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A consistent first-order model for relativistic heat flow
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This paper revisits the problem of heat conduction in relativistic fluids, associated with issues concerning both
stability and causality. It has long been known that the problem requires information involving second order
deviations from thermal equilibrium. Basically, any consistent first-order theory needs to remain cognizant
of its higher-order origins. We demonstrate this by carrying out the required first-order reduction of a recent
variational model. We provide an analysis of the dynamics ofthe system, obtaining the conditions that must
be satisfied in order to avoid instabilities and acausal signal propagation. The results demonstrate, beyond any
reasonable doubt, that the model has all the features one would expect of a real physical system. In particular, we
highlight the presence of a second sound for heat in the appropriate limit. We also make contact with previous
work on the problem by showing how the various constraints onour system agree with previously established
results.

I. CONTEXT

Relativistic thermodynamics continues to provide interesting challenges, in particular in the context of dissipative and nonlin-
ear phenomena. The issues involved range from direct applications in various areas of physics to fundamental problems like the
nature of time (visavi the second law of thermodynamics) andthe formation of structures at nonlinear deviations from thermal
equilibrium. Much recent work has been motivated by the modelling of complex astrophysical systems, like neutron stars[1],
and cosmology [2]. There has also been a resurgence of interest in dissipative systems in the context of colliders like RHIC at
Brookhaven and the LHC at CERN [3–5]. These latter developments, which have to a large extent been driven by the need to
understand the dynamics of a hot quark-gluon plasma, are often linked with underlying principles like the AdS/CFT conjecture
and holography [6]. Even though the problem dates back to theorigins of relativity theory, it remains (in a slightly different
guise) at the forefront of modern thinking.

According to the established consensus view, one must account for second-order deviations from thermal equilibrium inorder
to achieve causality and stability. This is certainly the lesson from the celebrated work of Israel and Stewart [7, 8], see [9–
11] for recent work on the problem. We have recently revisited the key points in the context of heat conduction [12], taking
a multi-fluid prescription based on Carter’s convective variational formulation for relativistic fluids [13] as our starting point.
This is a mathematically elegant approach that has the flexibility required to account for the physics that we need to consider.
A particularly appealing feature of the variational approach is that, once an “equation of state” for matter is provided, the
theory provides the relation between the various currents and their conjugate momenta [1]. The variational analysis leads to
a second-order model which has the key elements required forcausality and stability, in particular, it clarifies the role of the
inertia of heat (e.g., the effective mass associated with phonons). This effect enters the model in an intuitive fashionin terms
of entrainment between the matter and heat [14]. As demonstrated by Priou [15] some time ago, the final variational model
is formally equivalent to the Israel-Stewart construction. This exercise demonstrates clearly that the relaxation associated with
causal heat transport is determined by the thermal inertia.At the end of the day, the theoretical framework becomes rather
intuitive and the physics involved seems natural.

Does this mean that no troublesome issues remain in this problem area? Not quite. First of all, it is clear that the need to intro-
duce additional parameters (e.g., the relevant relaxationtimes) and keep track of higher order terms (fluxes of the fluxes etcetera)
make actual applications rather complex. Secondly, we are not much closer to considering systems that deviate significantly
from equilibrium, such that there is no natural “small” parameter to expand in. The variational model sheds some light onthis
regime by clarifying the role of the temperature in systems out of equilibrium, but there is some way to go before we understand
issues associated with, for example, any “principle of extremal entropy production” and instabilities that lead to structure for-
mation. Finally, despite the obvious successes of the extended thermodynamics framework [16], there is no universal agreement
concerning the validity (and usefulness) of the results. Tosome extent this is natural given the interdisciplinary nature of the
problem; to make progress we need to account for both thermodynamical principles and fundamental general relativity. This
leads to a range of deep questions concerning, in particular, the actual meaning of the variables involved in the different models
(e.g., the entropy). The ultimate theory must have a clear link with statistical physics and even information theory. Our efforts
are not yet at that level. Basically, we need to continue to make progress if we are to address fundamental problems in, for
example, cosmology.

This paper sets a rather more modest target; we want to explore the extent to which a “first-order” formulation for heat
conduction in general relativity is viable. The question may seem somewhat odd given that we have already acknowledged
the need to account for (at least) second order contributions. However, it is interesting to ask whether a first-order model may
nevertheless be useful (possibly in a somewhat restricted sense). We will demonstrate that this is, indeed, the case. Noting
that the original first order models, due to Eckart [17] and Landau and Lifshitz [18], were incomplete we develop a consistent
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framework that includes the key thermal relaxation. We thenconsider the properties of this model, and show that it can bemade
both stable and causal (making contact with the classic workby Hiscock and Lindblom [19, 20]). This does not mean that the
system may not exhibit instabilities. On the contrary, instabilities are in a sense generic in these problems [21], but the analysis
sheds further light on the nature of these instabilities andalso elucidates the stabilizing role of the thermal inertia. The discussion
also provides insight into the emergence of second sound (aneffect that has been experimentally verified in low temperature
crystals) associated with the heat transport. This provides a key link to systems that exhibit superfluidity, and demonstrates the
potential for a unified treatment of heat transport in normaland superfluid matter.

