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We suggest a class of generally covariant ghost-free nonlocal gravity models generating de Sitter
or Anti-de Sitter background with an arbitrary value of the effective cosmological constant and
featuring a mechanism of dark matter simulation.
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Introduction. In the vast list of efforts aimed to rec-
oncile evidences for cosmic acceleration [1] with gravity
theory (based on quintessence type models [2], f(R) and
braneworld theories [3, 4], massive gravity [5] and nonlo-
cal cosmology [6]), etc.) this paper represents a one more
attempt to achieve this goal by a nonlocal infrared mod-
ification of the metric sector of the theory. A distinctive
feature of our approach is that the realization of the old
idea of a scale-dependent gravitational coupling – non-
local Newton constant [7–9] – amounts to the construc-
tion of the class of stable, ghost-free models compatible
with the general relativistic (GR) limit and generating
the dS or AdS background with an arbitrary value of the
effective cosmological constant Λ. The driving force of
our approach is the understanding that, to resolve such
issues as cosmic coincidence problem, this scale cannot
be encoded in the fundamental or effective action of the
theory (like, for instance, massive graviton), but should
arise dynamically by the analogue of symmetry break-
ing. However, absolutely new feature of the model will
be that neither local nor global scaling invariance, to be
broken at this scale, will be present in the model. More-
over, as a bonus for the construction of the ghost-free
cosmic acceleration we will get a possible dark matter
(DM) simulation.
Flat-space background setup. Our starting point will be

the observation [8] that the Einstein action in the vicinity
of flat-space background can be written down as

SE =
M2

P

2

∫

dx g1/2
(

−Rµν 1

�
Gµν +O[R3

µν ]

)

, (1)

where Gµν = Rµν−
1
2gµνR is the Einstein tensor and 1/�

is the Green’s function of the covariant d’Alembertian
acting on symmetric tensor. Thus, the idea of a nonlocal
scale dependent Planck mass [7] can be realized as the
replacement of M2

P by a nonlocal operator – a function
M2(�) of �, M2

PR
µν(1/�)Gµν ⇒ Rµν(M2(�)/�)Gµν .

If we adopt this strategy, then the search for M2(�)
should be encompassed by the correspondence princi-
ple according to which nonlocal terms of the action
should form a correction to the Einstein Lagrangian aris-
ing via the replacement R ⇒ R + RµνF (�)Gµν . The
nonlocal form factor of this correction F (�) should be
small in the GR domain, but it must considerably mod-
ify dynamics at the DE scale. Motivated by custom-
ary spectral representations for nonlocal quantities like

F (�) =
∫

dm2 α(m2)/(m2 − �) we might try the fol-
lowing ansatz, F (�) = α/(m2 − �), corresponding to
the situation when the spectral density α(m2) is sharply
peaked around some m2. As we will see, for m2 6= 0 this
immediately leads to a serious difficulty. Schematically
the inverse propagator of the theory – the kernel of the
quadratic part of the action in metric perturbations hµν –
becomes ∼ −�+α�2/(m2−�). Then its physical modes
are given by the two roots of this expression – the solu-
tions of the corresponding quadratic equation � = m2

±.
In addition to the massless graviton with m2

− = 0 mas-
sive modes with m2

+ = O(m2) appear and contribute a
set of ghosts which cannot be eradicated by gauge trans-
formations (for the latter were already expended on the
cancelation of ghosts in the massless sector – longitudinal
and trace components of hµν).
Therefore, only the case of m2 = 0 remains, and as

a first step to the nonlocal gravity we will consider the
action

S =
M2

2

∫

dx g1/2
(

−R+ αRµν 1

�
Gµν

)

. (2)

On the flat-space background this theory differs little
from GR provided the dimensionless parameter α is
small, |α| ≪ 1. Upper bound on |α| should follow from
post-Newtonian corrections in this model. The addi-
tional effect of α is a small renormalization of the effective
Planck mass. In the linearized theory we have an obvi-

ous relation S = −M2(1−α)
2

∫

dx g1/2R+ αO[h3
µν ]. which

allows one to relate the constant M to MP ,

M2 =
M2

P

1− α
. (3)

Treatment of nonlocality. At this point we have to dis-
cuss the treatment of nonlocality in (2). Nonlocal 1/�
requires the specification of boundary conditions which
generically violate causality in variational equations of
motion for the nonlocal action. However, causality is re-
covered as follows. We assume that (2) is the quantum
effective action whose nonlocality originates from quan-
tum effects. There is a theorem based on Schwinger-
Keldysh technique [10] that for an appropriately de-
fined initial quantum state |in〉 the effective equations
for the mean quantum field gµν = 〈in| ĝµν |in〉 origi-
nate from the Euclidean quantum effective action S =
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SEuclidean[gµν ] by the following procedure [11]. Calculate
nonlocal SEuclidean[gµν ] and its variational derivative. In
the Euclidean signature spacetime nonlocal quantities,
relevant Green’s functions and their variations are gener-
ally uniquely determined by their trivial (zero) boundary
conditions at infinity, so that this variational derivative is
unambiguous in Euclidean theory. Then make a transi-
tion to the Lorentzian signature and impose the retarded
boundary conditions on the resulting nonlocal operators,

