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We study the gravitational effects of a planar domain waltjgantum fluctuations of a massless scalar field
during inflation. By obtaining an exact solution of the scdiald equation in de Sitter space, we show that
the gravitational effects of the domain wall break the iotal invariance of the primordial power spectrum
without affecting translation invariance. The strengthatétional violation is determined by one dimensionless
parametef3, which is a function of two physical parameters, the domaiti surface tensios and cosmological
constantA. In the limit of smalls, the leading effect of rotational violation of the primaatlpower spectrum is
scale-invariant.

PACS numbers: 04.62.+v, 98.80.Cq, 98.80.Jk

Introduction. Inflationary cosmology was originally pro- nite wall. If our visible universe originated from such a pre

posed to solve the horizon, flatness, and monopole problenisflationary region, the effect of the domain wall may st b
]. The monopole problem, or, more generally, the topo-observable and can be calculated using the methods dedelope

logical defect problem, arises when an early epoch of symhere.
metry breaking produces defects such as monopoles, cosmicViolation of rotational and translational symmetry in the
strings or domain walls. These objects redshift more slowlyprimordial power spectrum has been investigated recently
than radiation and would come to dominate the energy der{lﬂ, ], motivated in part by possible large-scale CMB anoma-
sity of the universe (or leave a signal in the CMB), in conflict lies, where the quadrupole and octopole of the CMB have an
with observation|__[l4]. Because physical distances increase apparent alignment with each othef |[§| 10]. A possible ex-
ponentially during inflation, the number density of topatd  planation for the anomalies is a preferred direction in thie p
defects is driven to zero. Heavy topological defects (as-, mordial power spectrunlﬂ[[lll]. In this Letter, we show that
sociated with energy scales larger than that of inflatioehth the gravitational field of a planar domain wall will natusall
presumably leave almost no detectable evidence, and thie ontause the violation of rotational symmetry in the power spec
defects we can observe today are those arising from phaseim without breaking translational invariance.
transitions which occurred after inflatidn [5] Planar domain walls in de-Sitter space-timén the stan-

In this Letter, we show that gravitational fields of heavy do-fjard cgsmgloglcal model, the Umvgrse IS homogeneous gnd
isotropic with respect to cosmic time evolution. Domain

main walls will affect primordial density fluctuations ateth . o .
walls, once formed, will evolve to minimize their surfaceay

early stage of inflation. If these density fluctuations have ; ) . irome
re-entered the horizon, they can leave an imprint on CMB'subjectto interactions with the background enviroment|f6]

anisotropies. We calculate the quantum fluctuations of asmasthe interactions are significant this motion can be overdanp

less scalar field in the presence of an infinite planar domail"ilnd .the wall motion relatively slow. We neglect any motion
wall and a positive cosmological constakt The physical relative to the thermal rest frame and take the wall to be co-

wavelengths of fluctuation modes increase exponentially du moving along the cosmic time direction.

ing inflation: A, ~ Aexp(y/A/37). Fluctuations near a do- The metric of a planar domain wall in de-Sitter space-time

main wall are affected by its gravitational field as they areWith reflection symmetry has been obtained ir [12]:

stretched out beyond the horizon. By obtaining an exact so- 5 1

lution of the scalar field equations in this geometry, we show ds” = W
that the gravitational effects of the domain wall on the pim

dial power spectrum will remain after inflation. where the wall is placed at = 0. a = /A/120(T + 1),

We assume an infinite domain wall because it simplifies ouf’ = (I = 1)/(I" + 1), satisfying—1 < § < 0, andT"is a
calculations. In a realistic phase transition there arerulg t  dimensionless parameter

