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随机动力系统的 Morse 分解
柳振鑫
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摘要：众所周知, Morse 分解对于研究动力系统的不变集的内部结构是非常有效的. 最近, 对于
随机动力系统已经建立了 Morse 分解的结果, 从而可以用于研究随机不变集的内部结构, 例如
随机吸引子的内部结构. 在这片注记中, 综述了随机动力系统的 Morse 分解定理.
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Morse decomposition for random dynamical
systems
LIU Zhenxin

College of Mathematics, Jilin University, Changchun 130012
Abstract: It is well-known that Morse decomposition is very useful to study the inner
structure of invariant sets for given dynamical systems. Recently, Morse decomposition is
established for random dynamical systems, which can be used to investigate the inner
structure of random invariant sets, e.g. random attractors. In this note, we review Morse
decomposition theorem for random dynamical systems.
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0 Introduction

One important aspect of the qualitative analysis of differential equations and dynamical
systems is the study of asymptotic, long-term behavior of solutions/orbits. Hence much of
dynamical systems involves the study of the existence and structure of invariant sets. The
classical Morse decomposition theorem, due to [1], states that any invariant compact set can
be decomposed into finite disjoint invariant compact sets the connecting orbits between them.
This theorem completely describe the dynamics on the invariant set, so it is very helpful for
us understand the inner structure of invariant sets. See [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] etc for
studies and reviews on attractors, Morse decomposition, and Lyapunov functions.

Random dynamical systems, see [12] for a comprehensive introduction, arise in the model-
ing of many phenomena in physics, biology, economics, climatology, etc and the random effects
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often reflect intrinsic properties of these phenomena rather than just to compensate for the de-
fects in deterministic models. The history of study of random dynamical systems goes back to
Ulam and von Neumann [13] and it has flourished since the 1980s due to the discovery that the
solutions of stochastic ordinary differential equations yield a cocycle over a metric dynamical
system which models randomness, i.e. a random dynamical system. Recently, some authors
studied the Morse decomposition and Lyapunov second method for random dynamical sys-
tems, see [14, 15, 16, 17, 18, 19, 20, 21] for details. In this note, we review Morse decomposition
theorem for random dynamical systems.

1 Random dynamical systems

In this section, we will give some preliminary definitions and propositions for the later use.
Firstly we give the definition of continuous random dynamical systems (cf Arnold [12]).

Definition 1.1. A continuous random dynamical system (RDS), shortly denoted by φ, consists
of two ingredients:
(i) A model of the noise, namely a metric dynamical system (Ω,F ,P, (θt)t∈T), where (Ω,F ,P)
is a probability space and (t, ω) 7→ θtω is a measurable flow which leaves P invariant, i.e.
θtP = P for all t ∈ T.
(ii) A model of the system perturbed by noise, namely a cocycle φ over θ, i.e. a measurable
mapping φ : T × Ω ×X → X, (t, ω, x) 7→ φ(t, ω, x), such that (t, x) 7→ φ(t, ω, x) is continuous
for all ω ∈ Ω and the family φ(t, ω, ·) = φ(t, ω) : X → X of random self-mappings of X satisfies
the cocycle property:

φ(0, ω) = idX , φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω) for all t, s ∈ T, ω ∈ Ω. (1.1)

Remark 1.2. The time for the base flow (θt) is always assumed to be two-sided, even if φ is
defined for nonnegative time only. Furthermore, the maps φ(t, ω) : X → X are not assumed to
be invertible a priori. The cocycle property implies that for two sided time (T = R or T = Z)
φ(t, ω) is automatically invertible P-a.s. for every t ∈ T. In fact, in this case φ(t, ω)−1 =

φ(−t, θtω) for every t ∈ T.

We now give the definition of random set, which is a basic concept for RDS.

Definition 1.3. Let X be a metric space with a metric dX . A set-valued map ω 7→ D(ω) taking
values in the closed/compact subsets of X is said to be a random closed/compact set if the map-
ping ω 7→ distX(x,D(ω)) is measurable for any x ∈ X, where distX(x,B) := infy∈B dX(x, y). A
set-valued map ω 7→ U(ω) taking values in the open subsets of X is said to be a random open
set if ω 7→ U c(ω) is a random closed set, where U c denotes the complement of U .

- 2 -



http://www.paper.edu.cn

Definition 1.4. A random set D is said to be forward invariant under the RDS φ if φ(t, ω)D(ω) ⊂
D(θtω) for all t ≥ 0 almost surely; It is said to be invariant if φ(t, ω)D(ω) = D(θtω) for all
t ≥ 0 almost surely.