δSEuclidean

δgµν(x)

∣

∣

∣

∣

retarded

++++ ⇒ −+++

= 0. (4)

Theese equations are causal (gµν(x) depending only on
the field behavior in the past of the point x) and satisfy
all local gauge and diffeomorphism symmetries encoded
in the original SEuclidean[gµν ].

1

We will assume that our model falls into the range
of validity of this procedure, which implies a particular
vacuum state |in〉 and the one-loop approximation (in
which it was proven to the first order of perturbation
theory in [12] and to all orders in [11]). The extension of
this range is likely to include multi-loop orders and the
|in〉-state on the (A)dS background considered below, for
which this state apparently coincides with the Euclidean
Bunch-Davies vacuum.
Thus, the action (2) is understood as the Euclidean one

(this explains our sign choice in the Einstein term) with
zero boundary conditions for 1/� at infinity. The nonlo-
cal part can be localized in terms of the auxiliary tensor
field ϕµν subject to the same boundary conditions, and
the theory can be equivalently described by the action

S[ g, ϕ ] =
M2

2

∫

dx g1/2
{

−R− 2αϕµνRµν

−α
(

ϕµν −
1

2
gµνϕ

)

�ϕµν

}

. (5)

The field ϕµν satisfies the variational equation �ϕµν =
−Gµν and formally carries ghosts with a wrong sign of
the kinetic terms, which cannot be eradicated by diffeo-
morphism symmetry (because the latter at maximum can
remove eight unphysical components of gµν).
However, these ghosts are harmless because in view of

boundary conditions ϕµν exists only in the intermediate
states. In the Lorentzian context of (4) this means that
ϕµν is given by a retarded solution of its equation of mo-
tion ϕµν = −(1/�)retG

µν and does not include free waves
coming from asymptotic infinity. The actual particle con-
tent of the theory is determined in terms of the original

1 A similar treatment of a nonlocal action in [13] was very re-
servedly called the ”integration by parts trick” needing justifica-
tion from the Schwinger-Keldysh technique. However, this tech-
nique only provides the causality of effective equations, but does
not guarantee the Euclidean-Lorentzian relation (4). The latter
is based, among other things, on the choice of the |in〉-state.

metric field gµν , and it indeed turns out to be ghost-free,
because the quadratic part of the action coincides with
that of Einstein one modulo a small renormalization of
the Planck mass (3).2

In the local representation (5) our model could be
directly applied to the FRW cosmology, which easily
yields a (quasi) de Sitter point of the cosmological evo-
lution. With the natural Lorentz-invariant ansatz ϕµν ≃
Φ gµν/4, which is supposed to be valid close to a certain
moment t0 corresponding to the present epoch, the cos-
mological evolution can be compatible with the current
DE data. By the appropriate choice of initial conditions
the Hubble factor H = ȧ/a, the field Φ and the parame-

ter of the effective equation of state w = −1 − 2Ḣ/3H2

can satisfy at t0 the following relations Φ̇0 = −4H0/σ,
w0 = −1, ẇ0 = −16H0(2σ − 1)/(2 + 3σ2), where
σ = (2α/3)1/2(2 + αΦ0 − 3α)−1/2 is determined by the
value of the field Φ0 = Φ(t0). If σ is chosen to satisfy
σ = O(1) > 1/2 we have ẇ0 = O(1) × H0 < 0 which
makes the model qualitatively compatible with the ob-
servable cosmic acceleration.

These very rough estimates could have served as a
starting point for a serious quantitative comparison with
the DE scenario, if a formal application of (2) to the
FRW setup would not disregards nontrivial boundary
conditions in cosmology. On the de Sitter background
(which is a zeroth-order approximation for the cosmic
acceleration) the Ricci curvature Rµν = Λgµν is covari-
antly constant but nonzero, and the nonlocal part of (2)
is divergent, because gµν is a zero eigenvector of �. This
means that the action (2) should be modified to circum-
vent this difficulty.

