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ABSTRACT

Close-in, massive exoplanets raise significant tides in their stellar hosts. We com-
pute the radial velocity (RV) signal due to this fluid motion in the equilibrium tide
approximation. The predicted radial velocities in the observed sample of exoplanets
exceed 1 m/s for 17 systems, with the largest predicted signal being ∼ 30 m s−1 for
WASP-18 b. Tidally-induced RV’s are thus detectable with present methods. Both
tidal fluid flow and the epicyclic motion of a slightly eccentric orbit produce an RV
signal at twice the orbital frequency. If care is not taken, the tidally induced RV may,
in some cases, be confused with a finite orbital eccentricity. Indeed, WASP-18 b is
reported to have an eccentric orbit with small e = 0.009 and pericenter longitude
ω = −π/2. Whereas such a close alignment of the orbit and line of sight to the ob-
server requires fine tuning, this phase in the RV signal is naturally explained by the
tidal velocity signature of an e = 0 orbit. Additionally, the equilibrium tide estimate
for the amplitude is in rough agreement with the data. Thus the reported eccentricity
for WASP-18 b is instead likely a signature of the tidally-induced RV in the stellar
host. Measurement of both the orbital and tidal velocity for non-transiting planets
may allow planet mass and inclination to be separately determined solely from radial
velocity data. We suggest that high precision fitting of RV data should include the
tidal velocity signal in those cases where it may affect the determination of orbital
parameters.

Key words: stars: planetary systems – stars: solar type – hydrodynamics – waves –
planet-star interactions

1 INTRODUCTION

Increasing RV precision allows the detection of smaller
and/or more distant planets. The current state of the art
is Doppler measurement errors in the range ∼ 1 m s−1

(e.g. Butler et al. 1996; Lovis et al. 2006). At this level of
measurement precision, other physical effects become poten-
tially detectable besides the Keplerian stellar orbital motion:
the Rossiter-McLaughlin effect (e.g. Winn 2011), additional
planets perturbing the orbit (e.g. Laughlin & Chambers
2001), “jitter” due to convective overturn motions in the
stellar envelope (Wright 2005) and solar-like acoustic waves
(Bedding & Kjeldsen 2007). In this paper we investigate an

⋆ E-mail: arras@virginia.edu (PA); burkart@berkeley.edu (JB);
eliot@astro.berkeley.edu (EQ); nevin@mit.edu (NNW)

additional effect, the time-dependent spectroscopic shift due
to fluid motions in the star forced by the planetary tide.

Previous investigations have highlighted that tides
raised in the star by the planet may give observ-
able ellipsoidal (flux) variation (Sirko & Paczyński 2003;
Loeb & Gaudi 2003; Pfahl et al. 2008). NASA’s Kepler Mis-
sion has recently announced the first detection of ellipsoidal
variation due to a planet (Welsh et al. 2010).

The tidal velocity signal has been discussed by
Willems & Aerts (2002) for the case of a massive star
primary and stellar mass compact object secondary.
Dziembowski (1977) gives formulae to convert the surface
fluid motions to disk averaged radial velocities along the
line of sight to the observer. In this paper we discuss the
tidally induced fluid motions due to a planetary companion
with short orbital period, for which the tidal velocity may
be observable.
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Figure 1. Diagram showing the orientation of the orbital and
fluid motion, as viewed looking down on the orbital plane. The
planet and unperturbed star are shown as circles, with boldface
arrows in the direction of the orbital motion about the center of
mass. The ellipsoid represents the equilibrium tide deformation
of the star, the long axis of which follows the planet in its orbit.
The thin arrows show the direction of vertical and longitudinal
fluid motion at intervals of π/4.

The tidal velocity is computed in §2. Distinguishing be-
tween a small orbital eccentricity and the tidal velocity is
discussed in §3. Equilibrium tide estimates for the tidal ve-
locity of known exoplanets, and the cases of WASP-18 b and
WASP-33 b, are discussed in §4.

