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This paper revisits the problem of heat conduction in reitic fluids, associated with issues concerning both
stability and causality. It has long been known that the f@mbrequires information involving second order
deviations from thermal equilibrium. Basically, any catsit first-order theory needs to remain cognizant
of its higher-order origins. We demonstrate this by cagyiut the required first-order reduction of a recent
variational model. We provide an analysis of the dynamicthefsystem, obtaining the conditions that must
be satisfied in order to avoid instabilities and acausalaigropagation. The results demonstrate, beyond any
reasonable doubt, that the model has all the features onle expect of a real physical system. In particular, we
highlight the presence of a second sound for heat in the pgpte limit. We also make contact with previous
work on the problem by showing how the various constrainteumsystem agree with previously established
results.

I. CONTEXT

Relativistic thermodynamics continues to provide inténgschallenges, in particular in the context of dissipatand nonlin-
ear phenomena. The issues involved range from direct apiolits in various areas of physics to fundamental probldmagte
nature of time (visavi the second law of thermodynamics)thedormation of structures at nonlinear deviations froerhal
equilibrium. Much recent work has been motivated by the riimdeof complex astrophysical systems, like neutron sféfs
and cosmologyl[2]. There has also been a resurgence ofshiardissipative systems in the context of colliders likelR+t
Brookhaven and the LHC at CERN [3-5]. These latter develapsievhich have to a large extent been driven by the need to
understand the dynamics of a hot quark-gluon plasma, aee biftked with underlying principles like the AAS/CFT coctjgre
and holography [6]. Even though the problem dates back tmtigens of relativity theory, it remains (in a slightly défent
guise) at the forefront of modern thinking.

According to the established consensus view, one must attasecond-order deviations from thermal equilibriunoider
to achieve causality and stability. This is certainly thesten from the celebrated work of Israel and Stewart|[7, &, [9e
11] for recent work on the problem. We have recently revisitee key points in the context of heat conduction [12], tgkin
a multi-fluid prescription based on Carter’s convectivaatanal formulation for relativistic fluids [13] as our stiag point.
This is a mathematically elegant approach that has the flixikequired to account for the physics that we need to aters
A particularly appealing feature of the variational apmtods that, once an “equation of state” for matter is provjdie
theory provides the relation between the various curremdstheir conjugate momenta [1]. The variational analysésieto
a second-order model which has the key elements requirechfmality and stability, in particular, it clarifies the eaf the
inertia of heat (e.g., the effective mass associated witinphs). This effect enters the model in an intuitive fashioterms
of entrainment between the matter and heat [14]. As denmtestiby Prioul[15] some time ago, the final variational model
is formally equivalent to the Israel-Stewart constructidhis exercise demonstrates clearly that the relaxatisaciated with
causal heat transport is determined by the thermal ineAttathe end of the day, the theoretical framework becomeserath
intuitive and the physics involved seems natural.

Does this mean that no troublesome issues remain in thisgunodrea? Not quite. First of all, it is clear that the needhtoo-
duce additional parameters (e.g., the relevant relaxéitioes) and keep track of higher order terms (fluxes of the f@teetera)
make actual applications rather complex. Secondly, we atenuich closer to considering systems that deviate significa
from equilibrium, such that there is no natural “small” paegter to expand in. The variational model sheds some liglthisn
regime by clarifying the role of the temperature in systennsod equilibrium, but there is some way to go before we untaeic
issues associated with, for example, any “principle ofamxial entropy production” and instabilities that lead tasture for-
mation. Finally, despite the obvious successes of the dgtéthermodynamics frameworik [16], there is no universed@ment
concerning the validity (and usefulness) of the resultssdime extent this is natural given the interdisciplinaryunatof the
problem; to make progress we need to account for both theynasdical principles and fundamental general relativitinisT
leads to a range of deep questions concerning, in partjchaactual meaning of the variables involved in the diffiéraodels
(e.g., the entropy). The ultimate theory must have a cle&ndiith statistical physics and even information theory:r @ffiorts
are not yet at that level. Basically, we need to continue tkenaogress if we are to address fundamental problems in, for
example, cosmology.