Nonlocal gravity on the (A)dS background. We will

regulate the action (2) by adding to the covariant � the
matrix-valued potential term built of a generic combina-
tion of tensor structures linear in the curvature,

S =
M2

2

∫

dx g1/2
(

−R+ αRµν 1

�+ P̂
Gµν

)

, (6)

P̂ ≡ P µν
αβ = aR

(µ ν)
(α β) + b

(

gαβR
µν + gµνRαβ

)

+cR
(µ
(αδ

ν)
β) + dR gαβg

µν + eRδµναβ. (7)

Here the hat denotes the action of the matrix (or its in-
verse) on the second rank symmetric tensor field, and a,
b, c, d and e represent arbitrary parameters to be re-
stricted by the requirement of a stable (A)dS solution in
the model. Of course, such a modification of the orig-
inal action (2) leaves its linear approximation on a flat
background intact, because it deals with O[h3

µν ]-terms.

2 Analogous elimination of ghosts by boundary conditions in con-
formal gravity [14] differs from our case because these ghosts are
higher-derivative and essentially nonlinear. Therefore, the non-
ghost nature of the theory requires further verification even after
integrating these ghosts out.
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Now the Green’s function 1/(� + P̂ ) acting on the
Einstein and Ricci tensors in (6) is well defined even
for the (A)dS background with the covariantly constant
Rµν = Λgµν and Rαµβν = Λ

3 (gαβgµν −gανgβµ), for which

P µν
αβ = −CΛδµναβ +

(

A

4
+B +

C

4

)

Λgαβg
µν , (8)

P̂ gµν ≡ P µν
αβ gµν = (A+ 4B)Λgµν , (9)

A = a+ 4 b+ c, B = b+ 4 d+ e, (10)

C = a/3− c− 4e, (11)

Now we show that under a certain restriction on pa-
rameters of P̂ the model (6) has (A)dS solution with
an arbitrary value of the cosmological constant Λ. In-
deed, introduce the local conformal variation with the
parameter δσ = δσ(x), δσ =

∫

d4x δσ gαβ δ/δgαβ. It acts
on various quantities in (6) according to their conformal
weights, δσgµν = δσ gµν ,

δσRµν = O(∇), δσR = −δσ R+O(∇),

δσR
µν = −2δσ Rµν +O(∇), δσP̂ = −δσ P̂ +O(∇),

δσ� = O(∇), (12)

modulo the derivatives O(∇) acting on δσ(x) and these
quantities themselves. The conformal variation of (6) on
the (A)dS background then reads

δS

δσ

∣

∣

∣

∣

(A)dS

=
M2

2
g1/2

(

−R+ αRαβP̂−1 Gαβ

)

= −2M2Λ

(

1 +
α

A+ 4B

)

g1/2. (13)

Since all tensor quantities on this background alge-
braically express via gµν the metric variational derivative
of the action reduces to this variation, and the equation
of motion δS/δgµν |(A)dS = 1

4 g
µν(δS/δσ) |(A)dS = 0 holds

with an arbitrary value of Λ when

α = −A− 4B. (14)

Note that the existence of the (A)dS solution with an
arbitrary Λ is neither the result of the local Weyl invari-
ance of the theory, nor even its global scale invariance.
Rather this is the corollary of the relation (14) which,
in particular, guarantees the vanishing on-shell value of
the action S |(A)dS = 0. Thus, this solution is another
vacuum – a direct analogue of the flat-space one.
Another remarkable consequence of Eq.(14) is the sta-

bility of the (A)dS solution against ghost and tachyon ex-
citations. In principle, the hope to eradicate ghosts and
tachyons from the quadratic part of the action S(2) on
the (A)dS background is based on the observation that
in the DeWitt gauge, χµ ≡ ∇νh

µν − 1
2 ∇

µh = 0, S(2)

contains only two contractions h2
µν and h2 (h ≡ gµνhµν),

their nonlocal parts being given by hµν(�+ P̂ )−1hµν and
h(�−αΛ)−1h. (The form of the Green’s function in the

trace sector follows from the equation (� + P̂ )gµνh =

gµν(� − αΛ)h also based on (14)). As in the discussion
above, the ghosts necessarily appear if these nonlocalities
are nonvanishing in S(2), because the dispersion equation
for � becomes quadratic and generates doubled set of
physical modes with � = m2

± (P̂ playing the role of non-
vanishing m2 above). Therefore it is a priori possible to
cancel these two nonlocalities and provide the right signs
of the remaining local terms by an appropriate choice of
five parameters in (7).
Curious fact is that in the DeWitt gauge S(2) reads

(and this is the main technical result of this Letter)

S(2) =
M2

eff

2

∫

d4x g1/2
{

−
1

4
hµν

� hµν +
1

16
h� h

−
1

4

(

C −
4

3

)

Λ h2
µν +

1

16

(

C −
4

3

)

Λ h2

−
Λ2

4

(

C −
2

3

)2 (

hµν 1

�+ P̂
hµν

−
1

4
h

1

�− αΛ
h

)}

, (15)

M2
eff =

8B (2B + α)