2 TIDAL AND ORBITAL RADIAL

VELOCITIES

Consider a planet of mass Mp in a Keplerian orbit around a
star of massM and radius R. The semi-major axis, eccentric-
ity, orbital frequency, orbital separation and true anomaly
are denoted a, e, n = (G(M + Mp)/a

3)1/2 = 2π/Porb,
d and f , respectively. The orbital separation is given by
d = a(1 − e2)/(1 + e cos f), where f = 0 at pericenter. We
consider the star to be non-rotating. Corrections due to stel-
lar rotation will be discussed in §4.

A rough estimate of the tidal velocity may be obtained
as follows. The ratio of the tidal force to the internal grav-
itational force gives a dimensionless strength of the tide:
ǫ ≡ (Mp/M)(R/d)3. The height of the tide is then ǫR.
Distant observers see the fluid oscillate at harmonics of
the orbital frequency, n. The tidal velocity is then roughly
vtide ≃ ǫnR ∼ (1 − 10) m s−1 for massive, close-in planets
(see eq. [17]).

The tidal bulge is commonly pictured as an ellipsoid
rotating at the angular velocity of the binary. This is a
good approximation if the star’s rotation is synchronized
to the orbit. However, exoplanet host stars typically rotate
much slower than the orbital frequency of the planet, caus-
ing fluid elements to experience a time-changing tidal force.
This force induces both vertical and horizontal fluid motions
which cannot be modeled as rigid rotation, as we now discuss
in more detail.

Figure 1 shows the relative signs of the tidal flow and
orbital velocity in the simplest case of a circular orbit. The
circle represents the unperturbed star, and the ellipsoid rep-
resents the tidally deformed star, with the deformation fol-

lowing the planet in its orbit. As the bump approaches a
particular point on the surface, the fluid motion is upward.
After the bump passes the fluid moves back down. In the
lowest-order case of a quadrupole, there are two bumps, and
so the fluid goes up and down twice per orbit. Starting the
planet in between star and observer, the star’s orbital and
tidal velocity are zero. Advancing the orbit slightly, the star
is moving toward the observer, while the tidal velocity is
away from the observer. Other phases can be deduced sim-
ilarly. For a circular orbit, only the relative angle between
observer and planet as seen by the star matters for both
vorb and vtide. However, including finite orbital eccentricity
introduces the pericenter longitude into the problem, mean-
ing that the second and higher harmonic components of vorb
(present only for e 6= 0) have a more complicated angular
dependence.

In order to distinguish the tidal RV from the epicyclic
motion of an eccentric orbit, it is necessary to under-
stand the orbit’s orientation and the various sign conven-
tions for RV. Define a coordinate system with the ori-
gin at the center of the star, with the planet orbiting in
the x-y plane with separation vector from star to planet
given by d = d (ex cos f + ey sin f). To describe the fluid
motion in the star, spherical coordinates (r, θ, φ) are used
for the position x. The coordinates of the planet’s orbit
are then (d, π/2, f). The direction to the observer as seen
from the star, no, can be specified in two ways. The cal-
culation of the tidal signal is most convenient using our
polar coordinate system centered on the star, in which
no = sin θo(ex cosφo + ey sinφo) + ez cos θo. However, the
RV measurement involves the Euler angles for inclination
i and longitude of pericenter ω as seen by the observer.
To relate (θo, φo) and (i, ω) we use the transformation ma-
trix from the orbit frame, (x, y, z), to the observer frame
(X,Y, Z) (Murray & Dermott 1999). Choosing the observer
to lie along the +Z direction, and X − Y to be the plane
of the sky, the observer direction as seen from the star is
no = sin i(ex sinω+ey cosω)+ez cos i. Equating the two
expressions for no, we find θo = i and φo = π/2− ω.

