1‖u‖2

H2 + Cε−
1
2‖u‖L2‖u‖H1‖u‖H2 + C‖f‖2

L2 , (5.11)

Using the young inequality several times,we deduce from Theorem 3.8 that there exist positive

constants C0 and C, which is independent of ε, such that,for ε ∈ (0, ε0],

d

dt
E(u, u) + (ν − C0ε

1
2‖u‖H1 − C0ε‖u‖2

H1 − C0ε)‖u‖2
H2

≤ C(‖u‖2
H1 + ε−1‖u‖2

L2‖u‖2
H1 + ‖f‖2

L2). (5.12)

To prove global existence of the solution u(t), we argue by contradiction. we assume that ε0 ≤
ν

4C0
and that, for ε ∈ (0, ε0], the initial data u0 satisfy the following condition

ν

2
> C0ε

1
2‖u0‖H1 + C0ε‖u0‖2

H1 + C0ε. (5.13)

Next, we assume that there exists a time T0 > 0 such that,

ν

2
> C0ε

1
2‖u(t)‖H1 + C0ε‖u(t)‖2

H1 + C0ε, for all t ∈ [0, T0), and

ν

2
= C0ε

1
2‖u(T0)‖H1 + C0ε‖u(T0)‖2

H1 + C0ε. (5.14)

We shall show by contradiction that T0 = +∞.

Using the inequality (2.5), we deduce from (5.12) and (5.14) that, for ε ∈ (0, ε0] and t ∈ [0, T0],

d

dt
E(u, u) + αE(u, u) +

ν

4
‖u‖2

H2 ≤ C(‖u‖2
H1 + ε−1‖u‖2

L2‖u‖2
H1 + ‖f‖2

L2), (5.15)

where α = min( c0
4
, ν

4c∗0
).

Multiplying (5.15) by eαs, integrating the result from 0 to t, we obtain,for t ∈ [0, T0],

E(u, u) +
ν

4

∫ t

0

eα(s−t)‖u(s)‖2
H2ds ≤ e−αtE(u0, u0) + Cα−1(1− e−αt)‖f‖2

∞

+ C

∫ t

0

eα(s−t)‖u(s)‖2
H1ds + Cε−1

∫ t

0

eα(s−t)‖u(s)‖2
L2‖u(s)‖2

H1ds. (5.16)

The inequality (2.5) and (5.16) imply that, for t ∈ [0, T0],

sup
s∈[0,t]

‖u(s)‖2
H1 ≤ C[‖u0‖2

H1 + ‖f‖2
∞ + C

∫ t

0

eα(s−t)‖u(s)‖2
H1ds

+ Cε−1

∫ t

0

eα(s−t)‖u(s)‖2
L2‖u(s)‖2

H1ds]. (5.17)
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The estimates (5.5)and (5.17) imply, for t ∈ [0, T0],

sup
t∈[0,T0]

‖u(t)‖2
H1 ≤ C[‖u0‖2

H1 + ‖f‖2
∞ + ε−1‖u0‖4

L2 + ε−1‖Mεf‖4
∞ + ε3‖f‖4

∞] , R2
0(ε) (5.18)

We remark that, due to Theorem 3.7, there exists a positive constant C such that

‖u0‖2
L2 ≤ ‖v0‖2

L2 + Cε2‖u0‖2
H1 . (5.19)

Using the initial datum and (5.19), we deduce from (5.18) that,for ε ∈ (0, ε0],

R2
0(ε) ≤ C1(ε

−1(k2
0 + K2

0 + k4
1 + K4

1) + ε3(k4
0 + K4

0)) (5.20)

for some positive constant C1 independent of ε. If k0, k1, K0, K1 small enough ( and independent

of ε) , it follows from (5.20) that,for ε ∈ (0, ε0],

C0ε
1
2 R0(ε) + C0εR

2
0(ε) + C0ε <

ν

2
, (5.21)

which contradicts the statement (5.14). It follows that T0 = +∞.Thus, the initial data u0 and the

forcing term f(t) satisfy condition (5.1) Of Theorem 5.1 which implies that there exists a unique

global solution u(t) to problem (2.1)-(2.4). Moreover, we infer from (5.18), (5.20) that there exists

positive constant C∗, such that, for ε ∈ (0, ε0],

sup
t
‖u(t)‖H1 ≤ C∗ε−

1
2 , (5.22)

which proves the theorem.