(—dn? 4+ dz* + da* + dy®), (1)

infinite domain walls, only closed walls that divide spac®in )
C . g . 3e —V48e+9
disjoint regions. The typical radius of curvatufef closed r=1+ %, (2)

domain walls is no larger than the horizon sige: ¢ < dy,
due to causalityﬂ6]. However, for short wavelength fluctua-wheree = k202 /A ando is the surface tension of the domain
tion modes § << &) in regions near a closed wall, the grav- wall. Eq. [2), which give) < T' < 1, is only valid for
itational effects are similar to those computed from an infi-the coordinate rangesocc < 1 + §|z| < 0. Wheno = 0,


http://arxiv.org/abs/1107.1762v1

the metric[(l) is simply that of a steady-state Universe & th becomes
conformal timell_lb]. Throughout this Letter we use the units 28 eo
c=h=1andk = 87G. d82:—d72:|:ﬁ
Domain walls produce repulsive gravitational forces [14]. Y P
To understand the gravitational effects of meffic (1), we-co where+ correspondste’ > 0 andz’ < 0 sides, respectively.
sider observers stationary relative to the wall on the 0 It is clear that the metri¢{4) also has the reflection symynetr
side, with 4-velocities described by a future-pointingtuni aboutz’ = 0. Moreover, the stationary observers, whose 4-
time-like vector fieldU = —a(n + p2)0,. Their 4-  velocities are),, also have constant acceleratiofj = |af].
acceleration, which is defined bt = VU, has a con- Forg = 0, i.e. o = 0, the metric[(#) becomes the metiig (3)
stant magnitudéA| = \/g(A, A) = |af| = ko/4 andz-  in (7, z, &, ) coordinates, where = —/3/AIn(—+/A/37).
componentd, = g(VyU, —a(n + 82)0.) = —ko /4, where  Since the metric[{1) is-dependent, one might expect that
the minus sign denotes the acceleration toward the walk Thithe primordial density fluctuations will violate transtatial
implies that the gravitational field of a planar domain wall invariance. On the other hand, as discussed above, the gravi
produces a constant repulsive force on each observer, indeational force due to a planar domain walkisndependent, so
pendent of their distance from the wall. For this reasomstra  density fluctuations should be translationally invarigfriom
lation invariance is not violated by the gravitational fieitl the metric [#), it becomes clear that the primordial power
the wall. Because of the reflection symmetry, the same is trugpectrum will be translation invariant, since the metfiy (4
for thez < 0 side. only depends omr. Moreover, the appearance of the cross

In the coordinates) = (n + 8z)/\/1— 3%, 2 = (z + term g, . indicates that the gravitational effects of planar do-

A-53% 7 = 2 andy = v, the metric becomes main walls will break the rotational invariance, i@(3) sym-
bn)/ Fhg=a v=v @) metry, of the power spectrum. In post-Newtonian thepry [15]

drdz’ + €7 (d2"? 4 da® + dy?),(4)

(for z > 0) . . .
the metric componenig,; are associated with the angular mo-
mentum of gravitating sources.
ds® = %(_dﬁi’ +dZ* + di? + di?), (3) Quantum fluctuations in planar domain-wall space-times.
3N Quantum fluctuations in de-Sitter space-time have been

widely studied |IB,|__1|3516]. In particular, it is known that

which describes a steady-state Universe in conformal timeime-like geodesic observers in de-Sitter space-time el

However, if one uses the coordinatesi, #,7) on thez < 0 tect thermal radiation with temperatufe= /A /1272 [17].

side, the metric becomes? = (£ (5 — 12622)2)—1(_61772 + A stationary observer with 4-velocity. in de-Sitter space-
’ - time, which is described by the metr[d (4) with vanishifig

will perceive an isotropic thermal bath of radiati@[li%]oﬂvl-

dz? + d* + dy*). The coordinate transformations between

(n,z,x,y) and ¢, 2, &,y) are very similar to Lorentz trans- i th ¢ a ol q . Il th )
formations (boosts) and is analogous to the relative veloc- ever, in the presence of a planar domain wall the stationary

ity of two inertial frames. One may notice that the wall is observer with velocityo- has_constant aC(_:eIeratlomz, SO
not stationary in i, %, #, 7). It is known that the motion of one should expect that, besides the particle production due
a uniformly accelerated observer along the! direction  t© the de-Sitter horizon, the constantly accelerating nlese

in Minkowski space-time with the Minkowski coordinates should detect extra particles, which are associated wih th
(20,2, 22,27) is described byr® = A~lsinh Ar,z! = acceleratiord.. A well-known example is the Unruh effect,