II. THERMAL DYNAMICS

We take as our starting point our recent variational analysis of the relativistic heat problem [12]. The model is phenomenolog-
ical, and assumes that the entropy component can be treated as a “fluid”. In essence, this implies that the mean free path ofthe
phonons is taken to be small compared to the model scale. We then consider two fluxes, one corresponding to the matter flow
and one which is associated with the entropy. The latter is essentially treated as a massless (zero rest-mass) fluid. The dynamics
then follows from a Lagrangian which depends on the relativeflow of the two fluxes. The associated entrainment turns out tobe
a crucial feature of the problem [12, 14, 22].

We assume that the particle number is large enough that the fluid approximation applies and there is a well defined matter
current,na. Moreover, we adopt the multi-fluid view and treat the entropy as an effective fluid with fluxsa. This current is in
general not aligned with the particle flux. The misalignmentis associated with the heat flux and leads to entropy production.

As in the case of a generic two-fluid system (see [23] for an example in the case of a cool relativistic superfluid), the starting
point is the definition of a relativistic invariant LagrangianΛ. Assuming that the system is isotropic, we takeΛ to be a function
of the different scalars that can be formed by the two fluxes [38]. Fromna andsa we can form three scalars;

n2 = −nan
a , s2 = −sas

a , j2 = −nas
a . (1)

An unconstrained variation ofΛ then leads to

δΛ =
∂Λ

∂n
δn+

∂Λ

∂s
δs+

∂Λ

∂j
δj . (2)

Changing the passive density variations for dynamical variations of the worldlines generated by the fluxes and the metric (as
discussed in [1]) we find that

δΛ =

[

−2
∂Λ

∂n2
na −

∂Λ

∂j2
sa

]

δna +

[

−2
∂Λ

∂s2
sa −

∂Λ

∂j2
na

]

δsa +

[

−
∂Λ

∂n2
nanb −

∂Λ

∂s2
sasb −

∂Λ

∂j2
nasb

]

δgab . (3)

From this result we can read off the conjugate momentum associated with each of the fluxes;

µa =
∂Λ

∂na
= gab(B

nnb +Anssb) , θa =
∂Λ

∂sa
= gab(B

ssb +Ansnb) , (4)

where we have introduced the coefficients [1, 12]

Bn ≡ −2
∂Λ

∂n2
, Bs ≡ −2

∂Λ

∂s2
, Ans ≡ −

∂Λ

∂j2
. (5)

The energy-momentum tensor is obtained by noting that the displacements of the conserved currents induce a variation inthe
spacetime metric and therefore the variations of the fluxes,δna andδsa, are constrained. The energy-momentum tensor is thus
found to be

T b
a = µan

b + θas
b +Ψδ b

a , (6)

where we have defined the generalized pressure,Ψ, as

Ψ = Λ− µan
a − θas

a . (7)

As a result of the coordinate invariance associated with general relativity, the divergence of the energy-momentum tensor (6)
vanishes. For an isolated system, we can express this requirement as an equation of force balance

∇bT
b

a = fn
a + f s

a = 0 , (8)
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where the individual force densities are [12]

fn
a = 2nb∇[bµa] + µa∇bn

b , (9)

f s
a = 2sb∇[bθa] + θa∇bs

b . (10)

We note that, in order to obtain the energy momentum tensor (6) we needed to impose the conservation of the fluxes as
constraints on the variation [1]. However, the equations ofmotion, (9) and (10), still allow for non-vanishing production terms.
If we, for simplicity, consider a single particle species, the matter current is conserved and we have∇an

a = 0. This removes
the second term from the right-hand side of (9). In contrast,the entropy flux is generally not conserved. In accordance with the
second law, we must have

∇as
a = Γs ≥ 0 . (11)

A. Temperature

To make progress, we need to connect the general variationalresults with the relevant thermodynamical concepts. In doing
this it makes sense to consider a specific choice of frame. In the context of a single (conserved) species of matter, we see that
forcefn

a is orthogonal to the matter flux,na, and therefore it has only three degrees of freedom. Furthermore, because of the
force balance (8), we also havenaf s

a = 0. This suggests that it is natural to focus on observers associated with the matter frame.
We therefore introduce the four-velocityua such thatna = nua, whereuau

a = −1 andn is the number density measured in
this frame.

Having chosen to work in the matter frame (in the spirit of Eckart [17]), we can decompose the entropy current and its
conjugate momentum into parallel and orthogonal components. The entropy flux is then expressed as

sa = s∗(ua + wa) , (12)

wherewa is the relative velocity between the two fluid frames, anduawa = 0. Lettingsa = sua
s whereua

s is the four-velocity
associated with the entropy flux, we see thats∗ = sγ whereγ is the redshift associated with the relative motion of the two
frames [39]. This illustrates the subjective nature of entropy. It is an observer dependent quantity, not an absolute notion.

