
ar
X

iv
:1

10
7.

18
92

v1
  [

gr
-q

c]
  1

0 
Ju

l 2
01

1

Vainshtein mechanism in Gauss-Bonnet gravity and Galileon aether

Radouane Gannouji1, 2 and M. Sami3

1Department of Physics, Faculty of Science, Tokyo University of Science,

1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
2Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway

3Centre of Theoretical Physics, Jamia Millia Islamia, New Delhi-110025, India

(Dated: July 12, 2011)

We derive field equations of Gauss-Bonnet gravity in 4 dimensions after dimensional reduction of
the action and demonstrate that in this scenario Vainshtein mechanism operates in the flat spheri-
cally symmetric background. We show that inside this Vainshtein sphere the fifth force is negligibly
small compared to the gravitational force. We also investigate stability of the spherically symmetric
solution, clarify the vocabulary used in the literature about the hyperbolicity of the equation and
the ghost-Laplacian stability conditions. We find superluminal behavior of the perturbation of the
field in the radial direction. However, because of the presence of the non linear terms, the structure
of the space-time is modified and as a result the field does not propagate in the Minkowski metric
but rather in an ”aether” composed by the scalar field π(r). We thereby demonstrate that the su-
perluminal behavior does not create time paradoxes thank to the absence of Causal Closed Curves.
We also derive the stability conditions for Friedmann Universe in context with scalar and tensor
perturbations.

I. INTRODUCTION

One of the most mysterious discoveries of modern cos-
mology is related to late time acceleration of universe
[1, 2]. For past one decade or so, extensive efforts have
been made to understand the underlying reason of this
phenomenon (for a recent review see [3]). According to
the standard lore , the acceleration is caused by an exotic
form of matter with large negative pressure called dark
energy. The cosmological constant and a variety of scalar
field systems as representative of dark energy are consis-
tent with observations. Though some of the scalar field
systems with generic features, such as tracker solutions,
are attractive but nevertheless they do not address the
conceptual problems associated with cosmological con-
stant.

There exist an alternative thinking which advocates
the need for a paradigm shift, namely, that gravity is
modified at large scales which might give rise to late time
acceleration. We know that gravity is modified at small
scales and thus it is quite plausible that modification also
cures at large distance where it has not been varied di-
rectly. As for the small scale corrections, no deviations
from Einstein’s theory have been yet detected; perhaps
we need to probe still higher energies to observe these ef-
fects. However, situation is quite different challenging at
large scales. Indeed, Einstein’s theory is consistent with
observations to a high accuracy at solar scales thereby
telling us that any modification to gravity should be con-
fronted with tough constraints posed by solar physics.
Secondly, as for the late time acceleration, the modi-
fication should also be distinguished from cosmological
constant.

The aforementioned requirements are difficult to sat-
isfy consistently in f(R) theories of gravity. These theo-
ries are equivalent to GR plus a scalar degree of freedom
whose potential is uniquely constructed from space time

curvature R [4]. The scalar degree of freedom should
mimic quintessence and should hide its detection at small
scales à la chameleon [5].

The investigations show that the generic f(R) models
either reduce to GR plus cosmological constant [6] or has
a φMDE instead of a standard matter epoch [7] or hit
curvature singularity [8] or give rise an ugly fine tuning
[9] which is the price one has to pay for implementing the
chameleon mechanism. One might try to remedy these
theories by complementing them by quadratic curvature
corrections [10]. However, as demonstrated by Lam Hui
et al [11], theories based upon chameleon mechanism lead
to a violation of equivalence principal of the order of one.

In view of the aforesaid, we need to look for an al-
ternative mechanism of mass screening. The Vainshtein
mechanism [12] is the one which gives rise to mass screen-
ing: Any modification of gravity in the neighborhood of
a massive body within a radius dubbed Vainshtein ra-
dius are switched off kinematically. The mechanism was
invented to address the discontinuity problem [13, 14] of
massive gravity à la Pauli-Fierz [15]. In this theory, the
zero helicity graviton mode φ is coupled to the stress of
energy momentum tensor gives rise to serious violations
of local gravity constraints in the limit of vanishing mass
of graviton. Vainshtein pointed out that non-linear ef-
fects become crucial in this case. The non-linear deriva-
tive term added to Pauli-Fierz Lagrangian was shown
to implement the mass screening thereby removing the
problem of discontinuity.