We follow the conventions that the Doppler shift veloc-
ity is positive for motion away from the observer, and that
the separation vector points from star to planet. The vector
from the center of mass to the star is then

x⋆ = −
(

Mp

Mp +M

)

d (ex cos f + ey sin f) . (1)

The RV of the star due to its orbital motion becomes

vorb(t) = −no · ẋ⋆

= −Korb (sin (f − φo)− e sinφo) (2)

= Korb (cos (f + ω) + e cosω) , (3)

where

Korb =

(

Mp

Mp +M

) (

na sin i√
1− e2

)

(4)

is the semi-amplitude of the orbital velocity. Equation (3) is
the standard formula used to fit RV data (Murray & Correia
2010).

Next we turn to the tidal velocity. The disk-averaged
RV away from the observer is defined to be (Dziembowski
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1977)

vtide =

∫

dΩ h(n · no) n · no

(

−ξ̇ · no

)

∫

dΩ h(n · no) n · no

, (5)

where the integral is over the unperturbed surface of the
star. Here ξ and ξ̇ are the displacement vector and velocity of
the fluid relative to the background star. The limb darkening
function, h(µ), is normalized as

∫ 1

0
dµµh(µ) = 1, making

the denominator 2π. Since ξ̇ · no is the velocity toward the
observer, the negative sign in equation (5) gives the velocity
away from the observer.

The tidal potential U(x, t) and fluid displacement can
be expanded in spherical harmonics as

U(x, t) = −GMp

∑

ℓ>2

ℓ
∑

m=−ℓ

4π

2ℓ+ 1

rℓ

dℓ+1

× Y ∗

ℓm(π/2, f)Ylm(θ, φ), (6)

ξr(x, t) =
∑

ℓm

ξr,ℓm(r, t)Yℓm(θ, φ) (7)

ξθ(x, t) =
∑

ℓm

ξh,ℓm(r, t)
∂Yℓm(θ, φ)

∂θ
(8)

ξφ(x, t) =
∑

ℓm

ξh,ℓm(r, t)
1

sin θ

∂Yℓm(θ, φ)

∂φ
, (9)

where ξr,ℓm and ξh,ℓm are the spherical harmonic coefficients
of the vertical and horizontal motions, found as the forced
response to U .

Dziembowski (1977) shows that the integral in equation
(5) may be computed by using rotation matrices to express
the spherical harmonics in the orbit frame in terms of an-
other coordinate system oriented toward the observer. The
result can be written in the form

vtide = −
∑

ℓ>2,m

(

uℓξ̇r,ℓm(t) + vℓξ̇h,ℓm(t)
)

Yℓm(θo, φo),(10)

where the limb-darkening integrals are

uℓ =

∫ 1

0

dµµ2Pℓ(µ)h(µ) (11)

vℓ =

∫ 1

0

dµµ(1− µ2)
dPℓ(µ)

dµ
h(µ), (12)

and Pℓ(µ) is a Legendre polynomial. For Eddington limb
darkening, h = 1 + 3µ/2, Dziembowski (1977) gives a table
of values including u2 = 0.321, v2 = 0.775, u3 = 0.127 and
v3 = 0.593. We found uℓ and vℓ to vary weakly with changes
in the limb darkening law.

For the fluid motion, we employ the equilibrium

tide approximation, in which the fluid motion is in-
compressible and follows gravitational equipotentials (e.g.
Goldreich & Nicholson 1989).1 For the fluid to follow the
combined equipotential of the background star and tidal po-
tential, the vertical displacement must be

ξr,eq(x, t) = −U(x, t)

g
, (13)

1 We ignore the small contribution to the gravitational potential
arising from density perturbations within the star (the Cowling
approximation).

where g(r) = Gm(r)/r2 is the gravity of the background
model. The components of the horizontal displacement are
then determined by the condition ∇ · ξ = 0:

ξh,ℓm =
1

ℓ(ℓ+ 1)r

d

dr

(

r2ξr,eq,ℓm
)

≃
(

ℓ+ 4

ℓ(ℓ+ 1)

)