This paper sets a rather more modest target; we want to exgherextent to which a “first-order” formulation for heat
conduction in general relativity is viable. The questionynsaem somewhat odd given that we have already acknowledged
the need to account for (at least) second order contribsttiblowever, it is interesting to ask whether a first-order eloday
nevertheless be useful (possibly in a somewhat restrietade3. We will demonstrate that this is, indeed, the casdinyjlo
that the original first order models, due to Eckart [17] anddau and Lifshitz [18], were incomplete we develop a coaaist
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framework that includes the key thermal relaxation. We ttamsider the properties of this model, and show that it camaae
both stable and causal (making contact with the classic Wwgriscock and Lindblom [19, 20]). This does not mean that the
system may not exhibit instabilities. On the contrary,abdities are in a sense generic in these problems [21] Hauahalysis
sheds further light on the nature of these instabilitiesalad elucidates the stabilizing role of the thermal inefTiae discussion
also provides insight into the emergence of second sounéffaat that has been experimentally verified in low tempeeat
crystals) associated with the heat transport. This prevédkey link to systems that exhibit superfluidity, and denrass the
potential for a unified treatment of heat transport in noramal superfluid matter.

Il. THERMAL DYNAMICS

We take as our starting point our recent variational anglgkihe relativistic heat problem [12]. The model is phennaieg-
ical, and assumes that the entropy component can be treatetflaid”. In essence, this implies that the mean free pathef
phonons is taken to be small compared to the model scale. &vecthinsider two fluxes, one corresponding to the matter flow
and one which is associated with the entropy. The latterseraglly treated as a massless (zero rest-mass) fluid. yifrendcs
then follows from a Lagrangian which depends on the reldkove of the two fluxes. The associated entrainment turns obéto
a crucial feature of the problem [12,/14, 22].

We assume that the particle number is large enough that tideafyproximation applies and there is a well defined matter
current,n®. Moreover, we adopt the multi-fluid view and treat the emyrap an effective fluid with flux®. This current is in
general not aligned with the particle flux. The misalignmeratssociated with the heat flux and leads to entropy proaolucti

As in the case of a generic two-fluid system (see [23] for amgta in the case of a cool relativistic superfluid), the start
point is the definition of a relativistic invariant LagraagiA. Assuming that the system is isotropic, we take be a function
of the different scalars that can be formed by the two flux€s Bromn® ands® we can form three scalars;
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An unconstrained variation of then leads to
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Changing the passive density variations for dynamicalatiams of the worldlines generated by the fluxes and the méds
discussed in [1]) we find that
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From this result we can read off the conjugate momentum &ssdowith each of the fluxes;
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where we have introduced the coefficienis [1, 12]
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The energy-momentum tensor is obtained by noting that g@atements of the conserved currents induce a variatithein
spacetime metric and therefore the variations of the fluxe¢sandds®, are constrained. The energy-momentum tensor is thus
found to be

Tab = pign® + 0,5° + \Iléab , (6)
where we have defined the generalized pressiuras
U=A—psn®—0y,5". (7)

As a result of the coordinate invariance associated witleggmelativity, the divergence of the energy-momentunseefig)
vanishes. For an isolated system, we can express this eeggrit as an equation of force balance

VT, = fo + 3 =0, (8)



where the individual force densities arel[12]

f2=2n"V g + paVin® )
15 =28"V04 + 0, Vs . (10)
We note that, in order to obtain the energy momentum tefidowésneeded to impose the conservation of the fluxes as
constraints on the variation/[1]. However, the equationsiofion, [9) and[(T0), still allow for non-vanishing prodiact terms.
If we, for simplicity, consider a single particle specids matter current is conserved and we h&y@® = 0. This removes

the second term from the right-hand side[df (9). In contthstentropy flux is generally not conserved. In accordante thie
second law, we must have

Ves® =Ts>0. (11)

A. Temperature

To make progress, we need to connect the general variatiesalts with the relevant thermodynamical concepts. Imgloi
this it makes sense to consider a specific choice of framehditontext of a single (conserved) species of matter, wehsae t
force f2 is orthogonal to the matter flux,®, and therefore it has only three degrees of freedom. Fumitvey, because of the
force balancd(8), we also haxé /5 = 0. This suggests that it is natural to focus on observers &sdavith the matter frame.
We therefore introduce the four-velocit such thath® = nu®, whereu,u® = —1 andn is the number density measured in
this frame.

Having chosen to work in the matter frame (in the spirit of &tl17]), we can decompose the entropy current and its
conjugate momentum into parallel and orthogonal companéiite entropy flux is then expressed as

s = s"(u® +w®), (12)

wherew? is the relative velocity between the two fluid frames, afid, = 0. Lettings* = su? whereu? is the four-velocity

associated with the entropy flux, we see thiat= sy where~ is the redshift associated with the relative motion of the tw

frames|[39]. This illustrates the subjective nature of @yr It is an observer dependent quantity, not an absoluitemo
Similarly, we can write the thermal momentum as

0o = O ug + Bs*w, = (B%s™ + A™n) ug + B*s*w, . (13)
This leads to a measure of the temperature measured in therfinaime;
—u%f, = 0" =B + A™n . (14)