A~lcosh Ar and (22,2%) = const., whered = |A| and which show that a constantly accelerating observer along

7 is the proper time of the 0bserv15]. S¥s trajectory axis in Minkowski space-time will see particles with temper
is hyperbolic, i.e. (z!)? — (z°)2 = A2, in Minkowski atureT = A, /2w, though an inertial observer will detect no

space-time. However, the wall’s motion in de-Sitter spacéaart'desl' o ,
with the coordinatesy, , #, ij) givesij — —e“’”/am To und(.erstan.d the gr.aV|tat|onaI_ effects of a planar domain
y _ : ' wall on primordial density fluctuations, we start from a mass

andz = —fe “"/ay/1 — B2, wherer is the wall's proper I lar fiel isfving the field :
time. It turns out that the wall’s trajectory, which has ciams ess scalar field satisfying the field equation
magnitude of acceleratioi3|, is a straight linez = 31 in dxdp = 0, (5)
de-Sitter space with the coordinatés4, i, 7). In the coordi-
natesf, z, ¥, 3j), Stationary observers, who are in relative mo-where d is the exterior derivative ands the Hodge map asso-
tion with respect to the wall with 4-velocities\/A /37 0;, ciated with the metrig. Mode functionspy, which are exact
will follow geodesics. We conclude that the stationary ob-solutions forz > 0, are
servers associated with two different coordinates:(x, y) . . - 3 . o
and @, z, &, ) will correspond to uniformly accelerated ob- ¢z (') = 72 [cl(k)Hé/)Q(kﬁ) + co(k) H?E/)Q(kﬁ)} e®* (6)
servers and geodesic observers, respectively.

Before we discuss quantum fluctuations, it is helpful to de_whereH?El/)Q are Hankel functionsy = (k? + k3 + k7)'/?
scribe the metric[{1) by introducing proper-time coordénat and#! = (7, X). For simplicity, we will only consider the
7 = —LIn[-a(n £ Bz)] andz’ = /1 — 3%z, s0 Eq. [1) solutiongy for = > 0. Using reflection symmetry, the < 0



solution can be obtained. By noting that the meffic (1) in ther; (k) = 0 andey (k) = /7A/12 [3,[16].

coordinates, z, , ) is the metric[(B), the normalization of

Eq. (@) is straightforward and gives,(k)|? — |ei(k)]? = Sincez depends on the variablg we should rewrite Eq.
7wA/12. The choice ofc; (k) and ¢y (k) corresponds to the (@) in the coordinategy, z, z, y). Furthermore, it is more use-
choice of vacuum statall6]. We require that wites: 0, the  ful to introduce the proper-time, which satisfiee=*" =
vacuum state is identical to the Bunch-Davies vacuum, i.e—«a(n + (z), so Eq. [6) becomes

N —3/2
(A éi w ; k —art .5 i(k.+Bk)ztikyxtikyy+ike 7
¢k<x>—\/;m< *1—52) (z+a(1_52)e (1 + Bk z>)e , (7)