Similarly, we can write the thermal momentum as

θa = θ∗ua + Bss∗wa = (Bss∗ +Ansn)ua + Bss∗wa . (13)

This leads to a measure of the temperature measured in the matter frame;

− uaθa = θ∗ = Bss∗ +Ansn . (14)

In essence, this quantity represents the effective mass of the entropy component. Returning to the stress-energy tensor, and
making use of the projection orthogonal to the matter flux, wefind that the heat flux (energy flow relative to the matter) is given
by

qa = − ⊥ab ucT
bc = s∗θ∗wa , (15)

where we have used the projection

⊥ab= gab + uaub . (16)

Defining the new variablesσa = s∗wa andpa = Bss∗wa, the energy density measured in the matter frame can be obtained by
a Legendre-type transform on the master function. That is, we have

ρ∗ = uaubT
ab = −Λ + paσ

a . (17)

The relevance of the new variables becomes apparent if we consider the fact that thedynamical temperature in (14) agrees
with the thermodynamical temperature that an observer moving with the matter would measure. In other words, we have

θ∗ =
∂ρ∗

∂s∗

∣

∣

∣

∣

n,p

, (18)

whereρ∗ = ρ∗(n, s∗, p). This is, of course, the standard definition of temperature as energy per degree of freedom of the system.
Mathematically, the temperature is obtained from the variation of the energy with respect to the entropy in the observer’s frame
(keeping the other thermodynamic variables fixed).
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This result is not trivial. The requirement that the two temperature measures agree determines the additional state parameter,
p, to be held constant in the variation ofρ∗. The importance of the chosen state variables is emphasizedfurther if we note that,
when the system is out of equilibrium, the energy depends on the heat flux (encoded inσa andpa). This leads to anextended
Gibbs relation (similar to that postulated in many approaches to extended thermodynamics [16]);

dρ∗ = µdn+ θ∗ds∗ + σdp . (19)

This result arises naturally from the variational analysis.
According to the traditional view, thermodynamic properties like pressure and temperature are uniquely defined only in

equilibrium. Intuitively this makes sense since, in order to carry out a measurement, the measuring device must have time to
reach “equilibrium” with the system. A measurement is only meaningful as long as the timescale required to obtain a result is
shorter than the evolution time for the system. However, this does not prevent a generalisation of the various thermodynamic
concepts (as described above). The procedure may not be “unique”, but one should at least require the generalised concepts to
be internally consistent within the chosen extended thermodynamics model. Our model satisfies this criterion.

B. Causal heat flow

The variational model encodes the finite propagation speed for heat, as required by causality. To see this, we use the orthogo-
nality of the entropy force densityfa

s with the matter flux, solve for the entropy production rateΓs and finally impose the second
law of thermodynamics. It is natural to express the result interms of the heat fluxqa, defined by

sa = s∗ua +
1

θ∗
qa . (20)

We also let the conjugate momentum takes the form

θa = θ∗ua + βqa , (21)

where we have defined

β =

(

1

s∗
−

Ansn

s∗θ∗

)

. (22)

With these definitions, we impose the second law of thermodynamics by demanding that the entropy production is a quadratic
in the sources, i.e.,

Γs =
q2

κθ2∗
≥ 0 , (23)

whereκ > 0 is the the thermal conductivity. This means that the heat fluxis governed by

τ (q̇a + qc∇
auc) + qa = −κ̃ ⊥ab (∇bθ

∗ + θ∗u̇b) , (24)

whereq̇a = ub∇bq
a andu̇a is the four-acceleration (in the following, dots representtime derivatives in the matter frame). Here

we have introduced

κ̃ ≡
κ

1 + κβ̇
, (25)

while the thermal relaxation time is given by

τ =
κβ

1 + κβ̇
. (26)

The final result (24) is the relativistic version of the so-called Cattaneo equation [12]. From the analysis we learn thatthe entropy
entrainment, encoded inAns, plays a key role in determining the thermal relaxation timeτ . This agrees with the implications of
extended thermodynamics, and echoes recent results in the context of Newtonian gravity [14].
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C. The matter flow

The heat problem has two dynamical degrees of freedom. So far, we have focussed on the entropy. In addition to the relativistic
Cattaneo equation (24) we have a momentum equation for the matter component. From (9) it follows that this equation can be
written

µu̇a+ ⊥b
a ∇bµ+ αq̇a + α̇qa + αqb∇aub =

1

n
fn
a . (27)

Here we have represented the matter momentum by

µa = µua + αqa , (28)

whereµ is the chemical potential (in the matter frame) and

α =
Ans

θ∗
. (29)

This means that we have

α =
1− βs∗

n
. (30)

Given these definitions, we have [c.f., (23)]

− fn
a = f s

a = −
1

κ̃

[

s∗ −
βq2

(θ∗)2

]

qa . (31)

It is useful to note that this implies that the force has a termthat is linear inqa. This will be important later.
These relations complete our summary of the heat conductionmodel developed in [12].