In essence, this quantity represents the effective madseoéntropy component. Returning to the stress-energy teasd
making use of the projection orthogonal to the matter fluxfine that the heat flux (energy flow relative to the matter) iegi

by
o = — Lap ucT" = 50w, (15)
where we have used the projection
Lob= g 4 g0 (16)

Defining the new variables® = s*w® andp, = B*s*w,, the energy density measured in the matter frame can beneldtay
a Legendre-type transform on the master function. Thateshave

0% = uqupT® = —A + pao® . a7

The relevance of the new variables becomes apparent if wadmnthe fact that theynamical temperature in[(14) agrees
with the thermodynamical temperature that an observer moving with the matter wouldsuee. In other words, we have

_ 9"

= —— ,
Js np

0" (18)
wherep* = p*(n, s*, p). This s, of course, the standard definition of temperatsieeergy per degree of freedom of the system.

Mathematically, the temperature is obtained from the tiareof the energy with respect to the entropy in the obsésferame
(keeping the other thermodynamic variables fixed).
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This result is not trivial. The requirement that the two tergiure measures agree determines the additional state @iz,
p, to be held constant in the variation gf. The importance of the chosen state variables is emphaiinhér if we note that,
when the system is out of equilibrium, the energy depend$iereat flux (encoded in* andp,). This leads to amxtended
Gibbs relation (similar to that postulated in many appreadio extended thermodynamicsi[16]);

dp* = pdn + 0*ds* + odp . (29)

This result arises naturally from the variational analysis

According to the traditional view, thermodynamic propestiike pressure and temperature are uniquely defined only in
equilibrium. Intuitively this makes sense since, in ordecarry out a measurement, the measuring device must hagetdim
reach “equilibrium” with the system. A measurement is onlgamingful as long as the timescale required to obtain atrissul
shorter than the evolution time for the system. Howeves tlies not prevent a generalisation of the various thernadim
concepts (as described above). The procedure may not bgueinibut one should at least require the generalised casmoep
be internally consistent within the chosen extended thesmamics model. Our model satisfies this criterion.

B. Causal heat flow

The variational model encodes the finite propagation spaeddat, as required by causality. To see this, we use thegwth
nality of the entropy force densitff* with the matter flux, solve for the entropy production rBfeand finally impose the second
law of thermodynamics. It is natural to express the resutims of the heat flux®, defined by

s = s*u + ei*qa . (20)

We also let the conjugate momentum takes the form

0, = e*ua + BQa ; (21)
where we have defined
1 A™n
B= <—* - —> - (22)
s s*0

With these definitions, we impose the second law of thermaryos by demanding that the entropy production is a quadrati
in the sources, i.e.,

q2
r.=2% >o, (23)

K62
wherex > 0 is the the thermal conductivity. This means that the heatiflgoverned by
7 (4% + ¢. V) + ¢* = —k L% (Vo0 + 0% 1) , (24)

where® = u’V,q® andu® is the four-acceleration (in the following, dots repregéne derivatives in the matter frame). Here
we have introduced

k= -, 25
1+ k3 (29)
while the thermal relaxation time is given by
. (26)
14+ k6

The final resulti(ZW) is the relativistic version of the sdledh Cattaneo equation [12]. From the analysis we learnttieaéntropy
entrainment, encoded ", plays a key role in determining the thermal relaxation tim&his agrees with the implications of
extended thermodynamics, and echoes recent results inthext of Newtonian gravity [14].



C. The matter flow

The heat problem has two dynamical degrees of freedom. Seddrave focussed on the entropy. In addition to the rettivi
Cattaneo equatiof (P4) we have a momentum equation for titemeamponent. Fronfi{9) it follows that this equation can be
written

. . . 1
Ulg+ J—Z vb,u + aqq + aqq + aqbvaub = Ef; . (27)
Here we have represented the matter momentum by

fa = fillq + 0qq (28)

wherey is the chemical potential (in the matter frame) and

AI]S
= 29
a=" (29)
This means that we have
o128 (30)
n
Given these definitions, we have [c.[.{23)]
.1 Be®
— n el S = — = S* — a -+ 31
fo=1: “l (9*)2](] (31)

Itis useful to note that this implies that the force has a tdrat is linear ing®. This will be important later.
These relations complete our summary of the heat conductaxtel developed in [12].

