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Abstract

A theory has been presented previously in which the geometrical structure
of a real four-dimensional space time manifold is expressed by a real orthonor-
mal tetrad, and the group of diffeomorphisms is enlarged. Field equations were
obtained from a variational principle which is invariant under the larger group.
In this paper a suitable Lagrangian for a field with sources is presented and
spherically symmetric solutions for both the free field and the field with sources
are given. A stellar model and an external, free-field model are developed. The
resulting models are compared to the internal and external Schwarzschild mod-
els. The theory implies that the external stress-energy tensor has non-compact
support and hence may give the geometrical foundation for dark matter.
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1 Introduction

Let X* be a 4-dimensional space with metric g, and with orthonormal tetrad hiu.
Thus g, = mi; h',h, where n; = diag{—1,1,1,1}. Let Ve be a vector density
of weight +1. Then a conservation law of the form f/aa = 0 is invariant under all
transformations satisfying
x”@(:co‘ﬂ/’u — xa%y) =0 . (1)
This property defines the group of conservative transformations of which the group
of diffeomorphisms is a proper subgroup. Although we may view the space as a
Riemannian manifold, the space is more general than a manifold [1]. In the Rie-
mannian manifold interpretation we regard z/ as anholonomic when ¢, is non-
diffeomorphic [4]. The geometrical content of the theory is determined by the vector
Co, = hY (hiow - hima) = 7*,,, where the Ricci rotation coefficient is given by
Y, = h',., [1,2]. Pandres calls this the curvature vector. He shows that C, is
invariant under transformations from z* to z* if and only if the transformation is
conservative and thus satisfies (1). A suitable scalar Lagrangian for the free field is
given by
1
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where h = (/=g is the determinant of the tetrad. Using h’, = h',A}, we have
extended the field variables [3] to include the tetrad hlu and 4 internal vectors A},
with internal space variable z/. We assume that the metric on the z! space is also
Nry = diag(—l, 1,1, 1). The definition of the Ricci rotation coefficient is also extended
using the A’ to

L= / CCy h d'z (2)

T, = hi*h',, +hSh AT, (3)
and the definition of C,, is also extended to C, = T”a“- Using the extended Ricci
rotation coefficients, one finds that

CaCa =R+ Taﬁyq/alfﬁ - 200;[(1 - nijhjyhla (Ail,a,u - Ai{u,a) ) (4)
where R is the usual Ricci scalar curvature. Thus, when the physical space is in-
terpreted as a manifold, the free field exhibits terms suggestive of non-gravitational
interactions [2,4]. Setting the variations of £; with respect to h', and A} equal to

zero along with the assumption that we may always choose A% to correspond to a
complex Lorentz transformation (since ', = h’,A}), yields the field equations

C,=0 . (5)

Henceforth in this paper we will assume that we are working with a solution of the
field equations for which the curl of the Al is zero. In this case, an identity for the



Einstein tensor is

1
G/u/ :Cu;u - CaTO:u/ - gul/c?a - ig/u/oacoc
+7T .  + TaUVTUua + %guyTaﬁoTaoﬁ

w via
This expression is not manifestly symmetric in ¢ and v, but the left-hand side is
symmetric in its lower indices and hence the right-hand side must be as well. Thus we
use a symmetrized expression to ensure this. Define for general K, the symmetrized
tensor by Ky = 5(K, + K,,,). Using (5) we see that the field equations may be
also expressed in the form

Guu = T(l:l v)io + Tao(uTou)a + %guVTaBUTO‘Uﬁ =8 (Tf)lw (6)

with free field stress energy tensor Ts. The terms of T suggest that, when interpreted
in Riemannian geometry, this new geometry produces a stress energy tensor with
additional terms that could be the stress energy tensor for dark matter or dark energy
4].