III. A CONSISTENT FIRST-ORDER MODEL

The model we have described crucially contains terms that enter at second order of deviation from thermal equilibrium, e.g.,
terms that are second order in the heat fluxqa. Moreover, it is clear that key effects (like the entropy entrainment) arise from
the presence of second order terms in the LagrangianΛ. Having said that, it is obviously the case that we can truncate the
model at first order. This does nottake us back to the original first-order model discussed by Eckart [17]. Crucially, the thermal
relaxation remains. Basically, this reflects the simple fact that you need to know the energy of a system to quadratic order in
order to develop the complete linear equations of motion. Noting this, it is interesting to consider the features of thisnew first-
order model. First of all, we can expect to get a clearer understanding of some of the general features of the variational model.
Secondly, we may also find that this, much simpler, model is adequate for many situations of practical interest.

A. The linear model

We want to restrict our analysis to first order deviations from equilibrium. Thermal equilibrium corresponds toqa = 0, no
heat flux, anḋua = 0, no matter acceleration. Moreover, in the simplest cases there should be no shear, divergence or vorticity
associated with the flow, i.e., we will have∇au

a = 0 and∇bu
a = 0 as well [40]. Treating all these quantities as being of first

order, and noting that

ubq̇
b = −qbu̇b , (32)

contributes at second order, we arrive at two momentum equations; from (27) we have

µu̇a+ ⊥b
a ∇bµ+ αq̇a +

(

α̇−
s

nκ̃

)

qa = 0 , (33)

while (24) leads to

τ q̇a + qa + κ̃
(

⊥b
a ∇bT + T u̇a

)

= 0 , (34)
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We also have the two conservation laws

∇an
a = 0 , (35)

∇as
a = 0 . (36)

In these equations we have used the fact thats∗ andθ∗ differ from the equilibrium valuess andT only at second order. Moreover,
to first order the pressurep is obtained from the standard equilibrium Gibbs relation;

∇ap = n∇aµ+ s∇aT . (37)

Finally, we have the fundamental relation

ρ+ p = µn+ sT . (38)

By comparing (33) and (34) to Eckart’s results it becomes apparent to what extent the first-order model remains cognizantof its
higher order origins. Specifically,α and (therefore)τ depend onAns and the entropy entrainment, c.f., (29). These effects rely
on quadratic terms in the Lagrangian, and hence would not be present in a model that includes only first order terms from the
outset. Hence, they are absent in Eckart’s model.

In order to analyze the dynamics of the heat problem, we will consider perturbations (represented byδ) away from a uniform
equilibrium state. First of all, we haveqa = u̇a = 0 for a system in equilibrium. We can also ignoreα̇ and β̇, since the
equilibrium configuration is uniform, which means that we can replaceκ̃ by κ. This means that we are left with the two
equations;

µδu̇a+ ⊥b
a ∇bδµ+ αδq̇a −

s

nκ
δqa = 0 , (39)

and

τδq̇a + δqa + κ ⊥b
a ∇bδT + κTδu̇a = 0 , (40)

It is worth noting that we can combine these two to get

(p+ ρ) δu̇a+ ⊥b
a ∇bδp+ δq̇a = 0 . (41)

The last two equations [(40) and (41)] are, not surprisingly, identical to the first-order reduction of the Israel-Stewart model. This
means that the problem is relatively well explored. In particular, the conditions required for stability and causalitywere derived
by Hiscock and Lindblom [19, 20], see also Olson and Hiscock [25], quite some time ago. However, there are good reasons to
revisit the problem. Most importantly, there is clear evidence from the recent literature (c.f., discussions of the relevance of the
thermal relaxation and the role of the coupling between the four acceleration and the heat flux [26–28]) that the key lessons from
almost three decades ago have not been appreciated. To some extent this could be due to the fact that the Hiscock-Lindblom
analysis is rather involved. Our aim is to clarify the main issues in the simpler context of heat conduction (ignoring viscosity).
We also want to emphasize aspects that were only mentioned inpassing in early work. Particularly relevant in this respect is
the existence of second sound; an effect that is prominent insuperfluids but which has also been observed in low-temperature
crystals. We will demonstrate how the second sound emerges within the causal heat-conduction model. The overarching aim
is to establish, beyond any reasonable doubt, that the modelrepresented by (40) and either (39) or (41) has all the properties
expected of a reliable model for heat conduction in general relativity.

B. Transverse waves: Stability

Working in the frame associated with the background flow, we note that (39) and (40) only have spatial components. That is,
we may erect a local Cartesian coordinate system associatedwith the matter frame and simply replacea → i wherei = 1 − 3.
Then taking the curl (ǫjki∇k) of the equations in the usual way, we arrive at

m⋆U̇
i −

1

τ
Q̇i = 0 , (42)

and

m⋆Q̇
i + (p+ ρ)Qi = 0 , (43)
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where we have defined

U i = ǫijk∇jδuk , and Qi = ǫijk∇jδqk , (44)

and

m⋆ = n

(

µ−
ακT

τ

)

= p+ ρ−
κT

τ
. (45)

Assuming that the perturbations depend on time aseiωt, wheret is the time-coordinate associated with the matter frame, we
arrive at the dispersion relation for transverse perturbations;

iω [(p+ ρ)(1 + iωτ)− iωκT ] = 0 . (46)