Ill. A CONSISTENT FIRST-ORDER MODEL

The model we have described crucially contains terms that @ second order of deviation from thermal equilibriung, e
terms that are second order in the heat fjtix Moreover, it is clear that key effects (like the entropyraimtment) arise from
the presence of second order terms in the Lagrangiaiaving said that, it is obviously the case that we can trtetae
model at first order. This does niatke us back to the original first-order model discussed aE¢17]. Crucially, the thermal
relaxation remains. Basically, this reflects the simple faat you need to know the energy of a system to quadratia ande
order to develop the complete linear equations of motiortigahis, it is interesting to consider the features of tigsv first-
order model. First of all, we can expect to get a clearer wtdading of some of the general features of the variatiomaleh
Secondly, we may also find that this, much simpler, model éxjadte for many situations of practical interest.

A. The linear model

We want to restrict our analysis to first order deviationsrfrequilibrium. Thermal equilibrium correspondsd® = 0, no
heat flux, and:® = 0, no matter acceleration. Moreover, in the simplest case tshould be no shear, divergence or vorticity
associated with the flow, i.e., we will ha¥g,u* = 0 andV,u® = 0 as well [40]. Treating all these quantities as being of first
order, and noting that

wpi” = —q (32)

contributes at second order, we arrive at two momentum amsatrom [2T) we have

i+ L Vop+ ado + (6= —) q. =0, (33)

Cni
while (24) leads to

T4a + o + i (L VoT + Titg) =0, (34)



We also have the two conservation laws

Ven® =0, (35)

Vas* =0. (36)

In these equations we have used the facts¢haindd* differ from the equilibrium values andT only at second order. Moreover,
to first order the pressugeis obtained from the standard equilibrium Gibbs relation;

Vap =nVau+ sV, T . (37)
Finally, we have the fundamental relation
p+p=pun+sT. (38)

By comparing[(3B) and(34) to Eckart’s results it becomesaapm to what extent the first-order model remains cogniabitsg
higher order origins. Specifically; and (therefore} depend on4®® and the entropy entrainment, c.f..{29). These effects rely
on quadratic terms in the Lagrangian, and hence would notdmept in a model that includes only first order terms from the
outset. Hence, they are absent in Eckart’s model.

In order to analyze the dynamics of the heat problem, we witisider perturbations (representeddyaway from a uniform
equilibrium state. First of all, we hawg, = u, = 0 for a system in equilibrium. We can also ignaikeand 3, since the
equilibrium configuration is uniform, which means that wen gaplacex by . This means that we are left with the two
equations;

pota+ L° Viydp + addg, — %5% =0, (39)
and
TG + 0qq + & L V0T + kT60q = 0 , (40)
It is worth noting that we can combine these two to get
(p+ p) 6tta+ L2 Vidp + 5da = 0. (41)

The last two equationd(%#0) arid {41)] are, not surprisirigkntical to the first-order reduction of the Israel-Stewaodel. This
means that the problem is relatively well explored. In gaittr, the conditions required for stability and causalre derived

by Hiscock and Lindblom [19, 20], see also Olson and Hisc@E},[quite some time ago. However, there are good reasons to
revisit the problem. Most importantly, there is clear evide from the recent literature (c.f., discussions of thevahce of the
thermal relaxation and the role of the coupling betweendlie &cceleration and the heat flux[26-28]) that the key lesfom
almost three decades ago have not been appreciated. To stanéthis could be due to the fact that the Hiscock-Lindblom
analysis is rather involved. Our aim is to clarify the maisuigs in the simpler context of heat conduction (ignoringasgy).
We also want to emphasize aspects that were only mentiongalssing in early work. Particularly relevant in this resgec
the existence of second sound; an effect that is prominesuperfluids but which has also been observed in low-temyerat
crystals. We will demonstrate how the second sound emergkimvwhe causal heat-conduction model. The overarching ai
is to establish, beyond any reasonable doubt, that the nmedetsented by (40) and eithér{39) lorl(41) has all the ptisser
expected of a reliable model for heat conduction in genetativity.

B. Transverse waves: Stability

Working in the frame associated with the background flow, ot that[[39) and (40) only have spatial components. That is,
we may erect a local Cartesian coordinate system assoeidtethe matter frame and simply replage- i wherei = 1 — 3.
Then taking the curl{/*V;,) of the equations in the usual way, we arrive at

1.
mU"'—=Q'=0, (42)
T
and

mQ" + (p+p)Q" =0, (43)



where we have defined

Ul =e*"V,6u,, and Q' =9V, dq; (44)
and
T T
m*=n(u—£)=p+p—ﬁ—~ (45)
T T

Assuming that the perturbations depend on time“as wheret is the time-coordinate associated with the matter frame, we
arrive at the dispersion relation for transverse pertiobat

iwllp+p)(1+iwr) —iwsT]=0. (46)
Obviouslyw = 0 is a solution. The second root is
myT

This results shows that the thermal relaxation tirmis essential in order for the system to be stable. We meed- 0, i.e., the
relaxation time must be such that

kT

Pl (48)

T >

The analysis clearly shows that Eckart’s model (for whichk= 0) is inherently unstable. Moreover, the constraint on the
relaxation time agrees with one of the conditions obtaing®tson and Hiscock [25] (c.f., their eq. (41)), representihe
inviscid limit of the exhaustive analysis of the Israel\&et model of Hiscock and Lindblom [19]. We may also note titnat
condition given in eq. (43) of [25] simply leads to the wealeguirement > 0.