It is interesting to note that the non-linear term natu-
rally arises in DGP model [16] in the decoupling limit [17]
such that Vainshtein mechanism is in built in the theory.
The scalar degree of freedom obeys Galilean symmetry in
flat space time and is free from ghosts is called Galileon

[18]. There exist higher order Galileon Lagrangians in flat
and curved space-time [19]. The higher order Lagrangian
are necessary for realizing the late time de-Siter solution

http://arxiv.org/abs/1107.1892v1
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[20].
We should also mention that Galileons are deeply re-

lated to massive gravity [21] and Dirac-Born-Infeld sys-
tems [22] in the framework of higher dimensional theories
[23–26].
In this paper, we consider dimensional reduction of

Gauss-Bonnet gravity [27] and look for the possibility of
mass screening in the model. We also investigate causal
structure of flat spherically symmetric and homogeneous
and isotropic backgrounds.

II. GAUSS-BONNET GRAVITY AND ITS

KALUZA-KLEIN REDUCTION

We shall consider the following action in D+N dimen-
sions,

S =

∫

dD+Nx
√

−g(D+N) (R+ αRGB) (1)

which is the simplest non trivial form of Lovelock
theory.

In order to simplify the analysis, we use the metric
anzatz,

ds2 = gµνdx
µdxν + eπγijdx

idxj (2)

where the Greek letters run form 0 to D − 1 and the
Latin characters from D to D +N − 1. The scalar field
π appearing in the metric plays the role of the size of the
extra dimensions and depends on the first D coordinates.
It acquires a non trivial character in case the volume of
the compactified dimensions becomes a variable.
Following a standard prescription for dimensional re-

duction on a compact flat space, we get

S =

∫

dDx
√

−g(D)eNπ/2
[

R(D) + d1(∂π)
2 + α

(

R
(D)
GB

+ d2Gµνπ
µπν + d3(∂π)

4 + d4(∂π)
2
�π

)]

(3)

with

d1 =
N(N − 1)

4
(4)

d2 = −N(N − 1) (5)

d3 = −N(N − 1)2(N − 2)

16
(6)

d4 = −N(N − 1)(N − 2)

4
(7)

It should be noticed that the reduced action does not
depend on D-coefficients.

It is interesting to observe that the action in D + 1
dimensions reduces to the same form as the original one
with a global factor.

S =

∫

dDx
√

−g(D) eπ/2 [R+ αRGB] (8)

Next, we perform a conformal transformation (in D-
dimensions) for transforming the action (3) to a conve-
nient form. After rescaling the fields

gµν → g̃µν = eNπ/(D−2)gµν , π → ±
√

2(D − 2)

N(D +N − 2)
π

(9)

and carrying out integrations by parts, we obtain,

S =

∫

dDx
√

−g(D)
[

R(D) − 1

2
(∂π)2 + α eβDπ

(

RGB

+ b1Gµνπ
µπν + b2(∂π)

2
�π + b3 (∂π)

4
)]

+ Sm[e−βDπgµν ;ψm] (10)

where we defined

b1 = 2
D − 2

D +N − 2

(

1 +N
D − 4

(D − 2)2

)

(11)

b2 = ±
√

2

N

(

D − 2

D +N − 2

)3/2 (
N2

(D − 2)2
− 1

)

(12)

b3 = −N
2(D − 4) +DN(D − 2)− 2(D − 2)2

4N(D − 2)(D +N − 2)
(13)

βD = ±
√

2N

(D − 2)(D +N − 2)
(14)

and Sm is the matter action with matter fields ψm.

We drop in the action the tilde and terms that are total
derivatives. We notice that the conformal transformation
gives the action an explicit dependance on the dimension
D.

In 4-dimensions, the action reduces to

S =
1

2

∫

d4x
√−g

[

R− 1

2
(∂π)2 + αeβπ

(

RGB

+ c1Gµνπ
µπν + c2(∂π)

2
�π + c3 (∂π)

4
)]

+ Sm[e−βπgµν ;ψm] (15)
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with

β ≡ β4 = ±
√

N

N + 2
, (16)

c1 =
4

N + 2
, (17)

c2 =
N − 2

N
β, (18)

c3 = − N − 1

N(N + 2)
. (19)

In what follows, we shall investigate the dynamics based
upon the action (15).