Now we enumerate some basic results about random sets in the following propositions, for
details the reader can refer to Arnold [12], Castaing and Valadier [22], Chueshuv [23], Crauel
[24], Hu and Papageorgiou [25].

Proposition 1.5. Let X be a Polish space, then the following assertions hold.
(i) D is a random closed set in X if and only if the set {ω : D(ω)

∩
U ̸= ∅} is measurable for

any open set U ⊂ X.
(ii) if D is a random closed set, then so is the closure of Dc.
(iii) if D is a random open set, then the closure clD of D is a random closed set; if D is a
random closed set, then intD, the interior of D, is a random open set.
(iv) D is a random compact set in X if and only if D(ω) is compact for every ω ∈ Ω and the
set {ω : D(ω)

∩
C ̸= ∅} is measurable for any closed set C ⊂ X.

(v) if {Dn, n ∈ N} is a sequence of random closed sets with non-void intersection and there
exists n0 ∈ N such that Dn0

is a random compact set, then
∩

n∈N Dn is a random compact set
in X.
(vi) if f : Ω × X → X is a function such that f(ω, ·) is continuous for all ω and f(·, x) is
measurable for all x, then ω 7→ f(ω,D(ω)) is a random compact set provided that D is a
random compact set.
(vii) if D is a random closed set, then graph(D) := {(ω, x)|x ∈ D(ω)} is a measurable subset
of F × B(X); conversely, given D : Ω → 2X , taking values in the closed subsets of X, if
graph(D) ∈ F × B(X), then D is an Fu-measurable (in particular, FP-measurable, with FP

being the completion of the σ-algebra F with respect to the measure P) random closed set, i.e.
the mapping ω 7→ distX(x,D(ω)) is Fu-measurable for any x ∈ X;
(viii) if D is an FP-measurable random closed set, then there exists a F-measurable random
closed set D̃ such that D = D̃ almost surely.
(ix) (Measurable Selection Theorem). Let a multifunction ω 7→ D(ω) take values in the subspace
of closed non-void subsets of X. Then D is a random closed set if and only if there exists a
sequence {vn : n ∈ N} of measurable maps vn : Ω → X such that

vn(ω) ∈ D(ω) and D(ω) = {vn(ω), n ∈ N} for all ω ∈ Ω.

In particular if D is a random closed set, then there exists a measurable selection, i.e. a
measurable map v : Ω → X such that v(ω) ∈ D(ω) for all ω ∈ Ω.
(x) (Projection Theorem). Let X be a Polish space and M ⊂ Ω×X be a set which is measurable
with respect to the product σ-algebra F × B(X). Then the set

ΠΩM = {ω ∈ Ω : (ω, x) ∈ M for some x ∈ X}
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is universally measurable, i.e. belongs to Fu, where ΠΩ stands for the canonical projection of
Ω×X to Ω. In particular, it is measurable with respect to the P-completion F̄P of F .

Definition 1.6. Assume that D is a random set, then the omega-limit set of D, ΩD, is defined
to be

ΩD(ω) :=
∩
t≥0

∪
s≥t

φ(s, θ−sω)D(θ−sω).

Definition 1.7. For given two random sets D and A, we say A (pull-back) attracts D if

lim
t→∞

d(φ(t, θ−tω)D(θ−tω)|A(ω)) = 0

holds almost surely, where d(A|B) stands for the Hausdorff semi-metric between two sets A,B,
i.e. d(A|B) := supx∈Ainfy∈BdX(x, y); and we say A attracts D in probability or weakly attracts
D if

P− lim
t→∞

d(φ(t, ω)D(ω)|A(θtω)) = 0.

2 Morse decomposition for random dynamical systems

We now introduce “backward orbit” for random semiflow:

Definition 2.1. (i) For fixed ω and x, a mapping σ·(ω) : R− → X is called a backward orbit
of φ through x driven by ω if it satisfies the cocycle property:

σ0(ω) = x, σt+s(ω) = φ(s, θtω) ◦ σt(ω) for ∀t ≤ 0, s ≥ 0, t+ s ≤ 0.

(ii) Let M denote the set of all X-valued random variables and x ∈ M. A mapping σ : R− → M
is called a backward orbit of φ through x if for all ω ∈ Ω, the following cocycle property holds:

σ0(ω) = x(ω), σt+s(ω) = φ(s, θtω) ◦ σt(ω) for ∀t ≤ 0, s ≥ 0, t+ s ≤ 0.

Also we can introduce “entire orbit” for random semiflow:

Definition 2.2. (i) For fixed ω and x, a mapping σ·(ω) : R→ X is called an entire orbit of φ
through x driven by ω if it satisfies the cocycle property:

σ0(ω) = x, σt+s(ω) = φ(s, θtω) ◦ σt(ω) for ∀t ∈ R, s ≥ 0.