The physical origin of the transverse instability can bearstbod if rewrite[(40) and (41) as

1
My Slg+ LY Vydp — ~ (0ga + 5 1P vyT) =0, (49)
and

M6Ga + (p + p) (0¢a + 1°b 6T) — kT 12 Vyp=0. (50)

These relations show that, plays the role of an “effective” inertial mass (density).eTimportance of this quantity has been
discussed in a series of papers by Herrera and collabofa&s81], especially in the context of gravitational cobep Basically,
the instability of the Eckart formulation is due to the in@rtnass of the fluid becoming negative. Once this happenzréssure
gradient no longer provide a restoring force, rather it widehd to push the system further away from equilibrium. Thia
run-away process, associated with exponential growth eptrturbations. Ultimately, the instability is due to thertia of
heat; an unavoidable consequence of the equivalence pgr(bieat carries energy, which means that it can be asedaidth
an effective mass [32]). The conditidn {48) may seem ratkieme (Hiscock and Lindblom [20] quote a timescald 0f *° s
for water at 300K), but it sets a sharp lower limit for the theaf relaxation in physical systems. A system with fasterrtiz
relaxation can not settle down to equilibrium. However, é&ynstill be reasonable to ask if a system may evolve in suchya wa
that it enters the unstable regime (in the way discussed®iyd@®]). Given our assumed equilibrium the present fornmedoes
not allow us to consider this question, but it seems clearitlaasystem were to evolve in that way then one would needls ful
nonlinear analysis to determine the consequences.

C. The longitudinal problem

The transverse problem is relatively simple since the areameesponding restoring forces in a simple fluid problenegéh
requires rotation, elasticity, the presence of a magnetld #tcetera). When we turn to the longitudinal case theastn
changes. In a perfect fluid longitudinal perturbations pggie as sound waves, and when we add complexity to the ninedel t
dispersion relation can get very complicated.

To analyze the longitudinal case, we take the divergendé®)fgnd[(41L). This leads to

(p+ p)orViou' + V26p + 0,Vidq' =0, (51)



and
T0:Vi0q" + Vi6q" + kV20T + kT V;6u’ =0 . (52)

We also need the conservation laws which take the form

Vidu' = —%(?tdn , (53)

Vidqt = —nT 9,05 , (54)

where we have defined the specific entrapy: s/n. To make progress we need to, first of all, decide what vagtd work
with, and secondly we need an equation of state for matteéhefollowing we will opt to work with the perturbed densgién
andds. Keeping in mind that we are only retaining first-order qitéeg, we have

_(9p op\
op = <%)56n+ (ﬁ)n&s, (55)
and
oT oT _
i1 () sns () =9
Itis also useful to keep in mind that the temperature repitsgle “entropy chemical potential”, i.e. is defined by
dp
T=|—= 57
(%) - 57)

wherep = p(n, s) represents the equation of state. This immediately imgtias

(3:).-(5). o

i.e., we can reduce the number of thermodynamic quantitiestder to make contact with (potential) observations tatural
to work with (i) the adiabatic speed of sound;

Op n Jdp
2 _ (9P _ £ 59
o (3p)5 p+p<3n)s’ )
(ii) the heat capacity at fixed volume;
0s
Cy = T (a_T)n 5 (60)
and (iii)
n (0T T (0Op
=7 (o). = (), ©)
For future reference, it is also useful to note the identitf. [eq. (96) in Hiscock and Lindblom [19]]
3 2
1 1 _ n _(3_T> __T (62)
cw ¢ Tlp+pc \on); (p+p)i

wherec, is the heat capacity at fixed pressure. .
If we (again) focus on plane-wave solutions such that theupeaitions behave asp(iwt + ik;27), and introduce the phase-
velocity o = w/k, then the above relations lead to the coupled equations

ptp (02 — cg) on+nT (02 — as) 05=0, (63)

n



and

£(02—a5)5n+T(n702—@—2)55—0. (64)
n k Co

From these results it is easy to see that the generic dispardation will be a quartic ia. This is exactly what one would expect
for a physical system. As we have already mentioned, thedtation must accommodate the presence of “second soundhwhi
has been experimentally verified for both superfluids andtwperature solids. Working out the explicit dispersidatien,
we find