III. FIELD EQUATIONS OF MOTION

The field equations one derives from the action (15)
are

�π + αeβπK = βT, (20)

Gµν − 1

2

(

πµπν − 1

2
gµν(∂π)

2

)

+ αeβπΣµν = Tµν . (21)

with

K = βRGB − c1Gµν (βπ
µπν + 2πµν)− 4c3(∂π)

2
�π

+ 4 (βc2 − 2c3) π
µνπµπν + β (βc2 − 3c3) (∂π)

4

− 2c2
[

(�π)2 − πµνπµν −Rµνπ
µπν

]

, (22)

Σµν = −2
(

βπρσ + (β2 +
c1
4
)πρπσ

) [

2Rρµνσ + 2
(

gµνRρσ

+Rµνgρσ − 2gρ(µRν)σ

)

+R(gρµgσν − gρσgµν)
]

+
1

2
gµν (βc2 − c3) (∂π)

4 + (2c3 − βc2) (∂π)
2πµπν

+

(

c2 −
β

2
c1

)

[

πµπν�π − 2πσπσ(µπν) + gµνπ
ρπρσπ

σ
]

+ c1

[

πµρπ
ρ
ν − πµν�π +

1

2
Gµν(∂π)

2

+
1

2
gµν

(

(�π)2 − πρσπ
ρσ
)

+
β

2
(∂π)2

(

gµν�π − πµν

)]

.

(23)

In the analysis to follow, we shall focus on equations
of motion (20) to study mass screening induced by non-
linear terms in a simple tractable background.

IV. MASS SCREENING − VAINSHTEIN

MECHANISM

In order to investigate the effects of the non linear
terms in the action, we shall study the model in a flat
spherically symmetric background.

In this case, the theory reduces to a special case of KGB
[28] coupled to matter,

S =
1

2

∫

d4x [K(π,X) +G(π,X)�π] +Sm[e−βπgµν ;ψm]

(24)
with

K(π,X) = X − 4α
N − 1

N(N + 2)
eβπX2 (25)

G(π,X) = −2αβ
N − 2

N
eβπX, and X = − (∂π)2

2
(26)

And the special case of N = 2 gives rise to K-essence.
The equation of motion is

π′′ + 2
π′

r
+ αeβπ

π′

N(2 +N)r2

[

8(N − 1)rπ′2

+ (N2 +N − 3)r2π′(βπ′2 + 4π′′)

− 4β(N2 − 4)(π′ + 2rπ′′)
]

= −βρ (27)

If we integrate this equation from r = 0 to a distance
outside the body in the case of α = 0, we have π′ = −βrs

r2

and the fifth force is of the order of the gravitational
force,

∣

∣

∣

∣

Fπ

Fg

∣

∣

∣

∣

=
βr2

rs
|π′| = N

N + 2
≃ 1 (28)

Let us note that we have two different values of β;
it is easy to see that if we change β → −β the action
remains unchanged provided that, π → −π. Therefore
the fifth force is invariant under the change of sign of β.

Unfortunately we can not get analytical solutions in
case α 6= 0. However, we can have derive asymptotic
solutions at large and short distances.
At large distances, we observed that the solution is

trivial. This solution should change as we approach the
source of matter because of the effect of the non lin-
ear terms. Therefore these corrections to the asymptotic
solutions become crucial when we enter the Vainshtein
radius.
We define this scale as the radius where a perturbation

of this trivial solution becomes important. It is easy to
show that the Vaishtein radius can be approximated by

For N = 2, R4
V ≃ αr2s (29)

For ∀ N 6= 2, R3
V ≃ αrs (30)

In case,
√
α is of the order of the Hubble scale (α̃ ≡

H2
0α = 1), we have for N = 1 RV ≃ 102pc and RV ≃

2.10−2pc for N = 2, which is in perfect agreement with
the Fig.1, where we considered the Sun as the central
body.
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Figure 1: (Top):The ratio of the fifth force and the gravita-
tional force versus the distance from the source in parsecs,
for N = 1. In the numerics we considered rs ≡ rs(Sun) and
ᾱ ≡ H

2

0α. (Bottom):The same evolution for N = 2. The
fifth force is negligeable at small distances compared to the
gravitational force.

In the Fig.1, we show that forN = 1 andN = 2 there is
a screening effect at distances smaller that the Vainshtein
radius. For dimensions larger than 2, the evolution of the
fifth force versus the radial coordinate is the same as in
case of N = 1. In fact for N = 2 we don’t have the
G-Essence term1 which gives an additional effect to the
screening mechanism as it can be seen in the Fig.1.