One feature of the extended theory with field variables h!, and A} is that the
internal fields associated with A% may be specified after finding a tetrad hl, which
satisfies the condition hf (h',, —h',,) = 0 . The tetrad h’, determines the gravita-
tional field via g,, and changes in A} have no effect on the corresponding Riemannian
manifold [3]. If A} is a constant field such that n; = nAJA] = diag(—1,1,1,1),
then the field equations are satisfied, however A} may be non-constant. There exist
nonconstant (non-diffeomorphic) values of A% that satisfy the conservative condition,
A (A'I€ ;=A% ;) = 0. With A? that satisfy this condition, the field equations, C), =0
remain satisfied.

The motion of a free particle in the inertial coordinate system is given by

>z

where —ds? = n;;dz'dz?. This equation when transformed to internal coordinates, '

is
d*z! ;o da? de¥

_ _ApE G AT
ds? K s ds (8)

where the right hand side of this equation is zero when there are no internal forces.
We interpret the A} as the internal fields that via Aj ; correspond to electroweak and
strong interactions. In the manifold view, with coordinates x® equation (7) becomes

d?x dzt dx¥ dzt dx”
— pppuun———
ds? Tl ds ds " ds ds (9)

From (3) one sees that this equation of motion depends on A7 .



In the presence of sources the Lagrangian is of the form
1 o 4
£—£f+£5_/<_16—77'0 Ca+Ls)hd$ (10)

where Ly = Ly(x®) is the appropriate Lagrangian density function for the source. In
this case C,, is nonzero and variation of (10) with respect to the tetrad results in

]_ o 1 « @ 1
/ [_16—7T (C(NW) - CaT (uv) - §g,U«I/C Ca + _g/JVsz) + §(TS)“‘V

Here, (7)., is the usual stress-energy tensor of the source the standard theory [5].
Thus

hh¥Sh) d*z = 0

o 1 (67 «
Clp) = Ca Ty = 59 C"Ca + =9 C% = 87(T ) (11)

and also we have the following identity for the Einstein tensor,

G = <T(§ Via T Ta TU 2guuTaﬁUTaJB) + 87 (Ts) v (12)

or

Gy = 87 (Ty) ,, + 87 (T%) (13)

|n%

We call T the free field stress energy and T the stress energy for the source.

2 Spherically symmetric solutions.
A. Free Field Case. We now exhibit spherically symmetric solutions of the field

equations for a free field (5). Let 7 = /(x)2 + (22)2 + (23)2. If f(r) is a positive
differentiable function of r, then the tetrad field given by

WO Fr) + =

(8761 + 8362 + 536%) (14)

ﬁ

yields €, = 0 and hence is a solution of the field equations (5). The line element
(metric) in spherical coordinates is given by

2 2 (32 4
ds® = — f(r)dt® + dr? + ———df? + e g? (15)
f(r) f(r) f(r)
Now change the radial coordinate r — 7 so that 72 = % and f(r) = e?®*@_ Since

these are differentiable functions, this change of coordinates (t,r, 0, ¢) — (t,7,0, ¢) is
a diffeomorphism and hence the field equations remain satisfied. The mapping r — 7

3



is the simply the inverse of the function r = r(F) = 7e2®™. After this change in

the radial coordinate r, we will now rename 7 as simply r. The tetrad in spherical
coordinates may be expressed by

® 0 0

e 0

0 (1 + %r@’) sinfcos¢ rcosfcos¢ —rsinfsing
0 (1 + %r@’) sinfsin¢g rcosfsing  rsinfcoso
0 (1 + %r@’) cos 6 —7rsinf 0

B, =

I

(16)

where the upper index refers to the row and the prime indicates differentiation with
respect to 7. One finds that C, = 0 for this tetrad. The new metric is

1
ds® = —e**Mdt? + (1 + §T(I)/(T))2d7‘2 + 7r2d6? + r*sin® 0de* . (17)

After a long, but straightforward calculation, one finds that the Einstein tensor equals

a diagonal tensor which is in general nonzero: G,, = 8w (T f)w' The non-zero com-

ponents are (with ® representing ®(r))

e?® (é(r@’)?’ + 3(rd)? + 2rd’ + 7“2(1)”)
Gtt = 87T(Tf)tt = y (18)