Obviouslyω = 0 is a solution. The second root is

ω =
i(p+ ρ)

m∗τ
. (47)

This results shows that the thermal relaxation timeτ is essential in order for the system to be stable. We needm∗ > 0, i.e., the
relaxation time must be such that

τ >
κT

p+ ρ
. (48)

The analysis clearly shows that Eckart’s model (for whichτ = 0) is inherently unstable. Moreover, the constraint on the
relaxation time agrees with one of the conditions obtained by Olson and Hiscock [25] (c.f., their eq. (41)), representing the
inviscid limit of the exhaustive analysis of the Israel-Stewart model of Hiscock and Lindblom [19]. We may also note thatthe
condition given in eq. (43) of [25] simply leads to the weakerrequirementτ ≥ 0.

The physical origin of the transverse instability can be understood if rewrite (40) and (41) as

m⋆δu̇a+ ⊥b
a ∇bδp−

1

τ

(

δqa + κ ⊥b
a ∇bδT

)

= 0 , (49)

and

m⋆δq̇a + (p+ ρ)
(

δqa + κ ⊥b
a δT

)

− κT ⊥b
a ∇bδp = 0 . (50)

These relations show thatm∗ plays the role of an “effective” inertial mass (density). The importance of this quantity has been
discussed in a series of papers by Herrera and collaborators[29–31], especially in the context of gravitational collapse. Basically,
the instability of the Eckart formulation is due to the inertial mass of the fluid becoming negative. Once this happens thepressure
gradient no longer provide a restoring force, rather it would tend to push the system further away from equilibrium. Thisis a
run-away process, associated with exponential growth of the perturbations. Ultimately, the instability is due to the inertia of
heat; an unavoidable consequence of the equivalence principle (heat carries energy, which means that it can be associated with
an effective mass [32]). The condition (48) may seem rather extreme (Hiscock and Lindblom [20] quote a timescale of10−35 s
for water at 300K), but it sets a sharp lower limit for the thermal relaxation in physical systems. A system with faster thermal
relaxation can not settle down to equilibrium. However, it may still be reasonable to ask if a system may evolve in such a way
that it enters the unstable regime (in the way discussed in [29, 30]). Given our assumed equilibrium the present formulation does
not allow us to consider this question, but it seems clear that if a system were to evolve in that way then one would need a fully
nonlinear analysis to determine the consequences.

C. The longitudinal problem

The transverse problem is relatively simple since the are nocorresponding restoring forces in a simple fluid problem (these
requires rotation, elasticity, the presence of a magnetic field etcetera). When we turn to the longitudinal case the situation
changes. In a perfect fluid longitudinal perturbations propagate as sound waves, and when we add complexity to the model the
dispersion relation can get very complicated.

To analyze the longitudinal case, we take the divergence of (40) and (41). This leads to

(p+ ρ)∂t∇iδu
i +∇2δp+ ∂t∇iδq

i = 0 , (51)
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and

τ∂t∇iδq
i +∇iδq

i + κ∇2δT + κT∂t∇iδu
i = 0 . (52)

We also need the conservation laws which take the form

∇iδu
i = −

1

n
∂tδn , (53)

∇iδq
i = −nT∂tδs̄ , (54)

where we have defined the specific entropy;s̄ = s/n. To make progress we need to, first of all, decide what variables to work
with, and secondly we need an equation of state for matter. Inthe following we will opt to work with the perturbed densitiesδn
andδs̄. Keeping in mind that we are only retaining first-order quantities, we have

δp =

(

∂p

∂n

)

s̄

δn+

(

∂p

∂s̄

)

n

δs̄ , (55)

and

δT =

(

∂T

∂n

)

s̄

δn+

(

∂T

∂s̄

)

n

δs̄ . (56)

It is also useful to keep in mind that the temperature represents the “entropy chemical potential”, i.e. is defined by

T =

(

∂ρ

∂s

)

n

, (57)

whereρ = ρ(n, s) represents the equation of state. This immediately impliesthat

(

∂T

∂n

)

s

=

(

∂µ

∂s

)

n

, (58)

i.e., we can reduce the number of thermodynamic quantities.In order to make contact with (potential) observations, it is natural
to work with (i) the adiabatic speed of sound;

c2s =

(

∂p

∂ρ

)

s̄

=
n

p+ ρ

(

∂p

∂n

)

s̄

, (59)

(ii) the heat capacity at fixed volume;

cv = T

(

∂s̄

∂T

)

n

, (60)

and (iii)

αs =
n

T

(

∂T

∂n

)

s̄

=
T

n

(

∂p

∂s̄

)

n

. (61)

For future reference, it is also useful to note the identity [c.f., eq. (96) in Hiscock and Lindblom [19]]

1

cv
−

1

cp
=

n3

T (p+ ρ)c2s

(

∂T

∂n

)2

s̄

=
nT

(p+ ρ)c2s
α2
s , (62)

wherecp is the heat capacity at fixed pressure.
If we (again) focus on plane-wave solutions such that the perturbations behave asexp(iωt+ ikjx

j), and introduce the phase-
velocityσ = ω/k, then the above relations lead to the coupled equations

p+ ρ

n

(

σ2 − c2s
)