We also find from numerical analysis, that for the
solution to be continuous, we need for N ≤ 2 in case of

1 The extra term in the Lagrangian compared to K-Essence:
G(π,X)

α > 0 and α < 0 for N > 2.

V. STABILITY OF SOLUTIONS

We consider the test field approximation where we ex-
pand the field π → π+φ and neglecting the back reaction
on the metric. The equation for the scalar field (φ) in the
first order are given by,

Gµν
effφµν + V µφµ +Mφ = 0 (31)

where the induced metric is

Gµν
eff = Agµν +Bπµπν + Cπµν (32)

with

A = 1 +
4α

N
eβπ

(

N − 1

N + 2
π′2 − β(N − 2)

(

π′′ +
2

r
π′

))

B = 4
N2 − 2

N(N + 2)
αeβπ

C = 4β
N − 2

N
αeβπ (33)

The field equation admits a well-posed initial value-
formulation locally if the effective metric Gµν

eff is
Lorentzian.
The equation (31) can be expanded as

G00
eff∂

2
t φ+G

11
eff∂

2
rφ+G

22
effr

2∂2Ωφ+ first derivatives of φ+· · · = 0
(34)

where ∂2Ωφ is the angular part of the Laplacian.
This equation is Lorentzian with a signature (-,+,+,+),

if we have G00
eff < 0, G11

eff > 0 and G22
eff > 0.

These conditions are exactly the same as the ghost
free condition and the stability of the Laplacian used in
the literature.

In fact the equation (34) can be derived from the action

δ2S =

∫

−1

2
G00

eff

[

(∂tφ)
2 − c2r (∂rφ)

2 − c2Ω (∂Ωφ)
2
]

d4x

(35)
where

c2r = −G
11
eff

G00
eff

= 1 +
B

A
π′2 +

C

A
π′′ (36)

c2Ω = −r2G
22
eff

G00
eff

= 1 +
C

rA
π′ (37)

The ghost condition fixes the sign of G00
eff < 0 and

G11
eff > 0 and G22

eff > 0 via the positivity of the sound
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speed c2r > 0, c2Ω > 0( also know as the stability of the
Laplacian).

When the non linear terms (α-terms) are dominant,
we can reduce the evolution equation for the scalar field
to

N = 2, 2π′ + 3rπ′′ = 0 ⇒ π′ ∝ r−2/3, (38)

N 6= 2, π′ + 2rπ′′ = 0 ⇒ π′ ∝ r−1/2. (39)

Thus it becomes easy to estimate the sound speed at
small distances,

N = 2, c2r = 3, c2Ω = 1 (40)

N 6= 2, c2r = 4/3, c2Ω = 1/3. (41)

The propagation of the perturbation of the scalar field
is therefore superluminal in the radial direction c2r > 1
at small distances. However, we shall demonstrate in
the next section for the special case N = 2 that the
superluminal does not implies a non causal propagation
of the perturbations. It is in fact just a redefinition of the
maximum sound speed via a larger light cone structure
of the space time compared to the Minkowsky space.

VI. SPECIAL CASE OF N = 2

In the particular case of N = 2 where an emergent
geometry is present (see [29] for more details), we have

c2r =
1− 3αXeβπ

1− αXeβπ
(42)

Hence as soon as the non linear (α) term becomes dom-
inant, we have c2r ∝ 3.
The non linear terms which are necessary for local

constraints create automatically a superluminal propa-
gation. This behavior is present in models involving
Galileons and their extensions [18, 30, 31].
We should, however, emphasize that we do not have

this propagation in the Mikowski space-time but in an
extended structure of space-time because of the non lin-
ear terms.
In fact, in the special case of N = 2, the model reduces
to a particular K-essence; therefore by performing a con-
formal transformation we have,

G̃µν
eff =

1

K2
,Xcr

Gµν
eff (43)

We can rewrite the equation for perturbations as [29]

G̃µν
effDµDνφ−M2

effφ = 0 (44)
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Figure 2: (Top): The radial sound speed versus the distance
in parsecs for N = 1, (Bottom): The same figure for N = 2

where Dµ is the covariant derivative associated to the

effective metric G̃µν
eff .

and

M2
eff = − α

K2
,Xcr

(

3

4
X2 − βX�π + βπµπµνπ

ν

)

eβπ

(45)
We notice the difference with [29] where the scalar field

was time dependant 2.