3
r2 <1 + %7‘@’)

r® — i(r@’)z

Grr = 87T(Tf)rr = 3 (19)
and
Goo __Goy__ STy _ StTh _ J®)+ (0P + ¥ 4?0
r2  r24in20  r2  r2¢in?H 7‘2(1 N %T(I)’)g

One difference between this and the Schwarzschild metric [6] is that there is only one
unknown function (®(r)) instead of two (the standard A(r) and ®(r) functions).
We will first work on the Gy term. One finds that

2 d(r r 2
200y — ~ . e ) =Z4(r =8 21
e tt , <2 2(1 + %7‘(1)/)2) 7’2w (T) TPfF ( )

where w(r) =

Thus




and

e 2 2w(r)\ -z
g = —e , where ®(r) = /; (1 - ) —1|dr (24)
(this defines ®(r) up to a constant). The function w(r) is related to the mass inside
a ball of radius r for the free field and p; represents the density of the free field in
the manifold interpretation.
Let pr represent the radial pressure of the free field. Then one finds [6] that the
radial pressure of the free field is given by

G,, r® — 1(rd')?
87TpR = 1 2 = 41 2 (25)
(1 + 57"(1)/) 7"2(1 + 57"(1)/)

and from (22) one finds that

41— 220 gy 4 6w(r)

T

8TpR = (26)

r3
Let the tangential pressure of the free field be denoted by pr. We also find that

& Gy
= and thus,
r2 r2sin® 6

8mpr =

— 5(r®)3 4 (r&)? 4 3rd’ 4 520" @)
e R |

Using (22), the tangential pressure may be expressed in terms of w(r) and r by

8 — Juw(r) — 8ry/1 — —Zwr(r) + rw'(r)

r3

8mpr = (28)
Since pr # pr there are shear stresses and we see that (Tf)W does not model a perfect
fluid.

B. General spherical tetrads. With 7 = /(21)2 + (22)2 + (2%)2, the general tetrad
in spherical coordinates may be expressed by

e®™ 0 0 0
ho— 0 erMJginfcos¢ rcosfcosd —rsinfsing (29)
peo 0 M) sinfsing  rcosfsing  rsinécos¢
0 eM) cos @ —7rsin 6 0

where the upper index refers to the row. The curvature vector for this tetrad field is

given by

€A

Co=—10,2—e*(rd+2),0,0 (30)
T



where components are in the order [t,r, 60, ¢| and the prime denotes the derivative
with respect to . The tetrad (29) leads to the metric

d82 _ _€2<I>(7")dt2 + €2A(7")dr2 + T2d92 + 7,2 Sil’lz 9d¢2 ) (31)

Comparison of metrics (17) and (31) implies that for the metric of (17), (r®'+2) = 24
which then implies that C), in equation (30) would be identically zero. From (30) we
see that the general spherically symmetric tetrad field does not generally yield C}, = 0,
hence we consider whether there exists a spherically symmetric solution of the field
equations which flow from (10). The metric (31) leads to a diagonal Einstein tensor
with nonzero elements:

1 _ _ 2.d _
Gy= (e W e = 1) = 5[l — )], (32)
T 1 — —
G = T—z(zre A+ e —1) (33)
and
0 @ e " N2 IAl / /
Gyp=G, = . (r@" 4+ r(®)? —r®'A"'+ @ — A') . (34)

Using G, = 87T, we now decompose the stress-energy tensor using (13). From
8m(Ty), =T, %0+ 19,17+ 29w Y7 T ogp, one finds that T is diagonal with

pv B v
elements
2 2M (r20" + L(r®)2 — r2@®'A 4 2r®' 4 2eA — 2N — 1
8m (Tf)tt = ( ? 72 ) ’ (35)
_ i _1 "2 2N
87(Ty), = = 2(7"@ ) +e 1 and (36)
r

8t (T 8 (T 1
W( f)(%) _ ( f)<z><z> _ _2A(§r(<b/)2 . (I>/+A/+6A<I>') . (37)
As indicated by (12) and (13), T, is determined by variation of the L, term in the

Lagrangian (10).