wherez’ = (1,2,y,2), k = (k2 + k2 + k2)1/% = % inflated away, the space-time returns to pure de-Sitterespac
k. gk . S ) time and physical wavelengths continue to grow exponen-
ke = i ki = ky andk, = k. k, Zare unit vectors  tia|ly, i.e. A, = X exp(y/A/37). So short-wavelength modes,
andk - 7 = k./k. Whenj goes to zero, Eq.I7) returns to which ha_lve been a_ffected by the gravitational field of_the pla
the well-known solution of a massless scalar field in deesitt nar domian wall, will be stretched out beyond the horizon and
space-time. Moreover, thék -  terms indicate the existence Ed- (3) indicates that the rotational symmetry violatiopif
of a preferred direction in the primordial density spectrum Mordial density fluctuations will become constant during in
Eq. [7) also tells us that the rotational violation will appaot ~ f1ation. Inflation only eliminates the initial inhomogeriest
only in the low-frequency: modes but also high-frequency (i.e., by driving the number density of walls to zero) withou

modes. It means that the gravitational effects of the costa €r@sing the violation of rotational symmetry in the quantum
acceleration will affect all frequency modes. fluctuations. Whether these rotationally asymmetric flactu

To quantize the field, one may expand in creation and tions havg yetreturned to our obser\{able.Universe depands o
annihilation operatorsyt anday, as the d_uratlon (n_umber af-foldings) of |nfla_t|_on.

It is convenient to express the quantiti@gq, ¢)6(q’, t)),
whered(q,t) = (2m)~%2 [d3z §(x,t)e~9™ is a Fourier
transform of primordial density fluctuation$x, ¢), in terms

: L of mode functions (x, t):
with the vacuum statf), satisfyingax|0) = 0. The vacuum

expectation value of? is (¢*(2')) = s [ ok (2")[* k.
It is convenient to introduce physical momenpta= ke™ 7,
which are exponentially decreasing during inflation, toadript

3
¢=/ﬁ akdi (') + alp (@), (8)

(6(a,)5( 1) = / &L 6@ 05 (A0, (10)

wheredx(q,t) = (2m)73/2 [ d3x Sk (x,t)e~4* are Fourier
(0]¢*(2")|0) = coefficients ofix(x, t). Gaussian distributions givi (g, t) =

o\ -3 5x(t)03(k — q) and the power spectrui, (¢) is defined by
/ (2"—?) - (%> " (1‘717’)] @  (0(@.05(.5) = Pi(a)9°(q — q), whereP,(q) = |5,(1)|
™ VI=8 200+ pk-2

It is easy to show thaP;(q) is invariant under rotation and
translation]. For rotational symmetry violation, weosifd

where+ denoteg¢?(z?)) for z > 0 andz < 0 sides, respec- havedc(q,t) = &(t)é*(k — g) and the power spectrum

tively. For thosep modes with physical wavelengtbis well — P;(q) = [dq(t)|? [7]. By calculating (52(x,t)), we obtain

inside the horizon, i.ep > \/A/3, the second term of Eq. (6°(X.t)) = w5 [ dq|dq(t)|?, which is independent of.

(9 dominates ang@ = 0 simply gives the vacuum fluctua- So itis clear thaf’;(q) is translationally invariant.

tions in Minkowski space-timeﬁ [ &p However, when We are interested in large-scale modes, we so concentrate

2p . .
. . ' .. on the first term of Eq.[{9). The resulting power spectrum
A, crosses the horizon, i.e.< /A/3, the first term, which is .
’ pS Vi Py(k) = [ (r)[? is

time-independent, becomes dominant and taking 0 yields
the well-known scale-invariant Harrison-Zeldovich speuwt. A(1 - B2)3
Eg. () only depends on, so the density fluctuations will P, (k) = EETY
preserve translation invariance. Moreover, we argue ttat r
tional violation will still remain after domain walls areflated ~ where P,(k) has been made to satisfy reflection symmetry,
away. If domain walls are present during the early stage-ofini.e. P;(k) = P,(—k). So Eq. [(IL) is valid for botlr > 0
flation, the density fluctuations of high-frequenkeymodes, andz < 0. In the limit of |3| < 1, i.e. the dimensionless
i.e. A < &, are described by EqC](9). After domain walls are parametee < 1, we expand Eq.[{11) with respect foto

[(1 +pk-2)73 4 (1 pk-2)73|(@D)
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