6 Local attractors

Like in [3],[4],we are going to introduce a local attractor and show that this local attractor is actually

the compact global attractor of all Leray-Hopf solutions. In order to simplify the statements, we

assume in this section that the forcing term f does not depend on the time variable and satisfies the

conditions (5.1). We also assume that the constants given in (5.1) satisfy the condition (5.21) as well

as the following additional condition

4c1

c0

(K2
0 + K2

1) ≤ k2
1, (6.1)

where the constant c1 is given in (5.5). According to Theorem 5.1, for any u0 satisfy ing conditions

(5.1) and ε ∈ (0, ε0], there exists a unique global strong solution u(t) = Sε(f ; t)u0 ∈ C0([0, ∞); Vε) of

problem (2.1)-(2.4). We next define the sets

B0,ε = {u0 ∈ Vε : ‖u0‖H1 ≤ k0ε
− 1

2 ; ‖Mεu0‖L2 ≤ k1},

Bε =
⋃
t≥0

Sε(f, t)B0,ε

Vε

. (6.2)
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Duo to Theorem 5.1, the set Bε is bounded in Vε and is positively invariant under Sε(f, t),for t ≥ 0.

As in the case of the Navier-Stokes equations with classical boundary conditions,one shows that, for

any u0 ∈ Bε, Sε(f, t)u0 belongs to C0((0, ∞); D(Aε)). Since D(Aε) is compactly embed in Vε,this

means that, for t > 0,the mapping Sε(f, t) is compact from Vε into itself.Thus, the ω− limit set of Bε,

Aε =
⋂
τ≥0

⋃
t≥τ

Sε(f, t)B0,ε

Vε

is well-define and non-empty,compact set and attracts Bε.The set Aε is the compact global attractor

of the restriction of Sε(f, t) to Bε. In fact, it is also a local attractor in Vε and its basin of attraction

contains Bε.

We next show, like in [3],[4],that Aε is the global attractor of the weak Leray-Hopf solutions of

(2.1)-(2.4).

We recall that C0
ω([0, T ]; Hε) is a subspace of L∞((0, T ); Hε) consisting of all functions which are

weakly continuous,that is, for each h ∈ Hε, the mapping t → (u(t), h) is continuous. In particular,

the relation u(0) = u0 is understood in this sense.

We recall that by a weak Leray-Hopf solution on the time interval [0, T ], we mean a function u(·) ∈
L2((0, T ); Vε) ∩ L∞((0, T ); Hε) ∩ C0

ω([0, T ]; Hε) with ∂tu ∈ L1((0, T ); V ∗
ε ), such that u(0) = u0 holds

in the weak sense, the equation

(u(t)− u(t0), u
∗)L2 +

∫ t

t0

E(u, u∗)ds +

∫ t

t0

(
3∑

j=1

uj∂ju, u∗)L2ds =

∫ t

t0

(f, u∗)ds, (6.3)

is satisfied,for all t ≥ t0 ≥ 0 and u∗ ∈ Vε, and the energy inequality

1

2
‖u(t)‖2

L2 +

∫ t

t0

E(u, u)ds ≤ 1

2
‖u(0)‖2

L2 +

∫ t

t0

(f, u(s))L2ds (6.4)

holds for all almost all t0 with 0 < t0 < t ≤ T and also for t0 = 0(see for example[10]).