3 Models for the Interior of a Star.

We will use the general spherical tetrad and the field equations which are derived from
the Lagrangian (10) with Ly = p(r), representing the density as a function of r. It is
well known that this Lagrangian with appropriate thermodynamic conditions lead to
the usual perfect fluid stress-energy tensor [7,8]. With a tetrad that corresponds to



a stationary basis (velocity of the observer is zero if hou =0for p=1,2and 3 ), one
finds [6]

—p 00 0
0 0 0

Tﬂ:ogpo (38)
0 00 p

Using the tetrad field of (29), we require that the radial and tangential pressures of
the corresponding source stress-energy tensor (11) be equal, leading to the following
differential equation with primes denoting derivatives with respect to r:

r?®"—(r?A +ret) @ =2 — 2¢** + 27N (39)

After multiplying by an integrating factor and integrating, (39) implies that

-1 A)

(ro' +2)e ™ =2- krel e (40)

where k is arbitrary. We assume that C, has compact support and is a smooth
function and hence integration of the C', term over the region of support results in
a value of zero and hence does not affect the overall mass of the source. If one drops
this term (or incorporates it into the p(r) function), then one finds that

B 2
87Tp — % (Kef(T 1eA)) (41)
and e
r e B 2
8mp = MT — %(/@ef(’" 16A)) . (42)

We also note that for this internal solution that the curvature vector in the order
t,r,0,¢ is given by
C,= [O, rele/ 71N 0] . (43)

This gives C*C), = k2e2/ e and as in the free field case, the field equations imply
that the Lagrangian has a value of zero.

Let R represent the radius of the star and let M = m(R) denote the mass-energy
inside the star. The determining factor for the radius of the star is that the pressure
of the gas drops to zero at the surface, i.e., p(R) = 0. This implies that either &
is identically zero or that re/ (rte®) — % when r = R. At this point we will specify
the arbitrary constant in [(r~'e) by expressing it as a definite integral, [5(r~e®)dr

and hence k = %e_ Jaret) = %. Hence we have
2 2 [p(r—tet)
8mp = ﬁe R (44)
and 5 5
8mp = Eeflg(rfleA) — ﬁezﬁ‘f(’ﬁle” (45)
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Figure 1: Stress Energy Tensor Components: Solid: Density, Dashed: Pressure

Using (44), we have p = ;¢ Jrr~'e) and hence
aA_ TP
= — . 46
=3, (46)
Note that this implies that p’ > 0. From (40) we find ¢’ = % -2 ﬂ\/gp/ and hence
o= SRRy (47)
r

where C'is an arbitrary constant which may be chose so as to make g,, continuous
at the surface of the star. Thus the model is determined by specifying p(r) and the
positive constant of integration for integration in (47) with the additional condition
that p’ > 0.

— 1 r(r+2)?
Example. As a reasonable model, suppose that p(r) = == - —5;— If the
value of R is set to be R = 2 (note, in geometrized units the radius of the sun is
2 1
R = 2.333), then (46) and (47) give e* = % and e® = C(r + 2)2e 12" ~s7"¥5.
The curvature vector is C), = [O W,0,0 . One find that —GY, = ?jl":(ﬁ’i;rf. Note

that lim, o+ —G% = 0o and at r = 2, the value of =G, is ;5. We also find —(77)} =