2 In fact, if π ≡ π(t), the sound speed in an homogenous and

isotropic Universe is c2s = (1 − 2X
K,XX

K,x
)−1 but in the case

where π ≡ π(r) the sound speed in the radial direction is c2r =

1 + 2X
K,XX

K,x
.
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Figure 3: The angular sound speed versus the radial distance
in parsecs for N = 1

It is also interesting to note that the mass term is null
when α→ ∞.
Therefore the emergent geometry defined by the metric

G̃µν
eff defines a new structure of the space-time, the light

cone is larger than the standard one if and only if
K,XX

K,X
<

0. In the limit where the non linear terms are dominant,

we have
K,XX

K,X
= − 2

π′2 < 0.

We emphasize also that this new structure of the space-
time is stably causal. In fact the Minkowski time could
define a future directed timelike vector field,

G̃µν
eff∂µt∂νt = − 1

K,Xcr
(46)

which is negative as soon as the hyperbolicity condi-
tions are satisfied.
Therefore no CCCs (Causal Closed Curves) can exist.
The superluminal propagation does not create any

causal inconsistencies. In fact the perturbations of the
scalar field do not propagate in the Minkowski space-
time but rather in some form of ”aether” because of the
presence of the background field π(r). The maximum of
the speed of the field is just a redefinition of the speed of
light in this new space-time. The causal structure is not
changed, in the sense that we do not have CCCs in this
case.

VII. BACKGROUND COSMOLOGICAL

DYNAMICS

We concentrate on spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) universes with scale factor
a(t),

ds2 = −dt2 + a2dx2 (47)

π̈ + 3Hπ̇ − αeβπK = βρ, (48)

3H2 − 1

4
π̇2 − αeβπΣ0

0 = ρ, (49)

3H2 + 2Ḣ +
1

4
π̇2 − αeβπΣ1

1 = 0. (50)

The following equations are obtained

Σ0
0 = −12βH3π̇ +

9

2
c1H

2π̇2 − c2
2
π̇3 (βπ̇ − 6H)

+
3

2
c3π̇

4, (51)

Σ1
1 = −4

[

(βπ̈ + β2π̇2 + 2βHπ̇)H2 + 2βHḢπ̇
]

+
1

2
c1π̇

[

π̇(2Ḣ + 3H2 + 2βHπ̇) + 4Hπ̈
]

+
1

2
c2π̇

2(2π̈ + βπ̇2)− 1

2
c3π̇

4, (52)

K = 24βH2(H2 + Ḣ)− 3c1
[

H2(βπ̇2 + 2π̈ + 6Hπ̇)

+ 4HḢπ̇
]

+ c2π̇
[

π̇(4βπ̈ + β2π̇2 − 6Ḣ − 18H2)

− 12Hπ̈
]

− 3c3π̇
2
[

βπ̇2 + 4Hπ̇ + 4π̈
]

. (53)

where H ≡ ȧ
a is the Hubble rate while a dot stands for

a derivative with respect to the cosmic time t.

VIII. STABILITY CONDITIONS IN AN FLRW

UNIVERSE

In order to derive the stability conditions of the theory
in the context of an isotropic and homogeneous Universe,
we study linear perturbation in a FLRW background. We
consider the following metric

ds2 = − (1 + 2α) dt2 − aβ,idtdx
i

+ a2 [δij(1 + 2ψ) + 2γ;ij + 2hij ] dx
idxj . (54)

where α, β, ψ and γ are scalar metric perturbations,
and hij is the traceless and divergence-free tensor per-
turbations.
We did not considered vector perturbations in the line

element because of the absence of an anisotropic fluid.

A. Scalar perturbations

For scalar perturbations, we can neglect the matter
contributions at late times, and it was noticed in that
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the calculations simplify if we work in the uniform-field
gauge δπ = 0 [32].