(ii) Let x ∈ M. A mapping σ : R→ M is called an entire orbit of φ through x if for all ω ∈ Ω,
the following cocycle property holds:

σ0(ω) = x(ω), σt+s(ω) = φ(s, θtω) ◦ σt(ω) for ∀t ∈ R, s ≥ 0.
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By the cocycle property of σ, it is clear that for arbitrary t ≥ 0 and ω ∈ Ω we have

σt(ω) = φ(t, ω) ◦ σ0(ω).

That is, when an entire orbit σ of φ is restricted to R+ (called forward orbit), then it coincides
with the orbit of φ, which is the same as the deterministic case.

We can give an alternative definition of (forward, backward) invariant sets for random
semiflow:

Definition 2.3. (i) A random set D is called forward invariant if D = D+
φ almost surely, where

D+
φ (ω) := {x|φ(t, ω)x ∈ D(θtω) for all t ≥ 0};

(ii) A random set D is called backward invariant if D = D−
φ almost surely, where

D−
φ (ω) := {x|∃ a backward orbit σ in D through x, i.e. σt(ω) ∈ D(θtω),∀t ≤ 0};

(iii) A random set D is called invariant if D = Dφ almost surely, where

Dφ(ω) := {x|∃ an entire orbit σ in D through x, i.e. σt(ω) ∈ D(θtω), ∀t ∈ R}.

Remark 2.4. (i) Clearly a random set D is invariant if and only if it is both forward invariant
and backward invariant.
(ii) The forward invariant set and invariant set defined in Definition 2.3 coincide with that of
Definition 1.4. The equivalence of forward invariance is obvious. Invariance in Definition 2.3
clearly implies invariance in Definition 1.4. If D is invariant in the sense of Definition 1.4, for
x ∈ D(ω) and any k ∈ N, by the fact φ(k, θ−kω)D(θ−kω) = D(ω), there exists xk ∈ D(θ−kω)

such that φ(k, θ−kω)xk = x. Then σt(ω) := φ(k+t, θ−kω)xk ∈ D(θtω) by the invariance of D in
the sense of Definition 1.4, for t ∈ [−k, 0]. Similarly, by φ(1, θ−(k+1)ω)D(θ−(k+1)ω) = D(θ−kω),
there exists xk+1 ∈ D(θ−(k+1)ω) such that φ(1, θ−(k+1)ω)xk+1 = xk. Inductively in this way,
we obtain a backward orbit through x, hence D is invariant in the sense of Definition 2.3.
(iii) If D1 and D2 are forward invariant, then clearly D1∪D2 and D1∩D2 are forward invariant;
If D1 and D2 are invariant, then clearly D1 ∪D2 is invariant, while D1 ∩D2 is not necessarily
invariant (since D1∩D2 is not necessarily backward invariant), which differs from random flow
case, see page 35 in [12].

It is known that given an invariant random set D and x ∈ D(ω), there exists a backward
orbit lying on D through x. A natural question is, for any random variable x ∈ D, does there
exist a backward orbit lying on D through x? The answer is yes, see the following lemma.

Lemma 2.5. Assume that D is an invariant random closed set, then for any random variable
on D there exists a backward orbit lying on D through this random variable.

- 5 -



http://www.paper.edu.cn

Proof. We know that, for given k ∈ Z− and for each ω, there exists an x̃k(ω) ∈ D(θkω) from
which we obtain a backward orbit from time k to time 0 (present time). Hence we need only
to show that we can select appropriate x̃k such that the mapping ω 7→ x̃k(ω) is measurable.
In other words, we need to show σk ∈ M, which implies σs ∈ M, ∀k ≤ s ≤ 0. For arbitrary
t > 0, denote φ−1(t, ω)x the preimage of x under φ. Consider the semiflow Θ corresponding to
φ, given by Θt(ω, x) := (θtω, φ(t, ω)x), which is an F ×B(X)-measurable mapping from Ω×X

to itself for fixed t ≥ 0. The preimage of (ω, x) under Θt is Θ−1
t (ω, x) := (θ−tω, φ

−1(t, ω)x).
Since D is a random closed set, we have

graph(D) := {(ω, x)|x ∈ D(ω)} ∈ F × B(X)

by Proposition 1.5 (vii). Hence we have Θ−1
t (graph(D)) ∈ F × B(X) by the measurability of

Θt. It is cleat that
graph(Dt) = Θ−1

t (graph(D(θtω))),

where
Dt(ω) := φ−1(t, ω)D(θtω).