ξr,eq,ℓm (14)

where in the second expression we have used ξr,eq,ℓm ∝ rℓ+2

near the surface, where the interior mass is nearly constant.
Plugging equations (13), (14) and (6) into equation (10),

using the spherical harmonic addition formula to sum over
m, and taking the time derivative gives the general formula
for tidal RV under the equilibrium tide approximation:

vtide = R
Mp

M

∞
∑

ℓ=2

fℓ

(

R

d

)ℓ+1
[

(ℓ+ 1)Pℓ (cos γ)
ḋ

d

+sin θo sin(f − φo)
dPℓ(cos γ)

d(cos γ)
ḟ

]

. (15)

Here cos γ = sin θo cos(f − φo) is the angle between
planet and observer as seen by the star. The parameter
fℓ =

(

uℓ ξ̇r,ℓm(t) + vℓ ξ̇h,ℓm(t)
)

/ξ̇r,eq,ℓm contains information
about limb darkening and the size of the surface fluid mo-
tions, and takes on the value fℓ = uℓ+ vℓ(ℓ+4)/[ℓ(ℓ+1)] in
the equilibrium tide approximation. This parameter is the
main uncertainty in our model. In a more exact treatment
of the fluid motions, fℓ would be dependent on the stellar
structure, the orbital period, and the stellar rotation rate.

Equation (15) can be simplified considerably for a cir-
cular orbit keeping only the dominant ℓ = 2 term:

vtide =
3

2
nR

Mp

M

(

R

a

)3

f2 sin
2 θo sin [2(nt − φo)](16)

≃ 1.13 m s−1
(

Mp

MJ

)

(

M2
⊙

M(M +Mp)

)

×
(

R

R⊙

)4
(

1 day

Porb

)3

sin2 θo sin [2(nt− φo)] , (17)

where in the second step we used Eddington limb darkening
for which f2 ≃ 1.10. Equation (17) shows that, not surpris-
ingly, the tidal velocity signal is largest for massive planets
in short period orbits around stars with large radii.

We end this section with a brief discussion of our choice
to use the equilibrium tide approximation. The derivation
of equations (13) and (14) from the fluid equations proceeds
first by ignoring inertia and setting the forcing frequency
to zero (e.g. Goldreich & Nicholson 1989), and second by
solving the equations in a radiative zone, where the Brunt-
Vaisalla frequency N2 > 0. In a convection zone, it’s well
known (e.g. Terquem et al. 1998) that the same derivation
does not hold if one sets N2 = 0, and deviations from the
equilibrium tide are expected, even for low frequencies. How-
ever, ξr ≃ ξr,eq is still a good approximation at the surface,
since the surface of the star must be on an equipotential
if one ignores fluid inertia. The same cannot be said of ξh.
The value of ξh must adjust to cause ξr ≃ ξr,eq at the sur-
face and also the base of the convection zone, and in general
ξh 6= ξh,eq exactly.

To understand the behavior of ξh in more detail we
performed a number of integrations of the equations for

c© 2011 RAS, MNRAS 000, 1–6
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adiabatic fluid perturbations (Unno et al. 1989) forced by
the gravitational tide, for stars in the mass range M =
1.0 − 1.4M⊙. We find that ξh ∼ ξh,eq at roughly the factor
of 2 level away from g-mode resonances, with ξh showing
more variation with tidal frequency than ξr. More variation
with frequency occurs with increasing M , as the convection
zone shrinks, and g-modes have a more pronounced effect at
the surface of the star. Overall, this implies that the equilib-
rium tide estimate of vtide is typically accurate to a factor
of ≃ 2, but that the tidally induced RV can be significantly
larger near g-mode resonances. We use the equilibrium tide
approximation here largely for its simplicity, with the intent
of performing more rigorous calculations in the future.

3 AMPLITUDE AND PHASE

In order to measure the tidal RV signal, it must be dis-
tinct from that of the orbital RV so as not to confuse the
two. Equations (15) and (3) for the tidal and orbital veloc-
ities give the amplitude and phase of all harmonics of the
RV signal for eccentric orbits. At large eccentricity, the two
signals are clearly distinct, due to the strong tidal RV de-
pendence on orbital separation. Moreover, for an eccentric
orbit, equation (15) gives nonzero values even for a face on
orientation. The limit of small but finite eccentricity is more
subtle, as we now discuss.