; 2
marot — MO’(O’Q —c2) - [(p +p) (i + 057) - 2I<LT045:| o2+ K [MC—S - Tag] =0. (65)
k necy, n o ¢y
This expression is still too complicated for us to be able &kendefinite statements about the solutions, without mdkinger
assumptions. The most direct strategy would be to considekplicit equation of state, work out the relevant thermmaiyics
guantities, and then solvie (65) (probably numerically)istwould allow us to establish whether the considered madgtable
and causal. This route is, however, not particularly ativaayiven the need to introduce an explicit model. If we wamnt
continue to consider the problem in (at least to some extgartgrality, then we need to resort to approximations. As vlle w
see, this is a very instructive route.
In order to simplify the analysis, we will consider the lormgpd short-wavelength limits of the problem. The results ivaim
in these limits provide useful illustrations of the key ig@s. At the same time, we should keep in mind that both cases a
somewhat “artificial”. First of all, fluid dynamics is, funaeentally, an effective long-wavelength theory in the sehaeit arises
from an averaging over a large number of individual parsi¢mnstituting each fluid element). In effect, the modey@pplies
to phenomena on scales much larger than (say) the intarlgadtstance. However, the infinite wavelength limit reprds a
uniform system, which is artificial since real physical gyss tend to be finite. Moreover, as we will not account exibic¢or
gravity we can only consider scales on which spacetime caoh&dered flat. While the plane-wave analysis holds onrarlyi
scales in special relativity, a curved spacetime introduceut-off lengthscale beyond which the analysis is nodvalihe
theoretical framework is valid in general, but on largeldesave would have to consider also the perturbed Einsteiatams.

D. The long wavelength problem

Let us first consider the long wavelengths— 0, problem. This represents the true hydrodynamic limit, iaedsy to see that
there are two sound-wave solutions and two modes that ademieantly diffusive. The sound-wave solutions take thenfo

&1
2(p+ p)ci

These solutions are clearly stable, sincedm- 0. Using the Maxwell relations listed by Hiscock and Lindbl{b8], we can
show that this results agrees with eq. (40) from [20]. Mosxpour result simplifies to [using(62)]

mazg(i—i), (67)

n\c Cp

o~ e, [1 +i (¢ — as)Qk] : (66)

in the limit where|a| > ¢2, which is relevant since? ~ p/p becomes small in the non-relativistic limit. Indeed, we fihdt
(67) agrees with the standard result for sound absorptiarhigat-conducting medium [33].
In addition to the sound waves, we have a slowly damped soluti

2 .
o~ ik 1 T =& (68)
ney  (p+p)ez]  nep
This is the classic result for thermal diffusion.
Finally, the system has a fast decaying solution;
on 2EP) (69)
mykT

Under most circumstances, this root decays too fast to beredisle. This means that the model reproduces that standard
“Rayleigh-Brillouin spectrum” with two sound peaks symmelly placed with respect to the broad diffusion peak abze
frequencyl[33, 34]
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E. Short wavelength stability and causality

Different aspects of the problem are probed in the short lgageh limit. Lettingk — oo we seel[4/1] tha{(85) reduces to a
quadratic foro2. This allows us to write down the solutions in closed form.nek, it is relatively straightforward to establish
the conditions required for the stability of the system iis thmit. For infinitesimal wavelengths we have

Ad* —Bo> 1 C=0,—» 0125[31(32—4140)”2] . (70)
where
A=m,7>0, (71)
in order for transverse perturbations to be stable. We ase h
B=(p+p) (i + 037’) —2kTay , (72)
NCy
and
2 2
c_ﬁ{mc_s_Tag]_,i<w>c_s>o_ (73)
n  Cy n Cp

In order to guarantee stability for longitudinal pertuibas, we need? to be real and positive. Given the quadratic formula
and the fact thatl > 0 this implies that we must hav@? — 4AC > 0. After some algebra, this leads to

2kTas\°  4kTa? T 4R2T
(C?T—L— " a> ke (T— n >+ r (2 —2a,) >0. (74)
nce,  p+p ptp p+p (p+ p)ncy

The first two terms are positive, as longlas (48) is satisfiethdd, the condition is guaranteed to be satisfied as longasy;.
As discussed later, this is certainly the case for degemenatter. In cases where this simple condition is not salis(i&4)
provides a complicated constraint on the relaxation tiniealfy, we must also hav& > 0, which can be expressed as;