Therefore Dt is an Fu-measurable random closed set, by Proposition 1.5 (vii) again. By
Proposition 1.5 (viii) we may assume that Dt is an F-measurable random closed set. In
particular, for given k ∈ Z−, D−k ∩ D is a nonempty random closed set by Proposition 1.5
(vii) and (viii). By the measurable selection theorem (see Proposition 1.5 (ix)), we can choose
a random variable x̃k ∈ D−k ∩D. This completes the proof.

Throughout this section, we use S to denote the invariant random compact set we will
decompose, say, S is a global random attractor. By Lemma 2.5, for any point (random variable)
on S, there exists backward orbit lying on S through this point (random variable). Afterwards,
when we say backward orbits, we refer those lying on S unless otherwise stated (since there
may be backward orbit not lying on S but lying on the entire state space — X).

Definition 2.6. An invariant random compact set A ⊂ S is called a (local) attractor if there
exists a random open neighborhood U of A relative to S such that ΩU (ω) = A(ω). (without
loss of generality, we can assume that U is forward invariant.) The basin of attraction of A is
defined by

B(A)(ω) := {x ∈ S(ω)|φ(t, ω)x ∈ U(θtω) for some t ≥ 0}

and the repeller R corresponding to A is defined by

R(ω) = S(ω)\B(A)(ω).

(A,R) is called an attractor-repeller pair.

Note that since S is a random compact set, by Lemma 3.2 in [17] (the proof of Lemma 3.2
is also applicable here), B(A) is independent of the choice of U .
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Lemma 2.7. Assume that (A,R) is an attractor-repeller pair in S, then A, B(A), and R are
invariant random sets.

Proof. (i) The invariance of A follows immediately from its definition.
(ii) The forward invariance of B(A) follows directly from the definition of B(A) and the forward
invariance of U . For arbitrary x ∈ B(A)(ω), if for any backward orbit σ through x, there exists
some t0 < 0 such that σt0 ∈ R(θt0ω). By the definition of R, we know that any point in R can
not enter into B(A) in positive time, so we obtain that R is forward invariant. Therefore,

φ(−t0, θt0ω)σt0(ω) = σ0(ω) = x ∈ R(ω),

a contradiction. That is, B(A) is backward invariant.
(iii) By (ii) we only need to show the backward invariance of R. For arbitrary x ∈ R(ω), if for
any backward orbit σ through x, there exists some t0 < 0 such that σt0 ∈ B(A)(θt0ω). Then
by the forward invariance of B(A), we have

φ(−t0, θt0ω)σt0(ω) = σ0(ω) = x ∈ B(A)(ω),

a contradiction. Hence R is backward invariant.

Remark 2.8. Denote B(R)(ω) := S(ω) \A(ω) for each ω.

1. Similar to the proof of Lemma 2.7 (ii), we obtain that if D ⊂ S is forward invariant, then
Dc := S \ D is backward invariant set. Furthermore, Dc is strongly backward invariant
in the sense that any backward orbit through the point (hence the random variable, note
that the backward orbit through a random variable is a choice of a backward orbit through
a point) on S lies on Dc.

2. Observe that different from the random flow case, the complementary of a backward
invariant set need not be forward invariant. Particularly, B(R) is not necessarily forward
invariant since the forward orbit through the point in B(R) may enter A.

3. Since A is forward invariant, B(R) is strongly backward invariant. Similarly, the random
set S \ (A∪R) is strongly backward invariant, but not necessarily forward invariant. Note
that the forward orbit through the point in S \ (A ∪R) can enter A, but never enter R.

4. Note that if a random set D ⊂ S is strongly backward invariant in the above sense, then
Dc is forward invariant. That is, the reason that the complementary of a backward in-
variant set is not necessarily forward invariant lies in that the set is not strongly backward
invariant.
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Definition 2.9. Assume that x is a random variable in S, and σ is an entire orbit through x.
Then the omega-limit set Ωσ and the alpha-limit set Ω∗

σ of σ are defined to be

Ωσ(ω) :=
∩
T≥0

∪
t≥T

{σt(θ−tω)}

and
Ω∗

σ(ω) :=
∩
T≥0

∪
t≥T

{σ−t(θtω)},

respectively.

It is clear that
Ωσ(ω) :=

∩
T≥0

∪
t≥T

{φ(t, θ−tω)x(θ−tω)},

i.e. the omega-limit set of σ only depends on the random variable x, so Ωσ can also be denoted
by Ωx; while the alpha-limit set depends on the entire orbit σ. Clearly a point y ∈ Ωσ(ω)

(respectively y ∈ Ω∗
σ(ω)) if and only if there exist sequences tn → +∞ (respectively tn → −∞)

and yn = σtn(θ−tnω) such that yn → y as n → +∞.

Lemma 2.10. Assume that x is a random variable in S, and σ is an entire orbit through x.
Then Ωσ and Ω∗

σ are invariant random compact sets.