S 4+ 7rT +19r% — 2375 — 2247 — 428r% — 240r? + 1921 + 256
128r(r +1)3
value at » = 0 and approaches a negative value (—%) at r = 2. If one inves-

tigates the pressures, one finds that 87p = (2 — r)(r + 2)(r? 4+ 4r + 8), which

, which has an infinite

8
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Figure 2: Einstein Tensor Components: Solid: Density, Dashed: Radial Pressure,
Dotted: Tangential Pressure

is positive for 0 < r < 2. The total pressure associated with G'. term is given

—r® —6rt — 13r3 — 10r2 4 6r + 32
by G" = ! ! ! b , which has an infinite positive value
8r(r+1)3

at = 0 and becomes a small negative value (= —0.5) as r approaches 2. Simi-

&+ 7rT + 1978 — 3r° — 112r% — 2007 — 7202 + 481 + 32
64r(r+1)3 '

For T; one finds (T})" — —rT —6r% — 13r° + 4r + 4473 + 32r% + 32r + 128 and also

128r(r + 1)2
(T = 4+ 7r7T +197% 4+ r5 — 80r* — 1167° + 80r% + 160r + 64
0= 1287 (r + 1)°
proach 400 as r approaches 0. The (7%)". component drops to a small negative value
as r approaches 2 (&~ —0.2). The (7})% component is strictly positive on 0 < r < 2.

lar features occur for G% =

. Both of these ap-

4 External Solution.

In order for the external solution to agree with the weak-field solution as r — oo, we

will identify w(r) = 3 M for r > R, the radius of the star. Thus from (21) we have



M = r_ ;1 and hence
2 2(1 + 57’(1)/)2

N[ =

dr (48)

which can be easily integrated to find ®(r) = 4In(1 + /1 — %) + L InC for some
arbitrary C' > 0. Thus

M\®
The arbitrary constant C' is determined by the usual weak field approximation [6]
2M
which is g4 &~ —1 + ——. This implies that C' = %. Hence
r
I COY AR A (50)
= 7956 r) o

We thus obtain the following line element:

1 M\*® My -1
A = ——(144/1- 2 dt2+<1——> dr? + r2d6® + r¥sin?0de? . (51)
256 T r

Expanding g4 in powers of %, we find that asymptotically, to second order,

oy 2M M
Gir T 472

Using (18-20), the Einstein field equations for the external solution are
Gy = 8nly = 0

,r>>M . (52)

Cor = 8700r = r3(1—%)(1+ 1—%) (53)
Gw  Gos STy  StTyy —M<9 1_%_7>
r2  r2gin?0 2 r2sin’¢ 27"2(1—0— 1_%)
Or
8tp = 0
N M (312 - 1)
(11— 2) (54)
o —M(9y/1 -2~ 7)

2r2(1+ \/1—7M>

10



Asymptotically we have

8Tpr ~ %<1 M)

73 2r

M o0 , T>>M . (55)
~ ———(1-— —)
Smpr 2r3 ( r
dd 2 2
From T",, = 0, with 7%, = diag(0, pr(r),pr(r), pr(r) ) and — =

one finds (22)

DR _ () (ﬁ D)+ 2 (b - pa) (56)

T

We see that this equation asymptotically gives
dp M 2
B o) (5 ) + 2 () =) 57)
r r r

We note that at r = R, there may be a discontinuity in the metric. One constant
of integration in the internal solution is available to make the g, term continuous.
The discontinuity in the g, may be smoothed out using appropriation transition
functions or perhaps explained in terms of surface tension.

Noncompact Ezternal Solutions. If the density outside (for r > R) is small but
nonzero, a realistic function that agrees with the weak field solution must have the
property, lim, ., w(r) = %M . These noncompact solutions may realistically model
the exterior of a star or the distribution of matter in a star cluster. One particularly
simple model is given by

w(r)=——— . (58)

With this choice, 1 — ZwT(T) =1 MM (1- 2—1‘/;,[)2 Thus, using (17), (21), (26)
and (28) we have

M4 M -2
2 _ _ _ 2 o 2 2 192 2 2 2
ds? = (1 27’) dt+(1 2r> dr? 4 r2d0? + 2 sin?0de? ,  (59)
and 2
87p = —
.
M, 3M
_ Mo 60
87p, = 5 (1-=-) (60)
M 5M
sor =55 (1-5,)

These equations are exact.