Duo to the properties of Aε (see section 2 for further details), by using a Galerkin method, we

can prove, like in the case of the classical Navier-Stokes equations (see[10]), that (2.1)-(2.4) admit a

weak Leray-Hopf global solution u(t) in [0,∞), for any u0 ∈ Hε. We also notice that u(t) ∈ Vε for

t ∈ FT
u ,where FT

u ⊂ [0, T ] is a measurable set of full measure. In 1987 for 3D Navier-Stokes equation

Foias and Temam [18] introduced the set Jε consisting of all weak Leray-hopf solutions existing

in (−∞, +∞) and bounded in L∞((−∞, +∞); Hε). This set is not empty since it contains Aε. Foias

and Temam [18] also showed that this set is compact in Hweak
ε and that,for any weak Leray-Hopf

solution u(t) in (0, +∞), u(t) → Jε in Hweak
ε as t → + ∞. We next show that Jε = Aε,for

0 < ε ≤ ε1,where ε1 > 0 is small enough.We use the same arguments as in [13,Theorem 3.12,Chapter

3],[3],[4].

Theorem 6.1.Assume that the conditions (6.1) and (5.1) hold, and that f ∈ L2(Ωε)
3 satisfies

(5.1). Then, there exist a positive constant ε1 ≤ ε0 and, for any r > 0,for any ε ∈ (0, ε1], a
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time T (ε, r) ≥ 0 such that, for any weak Leray-Hopf solution u(t) of (2.1)-(2.4),with ‖u(0)‖L2 ≤
r, there is a positive time t1, 0 < t1 ≤ T (ε, r) so that u(t) ∈ Bε for t ≥ t1. In particular, Jε = Aε.

Proof. Let u(t) be weak Leray-Hopf solution of (2.1)-(2.4), Arguing as in section 5 (5.4), we

deduce from (6.4) and (2.5) that, for t ≥ 0, for ε ∈ (0, ε1],

1

t

∫ t

0

‖u(s)‖2
H1ds ≤ 2

tc0

‖u0‖2
L2 +

2c1

c0

(‖Mεf‖2
L2 + ε2‖(I −Mε)f‖2

L2),

Using the conditions (5.1), we obtain that

1

t

∫ t

0

‖u(s)‖2
H1ds ≤ 3c1

c0

(K2
1 + εK2

0), for all t ≥ T (ε, r), (6.5)

where

T (ε, r) =
2r2

c1(K2
1 + εK2

0)
.

The estimate (6.5) and the condition (6.1) imply that,

1

t

∫ t

0

‖u(s)‖2
H1ds ≤ 3c1

c0

(K2
1 + εK2

0) < k2
1, for all t ≥ T (ε, r),

We can choose ε1 > 0, with ε1 ≤ ε0 such that 3c1
c0

(K2
1 +ε1K

2
0) < k2

0ε
−1
1 . Thus, we have, for ε ∈ (0, ε1],

1

t

∫ t

0

‖u(s)‖2
H1ds < min(k2

0ε
−1, k2

1), for all t ≥ T (ε, r).

Therefore, there exists a subset F0 ⊂ [0, T (ε, r)] of positive measure such that

‖u(t)‖2
H1 ≤ min(k2

0ε
−1, k2

1), for all t ≥ T (ε, r).

Since FT (ε,r)
u is a set of full measure in [0, T (ε, r)], we have that FT (ε,r)

u ∩ F0 6= ∅. Therefore, there

exists t1 ∈ FT (ε,r)
u ∩ F0 ⊂ [0, T (ε, r)] such that

‖u(t1)‖H1 ≤ k0ε
− 1

2 , ‖Mεu(t1)‖L2 ≤ k1.

We deduce now from Theorem 5.1 and from uniqueness of strong solution of (2.1)-(2.4) and that u(t) ∈
Bε, for t ≥ t1. As a direct consequence, we obtain the equality Jε = Aε. This completes the proof

of Theorem 6.1.
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