δn+ nT
(

σ2 − αs

)

δs̄ = 0 , (63)
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and

κT

n

(

σ2 − αs

)

δn+ T

(

nτσ2 −
iσn

k
−

κ

cv

)

δs̄ = 0 . (64)

From these results it is easy to see that the generic dispersion relation will be a quartic inσ. This is exactly what one would expect
for a physical system. As we have already mentioned, the formulation must accommodate the presence of “second sound” which
has been experimentally verified for both superfluids and lowtemperature solids. Working out the explicit dispersion relation,
we find

m∗τσ
4 −

i(p+ ρ)

k
σ(σ2 − c2s)−

[

(p+ ρ)

(

κ

ncv
+ c2sτ

)

− 2κTαs

]

σ2 + κ

[

p+ ρ

n

c2s
cv

− Tα2
s

]

= 0 . (65)

This expression is still too complicated for us to be able to make definite statements about the solutions, without makingfurther
assumptions. The most direct strategy would be to consider an explicit equation of state, work out the relevant thermodynamics
quantities, and then solve (65) (probably numerically). This would allow us to establish whether the considered model is stable
and causal. This route is, however, not particularly attractive given the need to introduce an explicit model. If we wantto
continue to consider the problem in (at least to some extent)generality, then we need to resort to approximations. As we will
see, this is a very instructive route.

In order to simplify the analysis, we will consider the long-and short-wavelength limits of the problem. The results we obtain
in these limits provide useful illustrations of the key features. At the same time, we should keep in mind that both cases are
somewhat “artificial”. First of all, fluid dynamics is, fundamentally, an effective long-wavelength theory in the sensethat it arises
from an averaging over a large number of individual particles (constituting each fluid element). In effect, the model only applies
to phenomena on scales much larger than (say) the interparticle distance. However, the infinite wavelength limit represents a
uniform system, which is artificial since real physical systems tend to be finite. Moreover, as we will not account explicitly for
gravity we can only consider scales on which spacetime can beconsidered flat. While the plane-wave analysis holds on arbitrary
scales in special relativity, a curved spacetime introduces a cut-off lengthscale beyond which the analysis is not valid. The
theoretical framework is valid in general, but on larger scales we would have to consider also the perturbed Einstein equations.

D. The long wavelength problem

Let us first consider the long wavelength,k → 0, problem. This represents the true hydrodynamic limit, andit easy to see that
there are two sound-wave solutions and two modes that are predominantly diffusive. The sound-wave solutions take the form

σ ≈ ±cs

[

1± i
κT

2(p+ ρ)c3s
(c2s − αs)

2k

]

. (66)

These solutions are clearly stable, since Imσ > 0. Using the Maxwell relations listed by Hiscock and Lindblom[19], we can
show that this results agrees with eq. (40) from [20]. Moreover, our result simplifies to [using (62)]

Im σ ≈
κ

2n

(

1

cv
−

1

cp

)

, (67)

in the limit where|αs| ≫ c2s, which is relevant sincec2s ∼ p/ρ becomes small in the non-relativistic limit. Indeed, we findthat
(67) agrees with the standard result for sound absorption ina heat-conducting medium [33].

In addition to the sound waves, we have a slowly damped solution

σ ≈ iκ

[

1

ncv
−

Tα2
s

(p+ ρ)c2s

]

=
iκ

ncp
. (68)

This is the classic result for thermal diffusion.
Finally, the system has a fast decaying solution;

σ ≈
i(p+ ρ)

m∗kτ
. (69)

Under most circumstances, this root decays too fast to be observable. This means that the model reproduces that standard
“Rayleigh-Brillouin spectrum” with two sound peaks symmetrically placed with respect to the broad diffusion peak at zero
frequency [33, 34]
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E. Short wavelength stability and causality

Different aspects of the problem are probed in the short wavelength limit. Lettingk → ∞ we see [41] that (65) reduces to a
quadratic forσ2. This allows us to write down the solutions in closed form. Hence, it is relatively straightforward to establish
the conditions required for the stability of the system in this limit. For infinitesimal wavelengths we have

Aσ4 −Bσ2 + C = 0 ,−→ σ2
± =

1

2A

[

B ±
(

B2 − 4AC
)1/2

]

. (70)

where

A = m∗τ > 0 , (71)

in order for transverse perturbations to be stable. We also have

B = (p+ ρ)

(

κ

ncv
+ c2sτ

)

− 2κTαs , (72)

and

C = κ

[

p+ ρ

n

c2s
cv

− Tα2
s

]

= κ

(

p+ ρ

n

)

c2s
cp

> 0 . (73)

In order to guarantee stability for longitudinal perturbations, we needσ2 to be real and positive. Given the quadratic formula
and the fact thatA > 0 this implies that we must haveB2 − 4AC > 0. After some algebra, this leads to

(

c2sτ −
κ

ncv
−

2κTαs

p+ ρ

)2

+
4κTα2

s

p+ ρ

(

τ −
κT

p+ ρ

)