Proof. The random variable x can be regarded as a random set consisting of just a single point,
so Ωσ is an invariant random compact set.

For arbitrary y ∈ Ω∗
σ(ω), there exist sequences tn → +∞ and yn = σ−tn(θtnω) such that

yn → y as n → +∞. For s > 0, we have

φ(s, ω)y = lim
n→+∞

φ(s, ω) ◦ σ−tn(θtnω)

= lim
n→+∞

φ(s, ω) ◦ σ−tn(θtn−s ◦ θsω)

= lim
n→+∞

σs−tn(θtn−s ◦ θsω)

= lim
n→+∞

σ−τn(θτn ◦ θsω) (let tn − s = τn)

∈ Ω∗
σ(θsω),

where the 1st equality holds by the continuity property of φ with respect to x, the 3rd equality
holds by the cocycle property of σ, and the last inclusion relation holds by the definition of Ω∗

σ.
This verifies the forward invariance of Ω∗

σ.
For arbitrary y ∈ Ω∗

σ(θsω) with s > 0, there exist sequences tn → +∞ and yn = σ−tn(θtn ◦
θsω) such that yn → y as n → +∞. Then we have

y = lim
n→+∞

σ−tn(θtn ◦ θsω)
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= lim
n→+∞

σ−(τn−s)(θτn−s ◦ θsω) (let tn + s = τn)

= lim
n→+∞

φ(s, ω)σ−τn(θτn−s ◦ θsω)

= lim
n→+∞

φ(s, ω)σ−τn(θτnω)

= φ(s, ω) lim
n→+∞

σ−τn(θτnω)

= φ(s, ω)x,

where the last two equalities hold by the pre-compactness of {σ−τn(θτnω)|n ∈ N}, and by
taking a subsequence we assume that the subsequence converges to x ∈ Ω∗

σ. This verifies
Ω∗

σ(θsω) ⊂ φ(s, ω)Ω∗
σ(ω).

Therefore, we have showed that φ(s, ω)Ω∗
σ(ω) = Ω∗

σ(θsω), hence completed the proof.

Lemma 2.11. Assume that x is a random variable with σ being an entire orbit through x, and
A is a random attractor with R being the corresponding repeller. Then we have:
(i) if x ∈ R almost surely, then Ωσ ⊂ R and Ω∗

σ ⊂ R almost surely;
(ii) if x ∈ B(A)\A almost surely, then Ωσ ⊂ A and Ω∗

σ ⊂ R almost surely;
(iii) if x ∈ A almost surely, then Ωσ ⊂ A almost surely; if Ω∗

σ ⊂ A almost surely, then σ lies
on A almost surely, i.e. for arbitrary t ∈ R, we have σt ⊂ A almost surely;
(iv) if x ∈ B(A) almost surely, then Ωσ ⊂ A almost surely; if x ∈ B(R) := S\A almost surely,
then Ω∗

σ ⊂ R almost surely.

Proof. (i) By the forward invariance of R, the former is obvious. By the forward invariance of
B(A) we obtain that all backward orbits through x must lie on R, so by the definition of Ω∗

σ

we have Ω∗
σ ⊂ R almost surely.

(ii) The former follows directly from Lemma 4.3 in [20] (it is clear that Lemma 4.3 also
holds for random semiflow). Assume that U is a forward invariant random open neighborhood
of A relative to S such that ΩU = A and let V = S\U . For arbitrary random variable y ∈ V ,
let σy be a backward orbit through y. Then by the forward invariance of U , σy lies on V . Hence
we have Ω∗

σy ⊂ V almost surely. If Ω∗
σy ̸⊂ R with positive probability, letting R1 := R ∪ Ω∗

σy ,
then R1 is an invariant random compact set by Lemma 2.10 and Remark 2.4 (iii). Then we
can choose a random variable z such that z ∈ R1 almost surely and z ∈ R1\R with positive
probability. On one hand, Ωz ⊂ R1 almost surely by the invariance of R1, which implies

P− lim
t→∞

d(φ(t, ω)z(ω)|R1(θtω)) = 0.

On the other hand z ∈ B(A) with positive probability, which implies that

lim
t→∞

d(φ(t, ·)z(ω)|A(θt·)) = 0

with positive probability, a contradiction to the fact that R1 ∩A = ∅ almost surely. Therefore,
for arbitrary random variable y ∈ V , we have Ω∗

σy ⊂ R almost surely.
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Let Un := φ(n, θ−nω)U(θ−nω), n ∈ N, then we have Un+1 ⊂ Un by the forward invariance
of U . Moreover, each Un is a forward invariant random open neighborhood of A relative to S

and ΩUn
= A. Clearly we have

A(ω) = lim
n→∞

Un(ω).