Therefore we can show that the action at the second
order can be written in the following form

δ2S =
1

2

∫

dx3dta3Q(s)

[

ψ̇2 − c
2(s)
s

a2
(∂iψ)

2

]

(55)

where

Q(s) =
π̇2 + 6

(Q(s)
a )2

2+Q
(s)
b

+ 2Q
(s)
c

(

H + Q
(s)
a

2+Q
(s)
b

)2 ,

c2(s)s = 1 + 2

Q
(s)
d +

Q(s)
a Q(s)

e

2+Q
(s)
b

−
(

Q(s)
a

2+Q
(s)
b

)2

Q
(s)
f

π̇2

2 + 3

(

Q
(s)
a

)2

2+Q
(s)
b

+Q
(s)
c

. (56)

where we defined

Q(s)
a = α

[

4βH2 − 2c1π̇H − c2π̇
2
]

π̇eβπ, (57)

Q
(s)
b = α [8βH − c1π̇] π̇e

βπ, (58)

Q(s)
c = α

[

3c1H
2 + 2c2π̇ (3H − βπ̇) + 6c3π̇

2
]

π̇2eβπ,

(59)

Q
(s)
d = α

[

c1Ḣ + c2
(

βπ̇2 + π̈ − π̇H
)

− 2c3π̇
2
]

π̇2eβπ,

(60)

Q(s)
e = α

[

8βḢ − c1
(

βπ̇2 + 2π̈ − 2π̇H
)

+ 2c2π̇
2
]

π̇eβπ,

(61)

Q
(s)
f = α

[

4
(

βπ̈ + β2π̇2 − βπ̇H
)

+ c1π̇
2
]

eβπ. (62)

We recover the results derived in [33].

The ghost condition fixes the sign of Q(s) > 0, and also

the positivity condition of the sound speed fixes c
(s)
s > 0.

As we mentioned before that hyperbolicity of equations of
motion implies that we have a well posed Cauchy problem
(at least locally).

B. Tensor perturbations

We can also show that for the tensor perturbations we
have

1

a3Q(t)

(

a3Q(t)ḣij

)

·

− c(t)s

∆

a2
hij =

1

Q(t)
δT

(t)i
j , (63)

where

Q(t) = 2 + α (8βH − c1π̇) π̇e
βπ,

c(t)s =
1

Q(t)

[

2 + α
(

8
(

βπ̈ + β2π̇2
)

+ c1π̇
2
)

eβπ
]

. (64)

Similar to the case of scalar perturbations, we have the
two conditions of stability,

Q(t) > 0, c(t)s > 0 (65)

IX. CONCLUSION AND PERSPECTIVES

In this paper we have studied simple extension of Gen-
eral Relativity in the context of Lovelock theory. We de-
rived the equations of the reduced theory in 4 dimensions.
We have shown that locally in a flat spherically symmet-
ric background, the non linear terms coming from the
Gauss-Bonnet term in higher dimensions induce Vain-
shtein mechanism. We found that in 4 + 2-dimensions,
the Vainshtein radius can be approximated by, R4

V ≃ αr2s
whereas in case of 4 + N -dimensions by R3

V ≃ αrs with
N 6= 2. We have shown that at distances lower than the
Vainshtein radius, the fifth force is negligibly small com-
pared to the gravitational force.
We have investigated the behavior of the scalar field in-
side the Vainshtein sphere and derived stability condi-
tions of the model. We have reaffirmed that the hyper-
bolicity of the equations is equivalent to the ghost con-
dition and the stability of the Laplacian. We found that
the model has a superluminal propagation of the pertur-
bation of the scalar field in the flat spherically symmet-
ric solution. This faster than light solution appears as
soon as the non linear terms of the model become domi-
nant. We have shown, in the special case of N = 2 that
the causality structure of the space time is well defined
even in the presence of the superluminal propagation. In
fact, we shown that the field propagates in a space-time
which is not anymore the Minkowski one but some kind of
”aether” because of the presence of the background field
π(r). This modification of the structure of the space-time
is related to the domination of the non linear terms in the
Lagrangian. We observed that the light cone gets wider
in the aether as compared to the case of Minkowski space-
time provided that the stability conditions hold thereby
demonstrating that no CCCs appears even in the pres-
ence of the superluminal propagation.
Finally in the context of an isotropic and homogeneous
Universe, we derived Friedmann equations for the field
and established the stability conditions in the context of
the scalar and tensor perturbations.
It will be interesting to investigate the cosmological dy-

namics and observational constraints on the model under
consideration in a separate publication. It is also impor-
tant to investigate the model with general Lovelock terms
in simple and non-trivial topology of extra dimensions.
We defer this work to our future investigations.
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