K 2T 1
AR e - ) 75
> c2 {p—i—pa ncj (75)

This condition is identical to that given in eq. (146) of [1®btained in the limit wherer; — 0 and1/5, and1/3; both also
vanish, c.f.|[2] 35])
Let us now consider finite wavelengths. Letting= o1 + o1 /k, whereo . solve [70), and linearising ib/k, we find that

_ilp+p) ((oi-c}
aT T (2A02i—B ' (76)

Since all quantities in this expression are already coimgtdbto be real, we nedahn oy, > 0 (for real k) in order for the system
to be stable.. Froni(T0) we see that

9402 — B=+|B? —440|"* | 77)
+

This then leads to the final condition
02_ < cg < cri . (78)

It is worth noting that this result is consistent with theiootthat “mode-mergers” signal the onset of instability][21

As the waves in the system must remain causal, we should thsiss?> < 1. To ensure that this is the case, we adapt the
strategy used by Hiscock and Lindblom [19]. As](70) is a gatidifor o2 we can ensure that the roots are confined to the
interval0 < o2 < 1 (noting first of all that the roots are real sin€el(74) is $@tf). Given theB andC are both positive, the
roots must be such that > 0. Meanwhile we can constrain the roots:t® < 1 by insisting that

A-B+C>0, (79)
and

A—2B>0. (80)
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Combining these inequalities with the positive discrinmtyave can show thatt > B/2 > C. The first of the two conditions
can be written

“}>ﬂﬂl&£>o. (81)

(1_05)[7_ ptp

NCy

Now, when combined with causality the conditionl(78) regsithat:? < o3 < 1. In other words, we must havé < 1, which
means thaf(81) implies that

T > (82)

NCy
Comparing to the results of Hiscock and Lindblom [19], weogatize [81) as thei2; > 0 condition (it is also eq. (4) of Herrera
and Martinez|[30]), while[(82) correspondstig > 0.

Meanwhile, the conditiori (80) can be written

K 25T
_|_

(2—c§)7’ >
ne, p+p

(1 - as) ’ (83)

corresponding to eq. (148) of Hiscock and Lindblom. Finally> C leads to

kT K2 (84)
ptp  ne,

T >

This corresponds to eq. (3) in Herrera and Martinez [30] ciiiderives from eq. (147) of Hiscock and LindblamI[19].

This completes the analysis of the stability and causafith® system. We have arrived at a set of conditions on thertaler
relaxation time (and related them to results in the exidlitegature). As long as these conditions are satisfied, dheisns to
the problem should be well behaved.

F. The emergence of second sound

So far we have considered the conditions that must be sdtisfi@ thermodynamical model in order to ensure the stability
and causality of both transverse and longitudinal wavescaofoplete the analysis of the problem, we will now consider th
nature of the solutions. Since the phase velogity obtained from a quartic, we know that the problem has twa/@ydegrees
of freedom. This accords with the experience from superflyglems and experimental evidence for heat propagatingessw
in low temperature solids. One of the solutions should be@ated with the usual “acoustic” sound while the secondekegf
freedom will lead to a “second sound” for heat. We want to destiate how these features emerge within our model.

In order to explore these features, it is natural to conditketarge relaxation time limit. Taking the relaxation timéo be
long, the solutions td (70) take the form (up to, and inclgdiorderl /7 terms)

2

T o
21+ (14 85
7+ CS[ Toror @) (83)

which could be rewritten using (62), and and
K

[

: (86)
m'cp
The first of these solutions clearly represents the usualdsouhile the other solution provides the second sound. érdtier
case, the deduced speed is exactly what one would expect [t18] easy to see that the first root will satisfy {78), and the
associated roots will be unstable in the long relaxatiore iimit. Moreover, the second solution leads to stable rpatsided

K
T > 5 -
nepcs

(87)

Basically, the finite wavelength condition implies that 8econd sound must propagate slower than the first sound.isThis
indeed, what is measured in physical systems (like supérflelium). Moreover, it is easy to see that this condition hies
satisfied in order for the long relaxation time approximatio be valid.