Letting Vn = S\Un, for arbitrary random variable x ∈ Vn, we have Ω∗
σx ⊂ R almost surely

by the above argument. Since n is arbitrary, for arbitrary random variable in S\A with a
backward orbit σ, we have Ω∗

σ ⊂ R almost surely. This completes the proof of (ii).
(iii) The former is trivial. Since A is forward invariant, any backward orbit through a

random variable in S\A must lie on S\A. If there exists some t0 ∈ R such that P{ω|σt0(ω) ̸⊂
A(θt0ω)} = δ > 0, then for all s ≤ t0 we have P{ω|σs(ω) ̸⊂ A(θsω)} ≥ δ, i.e. P{ω|σs(ω) ⊂
S(θsω)\A(θsω)} ≥ δ. Then by the proof of (ii) it follows that Ω∗

σ ⊂ R with positive probability,
a contradiction to the fact that Ω∗

σ ⊂ A almost surely.
(iv) The former follows directly from (ii) and (iii), while the later has been proved during

the proof of (ii).

Remark 2.12. Similar to the proof of Lemma 2.11 (iii), if Ωσ ⊂ R a.s., then σt ∈ R a.s. for all
t ∈ R.

Definition 2.13. Assume that (Ai, Ri) are attractor-repeller pairs of φ on the invariant random
compact set S with

∅ = A0  A1  · · ·  An = S and S = R0 ! R1 ! · · · ! Rn = ∅.

Then the family D = {Mi}ni=1 of invariant random compact sets, defined by

Mi = Ai ∩Ri−1, 1 ≤ i ≤ n,

is called a Morse decomposition of S, and each Mi is called Morse set. If D is a Morse
decomposition, MD is defined to be

∪n
i=1 Mi.

Remark 2.14. (i) For i ̸= j, say i < j, Mi∩Mj = Ai∩Ri−1∩Aj∩Rj−1 ⊂ Ai∩Rj−1 ⊂ Ai∩Ri = ∅.
(ii) Each Morse set Mi is invariant, which is trivial if φ is a random flow, but requires explanation
in the case of random semiflow. Clearly each Mi is forward invariant. For any point x ∈
Mi(ω) = Ai(ω)∩Ri−1(ω), there exists a backward orbit σ in Ai by the backward invariance of
Ai. By the forward invariance of Rc

i−1 = B(Ai−1), any backward orbit through a point in Ri−1

must lie on Ri−1. Hence we have σ lying on Mi, i.e. Mi is backward invariant.

Lemma 2.15. Assume that A is an attractor in S with a forward invariant neighborhood N ⊂ S

and the basin of attraction B(A) ⊂ S. Then for arbitrary random closed set K ⊂ B(A), there
exists a measurable mapping ω 7→ TK(ω) ≥ 0 such that, for P-almost all ω ∈ Ω, we have

φ(t, ω)K(ω) ⊂ N(θtω), ∀t ≥ TK(ω). (2.1)
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Proof. For given K ⊂ B(A) and ∀x ∈ K(ω), there exists a τ(ω, x) such that

φ(τ(ω, x), ω)x ∈ intN(θτ(ω,x)ω)

by the definition of basin of attraction. So there exists an open neighborhood U(ω, x) of x such
that

φ(τ(ω, x), ω)U(ω, x) ⊂ intN(θτ(ω,x)ω).

By the compactness of K(ω), there exists a finite collection of such neighborhoods suffice to
cover K(ω). So there exists a τ(ω,K) such that φ(τ(ω,K), ω)K(ω) ⊂ intN(θτ(ω,K)ω).

Let
TK(ω) := inf{t ≥ 0|φ(t, ω)K(ω) ⊂ N(θtω)}.

By the above argument, TK(ω) is finite. By the measurable selection theorem, we have

d(K(ω)|N(ω)) = sup
n

inf
m

d(xn(ω), ym(ω)),

where xn, ym are two sequences of random variables such that K(ω) = {xn(ω), n ∈ N} and
N(ω) = {ym(ω),m ∈ N}, respectively. Hence the mapping ω 7→ d(K(ω)|N(ω)) is measurable.
For arbitrary a ≥ 0, by the forward invariance of N , we have

{ω|TK(ω) ≥ a} =
∩

s<a,s∈Q

{ω|d(φ(s, ω)K(ω)|N(θsω)) > 0}.

So the mapping ω 7→ TK(ω) is measurable. This completes the proof.

Lemma 2.16. Assume that A is a random attractor in S and B(A) ⊂ S is the corresponding
basin of attraction. Then for any random closed set D ⊂ B(A), A pull-back attracts D.