11



A second model is given by

M(1 =™
u(r) = 2 ) o
2(1-57)
With this choice, one finds that the metric is
_ 3M)?
ds® = — (1 - g)aﬁ/L2 + 78 - ;_Az)zdrz +r?df* + r¥sin? 0dg® | (62)
and 5M2 1 21M
8mp = — ( _3y3)
4T4(1 — ?)
M(1-57)
87Tp7“ - r3(1 ~ %)2 (63)
M(1—M)q - 3M
ooy M=) (-2

2915’

5 Motion of a Test Particle.

We now investigate the motion of a test particle in the external field solution. An
efficient procedure for doing this is one that extremalizes an appropriate Lagrangian.

The motion of the particle will be an extremum of the Lagrangian £ = %guyu”u”,
(0%

x
where the velocity u® = e For convenience, we will use the ”dot” notation for the
T

components of u®, i.e. u® = <t',7'“,6", gb> We will first investigate the motion in the
geometry determined by (51). From (51),

1 M\®., 1 My -1 1., 1 :
=—— 11 1— = t2 _(1__) -2 - 292 22 29 2 . 4
L 512( + r) +t3 ) AT+ orisin ¢ (64)

We may arbitrarily restrict our motion to the equatorial plane with 6 = 7 and hence

1 M\®, 1 MN-1, 1,
L 1M e _(1__) 2 o202
c 512<+ T)t+2 =) i gt (65)

From the Euler-Lagrange equations we have

oL d (0L 1 [ M\°®.

12



and hence

t = 256F <1 + @) B : (67)

In these equations the arbitrary constant E' is identified with the conserved energy of

the test particle. The Euler-Lagrange equation g—g — % <?9_g) = ( similarly leads to
. L

where the arbitrary constant, L, is identified with the conserved angular momentum.

oL d (oL L
5 I <E> = (. This implies that

_M<1+\/@) . M 2¢2+r¢2—i{(1—%)_17‘°}=0 . (69)

Finally we look at the r equation,

12872, /1 — 1 2r2(1 _ M) dr r
Using (67) and (68) and differentiating we have
—512M E? M o L? I
5+ s+ 5 - — =0 . (70)
r2,/1—%(1+,/1—%) 2r2(1—%> o=
Thus
B12ME?,[1— 4 M 12(1- )
= — 5+ 72+ 5 : (71)
7’2<1+@/1—%) 27“2(1—%) r
We now impose a normalizatio8n on the velocity by requiring that g, u*u” = —1.
Therefore —ﬁ(l +4/1— M) 2+ (1 - %)‘17‘2 + r2¢? = —1. Using (67) and

, : -8
(68) we may eliminate the ¢ and ¢ terms. This leads to 256 E> (1 +4/1— %)
= (1- %)_17‘“2 + L7+ 1. Substituting this into (71), we arrive at

2M /1 — M 1212 (3,1 -4 —2)
R

7’2(1 +4/1— M)
MiE)

= -

- T
2r2(1—%>(1+ 1—%)

A similar computation with the metric given by (59) results in

M M M M\ L? M M?
Sl (I B (T Y - i) B
" 7"2( 27") 27’2( 27’) e 7’3( r + 27"2) (73)



With the metric given by (62) we similarly get

MO-B) o) -0
Teu—wy w-mo-m T aamwyr ™
Kepler’s Law. The angular velocity is given by w = ? , and so when the orbit

is circular (# =7 = 0) we see from (72) that

7
M(1+ 1—M)

T

w?r? = , (75)

1284/1 -4

which asymptotically gives

5M
2.3 ~ o
wr NM(1 —4T) . or>>M . (76)

For the motion under the metric (59) one gets

M M? M3
w2r3:M<1—3—+3 ) ) (77)

2r 4r2 83

We note that these results agree with Kepler’s Law for large . For the metric of (62)
one gets exact agreement with Kepler’s Law:

i =M . (78)