+
4κ2T

(p+ ρ)ncv

(

c2s − 2αs

)

> 0 . (74)

The first two terms are positive, as long as (48) is satisfied. Hence, the condition is guaranteed to be satisfied as long asc2s > αs.
As discussed later, this is certainly the case for degenerate matter. In cases where this simple condition is not satisfied, (74)
provides a complicated constraint on the relaxation time. Finally, we must also haveB > 0, which can be expressed as;

τ >
κ

c2s

[

2T

p+ ρ
αs −

1

ncv

]

. (75)

This condition is identical to that given in eq. (146) of [19](obtained in the limit whereαi → 0 and1/β0 and1/β2 both also
vanish, c.f. [2, 35])

Let us now consider finite wavelengths. Lettingσ = σ± + σ1/k, whereσ± solve (70), and linearising in1/k, we find that

σ1 =
i(p+ ρ)

2

(

σ2
± − c2s

2Aσ2
± −B

)

. (76)

Since all quantities in this expression are already constrained to be real, we needIm σ1 ≥ 0 (for realk) in order for the system
to be stable.. From (70) we see that

2Aσ2
± −B = ±

∣

∣B2 − 4AC
∣

∣

1/2
. (77)

This then leads to the final condition

σ2
− ≤ c2s ≤ σ2

+ . (78)

It is worth noting that this result is consistent with the notion that “mode-mergers” signal the onset of instability [21].
As the waves in the system must remain causal, we should insist thatσ2 < 1. To ensure that this is the case, we adapt the

strategy used by Hiscock and Lindblom [19]. As (70) is a quadratic for σ2 we can ensure that the roots are confined to the
interval0 < σ2 < 1 (noting first of all that the roots are real since (74) is satisfied). Given theB andC are both positive, the
roots must be such thatσ2 > 0. Meanwhile we can constrain the roots toσ2 < 1 by insisting that

A−B + C > 0 , (79)

and

A− 2B > 0 . (80)
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Combining these inequalities with the positive discriminant, we can show thatA > B/2 > C. The first of the two conditions
can be written

(1− c2s)

[

τ −
κ

ncv

]

>
κT (1− αs)

2

p+ ρ
> 0 . (81)

Now, when combined with causality the condition (78) requires thatc2s ≤ σ2
+ < 1. In other words, we must havec2s < 1, which

means that (81) implies that

τ >
κ

ncv
. (82)

Comparing to the results of Hiscock and Lindblom [19], we recognize (81) as theirΩ3 > 0 condition (it is also eq. (4) of Herrera
and Martinez [30]), while (82) corresponds toΩ6 > 0.

Meanwhile, the condition (80) can be written

(2− c2s)τ >
κ

ncv
+

2κT

p+ ρ
(1− αs) , (83)

corresponding to eq. (148) of Hiscock and Lindblom. Finally, A > C leads to

τ >
κT

p+ ρ
+

κc2s
ncp

. (84)

This corresponds to eq. (3) in Herrera and Martinez [30], which derives from eq. (147) of Hiscock and Lindblom [19].
This completes the analysis of the stability and causality of the system. We have arrived at a set of conditions on the thermal

relaxation time (and related them to results in the existingliterature). As long as these conditions are satisfied, the solutions to
the problem should be well behaved.

F. The emergence of second sound

So far we have considered the conditions that must be satisfied by a thermodynamical model in order to ensure the stability
and causality of both transverse and longitudinal waves. Tocomplete the analysis of the problem, we will now consider the
nature of the solutions. Since the phase velocityσ is obtained from a quartic, we know that the problem has two (wave) degrees
of freedom. This accords with the experience from superfluidsystems and experimental evidence for heat propagating as waves
in low temperature solids. One of the solutions should be associated with the usual “acoustic” sound while the second degree of
freedom will lead to a “second sound” for heat. We want to demonstrate how these features emerge within our model.

In order to explore these features, it is natural to considerthe large relaxation time limit. Taking the relaxation timeτ to be
long, the solutions to (70) take the form (up to, and including, order1/τ terms)

σ2
+ ≈ c2s

[

1 +
κT

(p+ ρ)τ

(

1 +
α2
s

c4s

)]

, (85)

which could be rewritten using (62), and and

σ2
− ≈

κ

nτcp
. (86)

The first of these solutions clearly represents the usual sound, while the other solution provides the second sound. In the latter
case, the deduced speed is exactly what one would expect [16]. It is easy to see that the first root will satisfy (78), and the
associated roots will be unstable in the long relaxation time limit. Moreover, the second solution leads to stable rootsprovided

τ ≥
κ

ncpc2s
. (87)

Basically, the finite wavelength condition implies that thesecond sound must propagate slower than the first sound. Thisis,
indeed, what is measured in physical systems (like superfluid Helium). Moreover, it is easy to see that this condition must be
satisfied in order for the long relaxation time approximation to be valid.