As a useful illustration of the properties of the model, Istaonsider the particular case of degenerate matter. Ircaisis,
which relates to electrons in both metals and white dwarfd @éso neutrons and protons in neutron stars), the twofspkeats

are almost identical;
Y kT >
ix1+O<B ), (88)

Cp €ER
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T [ . T |‘ T T
fast decaying solution

first sound

second sound damping]

thlermall dﬂf:.lsmq . | .
10 20 30 40
k

FIG. 1: This figure provides an illustration of the qualitetinature of the behaviour of heat conducting degenerateenfas discussed in the
main text), based on the consistent first-order relativistodel. The parameters have been chosen in such a way theded of sound is
10% of the speed of light, while the second sound (at shoreleagths, largé) propagate at /+/3 of this. The phase velocity of the waves is
o = Re w/k (left panel).The thermal relaxation timehas been chosen such that the critical wavenumber at whectettond sound emerges
is k = 10. At lengthscales larger than this, the corresponding ragsdiffusive (have purely imaginary frequency), and intkey long
wavelength limit & — 0) we retain the expected thermal diffusion. The damping fioews from 1 /Im w (right panel).We also indicate the
acausal region (grey are). The illustrated example is lgi&ath stable and causal.

wherekp is Boltzmann’s constant ang- is the Fermi energl [36]. This means that, for temperatuigrsfecantly below the
Fermi temperature, we can accurately assumecthat 0. If we also assume that>> <T'/(p + p) then the dispersion relation
factorises and we have

(02 = &2) (702 - %’ - n’Z) 0. (89)
That s, the four roots are
o= *cq, (90)
and
o= 211_7 1+ <1 - i’;?)lﬂ : (91)

The character of these roots is illustrated in Figure 1. Véetkat the ordinary sound exists at all wavelengths. Medewhi
short long wavelengths (smal) the remaining two roots are exponentially damped, i.usiife in character. One root has a
relatively slow decay, corresponding to the expected thaédiffusion, while the other root decays so rapidly thasitnlikely

to be observable by experiment. Below a critical lengthes¢abrresponding té = 10 in Figure[1) the second sound emerges
as a result of the finite thermal relaxation timeFor very short lengthscales, heat signals will propagateaves. However, as
is clear from[(91L) these solutions are always damped. Inraod@ropagate’ the real part of the wave frequency must edce
the imaginary part (so that several cycles are executedd#ie motion is damped out). This boils down to the seconddou

propagating only for
wr\ Y2
k> ( ) . (92)

NCy

This result is interesting if we consider systems that bexgoperfluid (see [37] for an interesting discussion of me i
relativistic superfluids). Suppose we consider a systersntarts out in the diffusive regime (e.g. Helium above tieesfluid
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transition temperature). When the system is cooled dowoutiir the relevant transition temperature, the (non-moument
conserving) particle collisions that give rised@re suppressed. In effect, the critical valug afecreases and the system may
enter the regime where the second sound can propagate atsoagic scales. The change to the basic nature of heat @tgag
is easily understood.

At the end of the day, this relatively simple model demones&ow the behaviour of a given physical system dependseon th
balance between the characteristic timescales. Obviouslglso need to keep in mind that real systems impose itgstisdoth
for largek, as the fluid model breaks down when we approach the intéfeadistance scale, and smallwhen the wavelength
becomes larger than the size of the system.

IV. FINAL REMARKS

We set out to derive a consistent first-order model for nakttc heat conduction, in such a way that the theory remains
cognizant of its higher order origins. As we have demonstiathis leads to a model that retains the thermal relax#tiahis
necessary if we want the problem to remain causal. What haviearned from this exercise? First of all, we have illustlat
the problems associated with the original first-order madelg. that of Eckart [17]. The conclusions are, obviousb,new
but the discussion should lay to rest any suggestions teatdhpling of the four-acceleration to the heat-flux is (sbave
problematicl[26=28]. By considering the waves presentémtiw model, we have established that the system is botle statl
causal provided that some seemingly natural conditionsatisfied. This conclusion accords with the classic work Bcétck
and Lindblom[[19, 20] (see also Olson and Hiscack [25]). let.féhe conditions we have arrived at reproduce their keyltges
However, our analysis adds to previous work by discussiagethergence of the second sound and the nature of the asslociat
solutions. This is a key point, especially if we are intezdss relativistic superfluid systems. The analysis alsoatetnates the
intricate nature of these problems. It is easy to see how ahtbdt may fail one, or several, of the derived conditionsame
regime may nevertheless be valid for a different range odupaters. Hence, one really should consider the applitabilithe
chosen theory on a case-by-case basis. This is probably reothen should be expected from a phenomenological model.

Our results represent useful progress in this problem argane could obviously develop the theory further. A ndtsrap
would be to consider the various constraints that we havieetefor detailed equations of state, e.g., matter coulgdhbnons.

It would also be interesting to consider applications offttet-order construction. While the model is restrictedhia sense that
it does not account for non-adiabatic effects, there is aiting range of possible applications in astrophysicspuasgy and
high-energy physics. Particularly interesting questiomscern to what extent second sound effects are relevaptativistic
systems and the difference between first-order resultstendonsiderably more complex, second-order theories.
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