Radial Motion. For pure radial motion (L = 0), (72) asymptotically yields

M( 3i\r4) M(l M

e -2
P ——— ~ 23 +§>r ., r>>M . (79)

r2

From the metric (59), one finds similarly the pure radial motion to be exactly given

by
.M M\ M M\,
From the metric (62), one gets
M M M M
P-4+ — ) -1+ ) r>>M . (81)
r2 r 2r2 2r

The magnitude of the 72 terms in (79-81) do not appear to be large enough to explain
the Pioneer anomaly. The Pioneer spacecraft is traveling out of the solar system. A
small acceleration toward the sun which cannot be explained by general relativity has

14



been observed over a period of years [9]. When 7 is small, the second terms in (79-81)
would correspond to small accelerations toward the sun. For Pioneer the magnitude
of this term should be about 8.74 x 107° m s72, but (79-81) yields approximately
1075 m s72,

Redshift. The difference between the values of gy in this model and the standard
Schwarzschild solution would produce small differences in the predicted redshift. The
redshift z = 5§ = | gu| "2 — 1 for stationary objects. From (49) we find that

- M
z:16(1+,/1——ﬂf) -1 == |, r>M |, (82)
T

and from (59) we find

M\ 2 M
zz(l——) -1 =~— |, r>M . (83)
2r r

Asymptotically, these results agree with the value found in the Schwarzschild geom-
etry, i.e. z ~ % At the distance of the earth from the sun, one finds the value given
by (82) differs from the standard value by —6.25 x 10717, with a relative difference
of —6.25 x 107, From (83) we find the value of z differs from the standard value by
—7.5x 1077 with a relative difference of —7.5 x 1072, For the metric of (62) one find
exact agreement with the standard redshift result:

D=

2M\ M
z:<1——> —1l=— |, r>M . (84)

r r

Precession of Perihelion. We now consider the precession of perihelion prob-
lem. We follow the procedure of Misner, Thorne and Wheeler [6], starting with
conservation of 4-momentum which leads to

dr\2 df N2 ) do 2
guE* + grr<a) + 7"2(5) + 72 sin? «9(5) +42=0 (85)
where p is the rest mass of the particle. Again, we restrict the motion to the plane
0=73. WithE:%, L =2% and 7 = p), we find that

;7

dr\2  —g"E? 1 L2
Y = _ (1 _)
(dT) Grr grr< + r? (86)
Using j—; = %j—:, with u = % and LT = %, one finds that
du\ 2 —g'\ =~ 1
(LTﬁ) = fu) = ( gg >E2 - g—<1 + (LT)W) . (87)
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When the orbit is circular at u = ug = %, the effective potential, f(u), has a minimum
with both f(ug) = 0 and f'(ug) = 0. Hence f(u) ~ £ f"(uo)(u — uo)?. Via the chain

rule, one has 2(LT)2%§T§‘ = f’(u)g—g. Thus, one finds that,

L) e e

When f”(ugy) < 0, the solution is periodic with
2m

Period = —— . (89)
. I (uo)
2(L7)?
From the metric given in (51), we find that
1" (ug) 19
— ~1-—-— 90
2(LT)? g (90)
and thus the perihelion is shifted by
197\ M
Ap~|—|— . 91
o~ (50) (o1)
where 7 is the radius of the near-circular orbit. If the metric (59) is used one finds
T\ M
Ap~|— |— . 92
o~ (5 (92)
For the metric given in (62), one finds that
6m M
Apm—— (93)
To

which is the standard result.

6 Conclusion.

The theory based on the conservative transformation group may provide a theoretical
basis for a unified field theory and may also provide a theoretical basis for dark
matter and the correct modification of general relativity. The Lagrangian for the
field with sources may be used in a variety of applications, including quantization.
The internal solution and its corresponding stellar model needs additional work to
produce more realistic models. The external solutions, being non-compact, show
promise for explaining dark matter.
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