α (1 − α)
M2

P . (16)

Unexpected property is that all tensor squared terms
here differ from their trace squared counterparts by the
same factor −4, which leads to a single equation for C,
C = 2/3, and the positivity requirement for M2

eff . With
|α| ≪ 1 this requirement selects the range of the param-
eter B, B < −α/2 and B > 0 for α > 0, and even more
interesting compact range of B for a negative α,

0 < B < −
α

2
, α < 0. (17)

The action without gauge-fixing can be obtained from
(15) by representing hµν in the DeWitt gauge as the
projection of the non-gauged field, hµν |χα=0 = hµν −
2
[

∇(µδ
α
ν)/(�+ Λ)

]

χα. The result reads

S(2) =
M2

eff

2

∫

d4x g1/2
{

1

4
hµν

(

−�+
2

3
Λ

)

hµν

−
1

8
h

(

−�−
2

3
Λ

)

h−
1

2
χ2
µ

−
1

16

[

2∇µχ
µ − (�+ 2Λ)h

]

×
1

�+ 2Λ

[

2∇νχ
ν − (�+ 2Λ)h

]

}

. (18)

Interestingly, the first two lines here coincide with the
quadratic part on the (A)dS background of the Einstein-
Hilbert action with Λ-term.
The variation of (18) with respect to hµν gives the non-

local equation, which after imposing the DeWitt gauge
χµ = 0 simplifies to

(

−�+
2

3
Λ

)

hµν +
1

2
∇µ∇νh−

Λ

6
gµνh = 0, (19)
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and � h = 0. The residual gauge transformations
∆fhµν = 2∇(µfν) with the parameter fµ satisfying the
equation (�+ Λ)fµ = 0 can be used to select two polar-
izations – non-ghost physical modes. In particular, the
boundary conditions for h can be nullified, so that h iden-
tically vanishes and makes in view of the DeWitt gauge
the propagating free modes transverse and traceless as in
the Einstein theory with Λ-term.
In the presence of matter sources the right hand side of

(19) gets replaced by 8πGeffTµν , where Geff ≡ 1/8πM2
eff

is the effective gravitational constant vs the Newton one
GN = 1/8πM2

P ,

Geff =
α(1 − α)

8B(2B + α)
GN . (20)

After careful commutation of covariant derivatives with
(−� + 2

3 Λ)
−1 the gravitational potential of matter

sources takes modulo the gauge transformation the fol-
lowing form

hµν =
8πGeff

−�+ 2
3Λ

(

Tµν + gµν
�− 2Λ

�+ 2Λ

Λ

3�
T

)

. (21)

The tensor structure here differs from the GR analog
Tµν−

1
2gµνT , which for non-relativistic sources gives O(1)

correction. What is much more interesting, it yields an
unexpected bonus in the form of the dark matter (DM)
simulation – 1/|α|-amplification of the gravitational at-
traction due to the replacement of the Newton gravita-
tional constant GN by Geff ∼ GN/|α| with |α| ≪ 1. This
is possible with |B| ∼ α for a positive α and necessarily
happens in the case (17) of a negative α, because the
factor α/8B(2B + α) ≥ 1/|α| and

Geff ≥
1− α

|α|
GN ≫ GN . (22)

Eq.(21) is valid for the perturbation range |δRµν | ∼
|∇∇hµν | ≪ Λ|gµν | and |hµν | ≪ |gµν | equivalent to
very small matter densities |Tµν | ≪ M2

PΛ. For stronger
sources the theory reduces to the GR regime with the
Planck mass (3). Thus it interpolates between GR the-
ory and its strongly coupled infrared modification which
is likely to generate a stable ghost-free stage of cosmic
expansion and, perhaps, even simulate the DM effect on
rotation curves.
Of course, prospective nature of this model should not

be exaggerated. It should undergo tests on consistency of
post-Newtonian corrections, the effect of nonlocal stress-
tensor trace contribution in (21) should be analyzed for
vacuum stability purposes. Moreover, the mechanism
should be found, by which the model picks up a concrete
scale |Tµν | ∼ M2

PΛ at which it undergoes a crossover
from the GR regime to cosmic acceleration, as well as
other issues that go beyond this Letter.
In conclusion we mention that serendipity of ghost-

free nonlocal gravity models (6) satisfying the relation
(14) might not be exhausted by applications in cosmol-
ogy. In particular, without the Riemann term in (7)
(a = 0) they admit generic (not maximally symmetric)
Einstein space solutions, Rµν = Λgµν , also with an arbi-
trary Λ, which might have implications for zero entropy
black holes [15] and be an alternative to the conformal
gravity model of [14], whereas with a negative Λ they be-
come a new testing ground for AdS/CFT correspondence
perhaps promising other exciting consequences.
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