Proof. Assume that N is a forward invariant neighborhood of A, then by Lemma 2.15 we know
that for any random closed set D ⊂ B(A) there exists a measurable TD ≥ 0 such that, for
P-almost all ω ∈ Ω,

φ(t, ω)D(ω) ⊂ N(θtω), ∀t ≥ TD(ω).

Hence for given non-random ϵ > 0 and given non-random k ∈ N, there exists non-random
kϵ > 0 such that P{ω|TD(θ−kω) ≤ kϵ} ≥ 1− ϵ. So we have

P{ω|φ(t, θ−t ◦ θ−kω)D(θ−t ◦ θ−kω) ⊂ N(θ−kω), t ≥ kϵ}

=P{ω|φ(t, θ−kω)D(θ−kω) ⊂ N(θt ◦ θ−kω), t ≥ kϵ}

≥1− ϵ

by the measure preserving property of θt. Hence

P{ω|φ(k, θ−kω) ◦ φ(t, θ−t ◦ θ−kω)D(θ−t ◦ θ−kω)
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⊂ φ(k, θ−kω)N(θ−kω), t ≥ kϵ} ≥ 1− ϵ.

Therefore,

P{ω|
∪
t≥kϵ

φ(t+ k, θ−t−kω)D(θ−t−kω) ⊂ φ(k, θ−kω)N(θ−kω)} ≥ 1− ϵ.

By the definition of omega-limit set, we obtain that

P{ω|ΩD(ω) ⊂ φ(k, θ−kω)N(θ−kω)} ≥ 1− ϵ.

Since ϵ > 0 is arbitrary, we have ΩD ⊂ φ(k, θ−kω)N(θ−kω) P-a.s. Thus

ΩD(ω) ⊂
∩
k∈N

φ(k, θ−kω)N(θ−kω) = ΩN (ω) = A(ω)

holds for P-almost all ω ∈ Ω. Here
∩

k∈N φ(k, θ−kω)N(θ−kω) = ΩN (ω) holds because N is
forward invariant, which follows that

φ(t, θ−tω)N(θ−tω) ⊂ φ(s, θ−sω)N(θ−sω), ∀t > s.

Note that ΩD pull-back attracts D, so A also does. This completes the proof of the lemma.

Lemma 2.17. Assume that A1, A2 ⊂ S are two random attractors with basins of attraction
B(A1), B(A2), respectively. Assume that D is a random compact set satisfying D ⊂ B(A1) ∪
B(A2) almost surely. Then A1 ∪A2 pull-back attracts D.

Proof. Choose a random compact set D1 ⊂ B(A1) almost surely and choose D2 ⊂ B(A2)

almost surely such that D ⊂ D1 ∪ D2 almost surely. Therefore, by (ii) and Lemma 2.16, we
obtain for P-almost all ω

ΩD(ω) ⊂ ΩD1∪D2
(ω) = ΩD1

(ω) ∪ ΩD2
(ω) ⊂ A1(ω) ∪A2(ω).

By the definition of omega-limit set, it is clear that ΩD pull-back attracts D, so A1 ∪ A2

pull-back attracts D. This completes the proof.

Remark 2.18. It is obvious that the result of Lemma 2.17 holds for finite case, i.e. if the random
compact set D ⊂

∪n
i=1 B(Ai) almost surely, then

∪n
i=1 Ai pull-back attracts D.

Theorem 2.19. Assume that D = {Mi}ni=1 is a Morse decomposition of S, determined by
attractor-repeller pairs (Ai, Ri), i = 1, . . . , n. Then MD determines the limiting behavior of φ
on S. Moreover, there are no “cycles” between the Morse sets. More precisely, we have:

(i) For any random variable x in S, there exists an entire orbit σ through x such that Ωσ ⊂ MD

and Ω∗
σ ⊂ MD almost surely.
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(ii) If σ is an entire orbit through the random variable x satisfying that Ωσ ⊂ Mp almost surely
and Ω∗

σ ⊂ Mq almost surely for some 1 ≤ p, q ≤ n, then p ≤ q; Moreover, p = q if and
only if σ lies on Mp.

(iii) If σ1, . . . , σl are l entire orbits through the random varibales x1, . . . , xl respectively such
that for some 1 ≤ j0, . . . , jl ≤ n, Ωσk

⊂ Mjk−1
and Ω∗

σk
⊂ Mjk for k = 1, . . . , l, then

j0 ≤ jl. Moreover, j0 < jl if and only if σk does not lie on MD with positive probability
for some k, otherwise j0 = · · · = jl.