First consider a circular orbit with planet phase angle
φ = nt and observer position φo. As the orbit is circular,
the pericenter longitude ω is undefined, and the longitudes
φ and φo can be taken with respect to any reference line. We
define t = 0 to occur when the planet is along the reference
line. Inferior conjunction (planet between star and observer)
occurs at φ = φo, and superior conjunction (planet on oppo-
site side of star) occurs at φ = φo + π. The orbital velocity

v
(k=1)
orb (t) = −Korb sin (φ− φo) (18)

is at the first harmonic of the orbital frequency, denoted
k = 1, while the tidal velocity is at the second harmonic
(k = 2)

vtide(t) = Ktide sin [2(φ− φo)] (19)

with amplitude

Ktide =
3

2
nR

Mp

M

(

R

a

)3

f2 sin
2 i. (20)

In the circular orbit case, the orbital and tidal signals are
determined solely by the angular separation φ−φo. The signs
of the RV in equations (18) and (19) have been discussed
in §2 and Figure 1. Just after inferior conjunction, vtide >
0 (away from observer) and v

(k=1)
orb < 0 (toward observer),

while just after superior conjunction vtide > 0 and v
(k=1)
orb >

0. The combined radial velocity curve for the circular orbit
case is given by equations (18) and (19), with φ = nt, to be

v
(k=1)
orb (t) + vtide(t) = − Korb sin (nt− φo)

+ Ktide sin [2(nt − φo)] . (21)

Next we determine under what conditions a slightly ec-
centric orbit, ignoring tides, can mimic the tidal velocity
plus circular orbit velocity in equation (21). To this end,

equation (3) can be expanded to O(e) as

vorb(t) ≃ −Korb [sin (nt− φo) + e sin (2nt − φo)]

≡ v
(k=1)
orb (t) + v

(k=2)
orb (t). (22)

Comparing equations (21) and (19), the tidal and epicyclic
velocities are both at the second harmonic (k = 2) of the
orbital frequency. However, they do not in general have the
same amplitude or phase. In particular, equation (22) shows
that the k = 2 orbital term has a different phase, nt−φo/2 =
(nt−φo)+φo/2, which is not just the planet-observer angle—
there is an additional dependence on the viewing angle φo =
π/2− ω.

Furthermore, it is possible for the k = 2 orbital velocity
to mimic the k = 2 tidal velocity: for the specific choice

Ktide = eKorb (23)

φo = π ↔ ω = −π/2, (24)

the tidal and k = 2 orbital signals are the same. That is,
the tidal velocity is degenerate with an eccentric orbit (of
appropriate e; eq. [23]) in which the long axis of the orbit is
along the line of sight to the observer.

Given that an eccentric orbit can mimic the tidal RV
signal, we suggest that when the values of eKorb and ω in-
ferred from fitting solely to an orbital RV model roughly
satisfy equations (23) and (24), it is reasonable to presume
that what is being detected is the tidal velocity, not a finite
eccentricity. In that case, the value of e from the fit does
not describe the orbit, but rather gives the magnitude of
the tidal velocity Ktide = eKorb. Since the orbit can a priori
have any orientation 0 6 ω 6 2π, fine tuning is required in
order to obtain the value ω = −π/2 implied by the finite
eccentricity interpretation of the RV data. By contrast, the
tidal velocity of an e = 0 orbit naturally explains the second
harmonic of the RV data.

4 DISCUSSION AND CONCLUSIONS

To evaluate the magnitude of the tidally-induced ra-
dial velocity (eq. [15]) for observed exoplanets, data
were taken from the Extrasolar Planet Encyclopedia
(http://exoplanet.eu/catalog.php) with two exceptions. Up-
dated values for WASP-18 b were taking from Triaud et al.
(2010), and for WASP-33 b we include the eccentricity fit
from Smith et al. (2011), and use the upper limit on the
mass as an estimate of the mass itself. For transiting planets,
the measured inclination is used. For non-transiting planets,
we set θo = π/2 and use the measured Mp sin i in place of
Mp. Parameters used and the tidal velocity semi-amplitude,
Ktide, found by evaluating equation (15) over an orbit, are
presented in Table 1 for planets with Ktide > 1 m s−1. For
the eccentric orbit cases, the k = 2 orbital velocity ampli-
tude eKorb is given to compare to Ktide. Most cases show
massive, close-in planets in nearly circular orbits around
stars with radii slightly larger than the Sun. Some planets,
such as HAT-P-2 b, XO-3 b and HIP 13044 b have enhanced
signal near pericenter due to large eccentricity.