As a useful illustration of the properties of the model, let us consider the particular case of degenerate matter. In thiscase,
which relates to electrons in both metals and white dwarfs (and also neutrons and protons in neutron stars), the two specific heats
are almost identical;

cv
cp

≈ 1 +O

(

kBT

ǫF

)2

, (88)
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FIG. 1: This figure provides an illustration of the qualitative nature of the behaviour of heat conducting degenerate matter (as discussed in the
main text), based on the consistent first-order relativistic model. The parameters have been chosen in such a way that thespeed of sound is
10% of the speed of light, while the second sound (at short wavelengths, largek) propagate at1/

√
3 of this. The phase velocity of the waves is

σ = Re ω/k (left panel).The thermal relaxation timeτ has been chosen such that the critical wavenumber at which the second sound emerges
is k = 10. At lengthscales larger than this, the corresponding rootsare diffusive (have purely imaginary frequency), and in thevery long
wavelength limit (k → 0) we retain the expected thermal diffusion. The damping timefollows from1/Im ω (right panel).We also indicate the
acausal region (grey are). The illustrated example is clearly both stable and causal.

wherekB is Boltzmann’s constant andǫF is the Fermi energi [36]. This means that, for temperatures significantly below the
Fermi temperature, we can accurately assume thatαs ≈ 0. If we also assume thatτ ≫ κT/(p+ ρ) then the dispersion relation
factorises and we have

(

σ2 − c2s
)

(

τσ2 −
iσ

k
−

κ

ncv

)

= 0 . (89)

That is, the four roots are

σ = ±cs , (90)

and

σ =
i

2kτ

[

1±

(

1−
4κτ

ncv
k

)1/2
]

. (91)

The character of these roots is illustrated in Figure 1. We see that the ordinary sound exists at all wavelengths. Meanwhile, at
short long wavelengths (smallk) the remaining two roots are exponentially damped, i.e. diffusive in character. One root has a
relatively slow decay, corresponding to the expected thermal diffusion, while the other root decays so rapidly that it is unlikely
to be observable by experiment. Below a critical lengthscale (corresponding tok = 10 in Figure 1) the second sound emerges
as a result of the finite thermal relaxation timeτ . For very short lengthscales, heat signals will propagate as waves. However, as
is clear from (91) these solutions are always damped. In order to ‘propagate’ the real part of the wave frequency must exceed
the imaginary part (so that several cycles are executed before the motion is damped out). This boils down to the second sound
propagating only for

k ≫

(

κτ

ncv

)−1/2

. (92)

This result is interesting if we consider systems that become superfluid (see [37] for an interesting discussion of models for
relativistic superfluids). Suppose we consider a system which starts out in the diffusive regime (e.g. Helium above the superfluid
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transition temperature). When the system is cooled down through the relevant transition temperature, the (non-momentum
conserving) particle collisions that give rise toκ are suppressed. In effect, the critical value ofk decreases and the system may
enter the regime where the second sound can propagate at macroscopic scales. The change to the basic nature of heat propagation
is easily understood.

At the end of the day, this relatively simple model demonstrates how the behaviour of a given physical system depends on the
balance between the characteristic timescales. Obviously, we also need to keep in mind that real systems impose restrictions both
for largek, as the fluid model breaks down when we approach the interparticle distance scale, and smallk, when the wavelength
becomes larger than the size of the system.

IV. FINAL REMARKS

We set out to derive a consistent first-order model for relativistic heat conduction, in such a way that the theory remains
cognizant of its higher order origins. As we have demonstrated, this leads to a model that retains the thermal relaxationthat is
necessary if we want the problem to remain causal. What have we learned from this exercise? First of all, we have illustrated
the problems associated with the original first-order models, e.g. that of Eckart [17]. The conclusions are, obviously,not new
but the discussion should lay to rest any suggestions that the coupling of the four-acceleration to the heat-flux is (somehow)
problematic [26–28]. By considering the waves present in the new model, we have established that the system is both stable and
causal provided that some seemingly natural conditions aresatisfied. This conclusion accords with the classic work by Hiscock
and Lindblom [19, 20] (see also Olson and Hiscock [25]). In fact, the conditions we have arrived at reproduce their key results.
However, our analysis adds to previous work by discussing the emergence of the second sound and the nature of the associated
solutions. This is a key point, especially if we are interested is relativistic superfluid systems. The analysis also demonstrates the
intricate nature of these problems. It is easy to see how a model that may fail one, or several, of the derived conditions insome
regime may nevertheless be valid for a different range of parameters. Hence, one really should consider the applicability of the
chosen theory on a case-by-case basis. This is probably no more than should be expected from a phenomenological model.

Our results represent useful progress in this problem area,but one could obviously develop the theory further. A natural step
would be to consider the various constraints that we have derived for detailed equations of state, e.g., matter coupled to phonons.
It would also be interesting to consider applications of thefirst-order construction. While the model is restricted in the sense that
it does not account for non-adiabatic effects, there is an exciting range of possible applications in astrophysics, cosmology and
high-energy physics. Particularly interesting questionsconcern to what extent second sound effects are relevant in relativistic
systems and the difference between first-order results and the, considerably more complex, second-order theories.
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