Proof. (i) Since
∅ = Rc

0  Rc
1  · · ·  Rc

n = S,

let R̃i = Rc
i\Rc

i−1. Then S =
∪n

i=1 R̃i almost surely and R̃i = B(Ai)\B(Ai−1). Hence for
arbitrary random variable in R̃i, it is attracted by Ai but not by Ai−1. For arbitrary random
variable x in S, choose n random variables x1, . . . , xn such that xi ∈ R̃i almost surely and
x(ω) = xi(ω) when ω ∈ Ωi, where Ωi := {ω|x(ω) ∈ R̃i(ω)}, i = 1, . . . , n. By the fact xi ∈ R̃i =

Rc
i ∩Ri−1 we know that xi is attracted by Ai ∩Ri−1 = Mi almost surely. Then by Lemma 2.17

we obtain for P-almost all ω

Ωσ(ω) = Ωx(ω) ⊂
n∪

i=1

Ωxi
(ω) ⊂

n∪
i=1

Mi(ω) = MD(ω).

Since
S = Ac

0 ! Ac
1 ! · · · ! Ac

n = ∅,

let Ãi = Ac
i−1\Ac

i = B(Ri−1) ∩ Ai, i = 1, . . . , n. Then S =
∪n

i=1 Ãi almost surely. By (iv)
of Lemma 2.11, for given random variable x ∈ Ãi, we have Ω∗

σ ⊂ Ri−1 almost surely for any
backward orbit σ through x. Since x ∈ Ãi ⊂ Ai, by the invariance of Ai, there exists a
backward orbit σ through x lying on Ai (we can not guarantee generally that any backward
orbit through x must lie on Ai). Hence for this σ we have Ω∗

σ ⊂ Ai almost surely. Therefore,
we have obtained that for any random variable x ∈ Ãi, there exists a backward orbit σ through
it such that Ω∗

σ ⊂ Ai ∩Ri−1 = Mi almost surely. For arbitrary random variable y ∈ S, choose
n random variables yi, i = 1, . . . , n such that yi ∈ Ãi almost surely and y(ω) = yi(ω) when
ω ∈ Ωi, where Ωi := {ω|y(ω) ∈ Ãi(ω)}. By above argument, for each i, there exists a backward
orbit σi through yi such that Ω∗

σi
⊂ Mi almost surely. “Attaching” the corresponding parts of

these σi’s together when y lies on Ãi, we obtain a backward orbit σ through y. By the choice
of σ, we have

Ω∗
σ ⊂

n∪
i=1

Ω∗
σi

⊂
n∪

i=1

Mi = MD

almost surely as desired.
(ii) Since Ωσ ⊂ Mp = Ap ∩ Rp−1 almost surely, we have x ∈ Ac

p−1 almost surely. By the
fact that Ω∗

σ ⊂ Mq = Aq ∩ Rq−1 almost surely, we have σ lying on Aq almost surely by (iii) of
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Lemma 2.11. In particular, σ0 = x ∈ Aq almost surely. Hence we have x ∈ Ac
p−1 ∩ Aq almost

surely. If q < p, then Aq ⊂ Ap−1, hence Aq ∩Ac
p−1 = ∅ almost surely, a contradiction.

If σ lies on Mp, then we have Ωσ,Ω
∗
σ ⊂ Mp almost surely by the fact that Mp is an

invariant random compact set. That is, we must have p = q. Conversely, if p = q, the fact
Ωσ = Ωx ⊂ Mp = Ap∩Rp−1 implies x ∈ Rp−1 almost surely. It follows that σ lies on Rp−1 since
any backward orbit through a random variable in Rp−1 must lie on it. Ω∗

σ ⊂ Mp = Ap ∩ Rp−1

implies that σ lies on Ap by (iii) of Lemma 2.11. So we have obtained that σ lies on Ap∩Rp−1 =

Mp almost surely.
(iii) follows from (ii) immediately.

Remark 2.20. In (i) of Theorem 2.19, we obtain that, for given random variable x, there exists
an entire orbit through x satisfying Ωσ ⊂ MD and Ω∗

σ ⊂ MD almost surely. While in the
deterministic case, any entire orbit has this property, see [1] for the flow case and [10] for the
semiflow case. But their methods are not applicable here. We are not sure whether the similar
result holds for random semiflow.
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[2] Bhatia N P and Szegö G P 1970 Stability Theory of Dynamical Systems (Berlin: Springer).

[3] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for
Hamiltonian systems, Comm. Pure Appl. Math. 37 (1984), 207–253.

[4] R. Easton, Isolating blocks and epsilon chains for maps, Physica D 39 (1989), 95–110.

[5] T. Huang, Decompositions and Liapounov functions, Chaos, Solitons and Fractals, 13
(2002) 209–214.

[6] M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergod. Theory Dyn.
Syst. 11 (1991), 709–729.
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