Table 1 shows that the tidal velocity is potentially de-
tectable in up to 17 known exoplanets for an RV precision of
1 m s−1. Inspection of the RV curves in the NsTED database
(http://nsted.ipac.caltech.edu/) shows that in many cases,

c© 2011 RAS, MNRAS 000, 1–6
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Table 1. Estimates of Tidal Velocity

planet name Mp[sin i]/MJ Porb/day e ω[deg] i[deg] M/M⊙ R/R⊙ Ktide[m/s]a eKorb[m/s]

WASP-19 b 1.17 0.79 0.0046 3.00 79.40 0.97 0.99 2.83 1.19
WASP-43 b 1.78 0.81 82.60 0.58 0.93 8.90
WASP-18 b 10.11 0.94 0.0085 -92.10 86.63 1.24 1.36 31.94 15.38
WASP-12 b 1.40 1.09 86.00 1.35 1.60 4.78
OGLE-TR-56 b 1.30 1.21 78.80 1.17 1.32 2.12
HAT-P-23 b 2.09 1.21 0.1060 118.00 85.10 1.13 1.20 3.61 39.03
WASP-33 b 4.59 1.22 0.174c -89.0c 87.67 1.50 1.44 5.89 120.0
HD 41004 B b 18.40 1.33 0.0810 178.50 no transit 0.40 0.48b 3.61 517.48

WASP-4 b 1.12 1.34 88.80 0.93 1.15 1.13
CoRoT-14 b 7.60 1.51 79.60 1.13 1.21 4.11
SWEEPS-11 9.70 1.80 84.00 1.10 1.45 7.04
HAT-P-7 b 1.80 2.20 84.10 1.47 1.84 1.02
WASP-14 b 7.72 2.24 0.0903 254.90 84.79 1.32 1.30 1.55 90.59
OGLE2-TR-L9 b 4.34 2.49 79.80 1.52 1.53 1.85
XO-3 b 11.79 3.19 0.2600 345.80 84.20 1.21 1.38 3.07 384.77
HAT-P-2 b 8.74 5.63 0.5171 185.22 90.00 1.36 1.64 5.04 482.55
HIP 13044 b 1.25 16.20 0.2500 219.00 no transit 0.80 6.70 2.74 30.01

a Semi-amplitude ((max-min)/2) found by evaluating eq.15 over the orbit.
b Radius of HD 41004 B b not listed in exoplanets.eu, so we use the main sequence value of 0.48 R⊙.

c The values of e and ω for WASP-33 b were found by Smith et al. (2011), but rejected as unphysical. Their main results instead fix
e = 0.

the precision of the measurements taken was not high
enough to allow measurement of signals in the range vtide =
1 − 30 m s−1. Should such measurements become available
in the future, measurement of the tidal velocity will allow a
non-trivial check on the planet mass, inclination, and stellar
mass and radius. For non-transiting planets detected only
through RV data, the tidal signal and orbital motion will
allow Mp and i to be separately determined solely from RV
data, since they have different dependence on inclination. As
signal to noise can be built up over many orbits, follow-up
observations on planets already detected may allow one to
measure planet masses for a number of RV and transiting
planets.

We suggest that a model of the tidal RV should be in-
cluded in high precision analyses of RV data for close-in
planets such as those in Table 1. At present, the parameter
f2 in the tidal RV (eq. [17]) – which characterizes the prop-
erties of the tide raised by the planet – could be included as
a parameter in the fit. In the future, more detailed calcula-
tions of the tidal response of the star to its companion may
provide accurate values of f2 for the required range of stellar
masses and orbital periods. We have for simplicity focused
on the equilibrium tide predictions (f2 ≃ 1.1) in this paper.

WASP-18 b clearly stands out as the best candidate for
an existing detection of the tidal velocity, as the claimed
orientation of the eccentric orbit, ω ≃ −π/2 (Triaud et al.
2010), is in excellent agreement with the phase predicted
by the tidally-induced RV. Moreover, the equilibrium tide
prediction for the amplitude is within a factor of 2 of the in-
ferred eKorb. Quantitatively, we find that instead of the equi-
librium tide value, f

(eq tide)
2 = 1.1, the value measured from

the data for WASP-18 b is f
(data)
2 = 1.1 × (15.38/31.94) =

0.53. In our preliminary numerical calculations of the full
tidal response of a star, we have found that the equilibrium
tide approximation is only accurate at the factor of 2 level
for calculating the tidal RV signal (particularly for the hori-
zontal motion at the surface). Thus we regard the agreement

between the data and the equilibrium tide prediction of the
RV amplitude for WASP-18 b as satisfactory. Given this
agreement, we argue that the simplest interpretation of the
data is that the signal detected in WASP-18 b is the tidal
velocity, rather than a finite orbital eccentricity, and that
the true orbital eccentricity has a value e ≪ 0.009. Due to
the large value of R/a, higher harmonics of the orbital fre-
quency due to multipole orders ℓ = 3, 4 may be detectable
in the data as well.

WASP-33 b is another candidate in which tidal RV
may have been mistaken for an eccentric orbit. Smith et al.
(2011) initially fitted an eccentric orbit, finding e = 0.174
and ω = −89◦. While the value of ω is strongly sugges-
tive of tidal velocity, the large amplitude would require fluid
motions much larger than the equilibrium tide (see Table
1). While larger amplitude tidal flow is expected for higher
mass stars, due to their thin surface convection zones, this
factor of ≃ 20 increase in amplitude likely requires a near
resonance with a g-mode.

The case of WASP-33 b brings up the issue of how stel-
lar rotation affects the tidal RV signal. While most planet-
host stars have slow, sub-synchronous rotation (even WASP-
18 b, an A star) WASP-33 b is an example of an A star that
rotates more rapidly than the orbit. Stellar rotation can be
included in the analysis in two places, through alteration
of the fluid motions, mainly through the Coriolis force, and
also by changing the expression for the fluid motion at the
perturbed surface of the star. As the equilibrium tide ig-
nores fluid inertia, the equilibrium tide displacements are
unchanged for a rotating star. The second way in which ro-
tation changes the radial velocity is that rather than using
ξ̇ in equation (5), as is appropriate for a non-rotating star,
the Lagrangian velocity perturbation

∆v = ξ̇ + v ·∇ξ (25)

= ei

(

∂

∂t
+ Ω

∂

∂φ

)

ξi +Ω× ξ (26)
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must be used, which includes the effect of (here uniform)
rotation (v = Ω×x) in the background star. The bracketed
term in equation (26) is the time derivative in the frame co-
rotating with the star. For a star with rotation synchronized
to the orbit, this term is zero as the tide is time-independent
in the fluid frame. The second term in eq.26 represents the
rigid rotation of the deformed surface, and is present even
for a synchronized star.

We have evaluated the form of equation (26) for the
case of a circular orbit with rotation and orbital angular mo-
mentum axes aligned. The resulting expression shows that
n → n−Ω in the time derivative term, and new terms ∝ Ω
arise from the piece Ω × ξ. The expected phase of the ra-
dial velocity signal should still be ω = −π/2 for the Ω < n
case. However, it may be possible for the tidal RV phase to
shift by 180◦ when Ω > n. A more detailed calculation is
necessary to settle this issue. For WASP-18 b, rotation may
introduce a small amplitude correction (∼ 15%). The am-
plitude correction for WASP-33 b is expected to be order
unity. We plan to include rotation in a future study.
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