DERFIEXITE http:/ /www paper.edu.cn
SEHLZEh 11 RSB BY Morse 47 fi#

WPk
TR FHFFR, K&, 130012
FEE: XFTE 4, Morse 5 fxt TR E) A A G R R F R IREMZAEFA 8. R, AT
ALED /) A4S T Morse 2 ffeg4s %, A =T VA T AT LR 3 SE 64 1 30454, )4
FAUR 5| T 89 A 3R ). X R 2R T, 42 T ALY /) £ 489 Morse 4% € 2.
KA MALE) ) & %; Morse 4 FAALR 5| F
hESES: ol75

Morse decomposition for random dynamical

systems

LIU Zhenxin
College of Mathematics, Jilin University, Changchun 130012
Abstract: It is well-known that Morse decomposition is very useful to study the inner
structure of invariant sets for given dynamical systems. Recently, Morse decomposition is
established for random dynamical systems, which can be used to investigate the inner
structure of random invariant sets, e.g. random attractors. In this note, we review Morse
decomposition theorem for random dynamical systems.
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0 Introduction

One important aspect of the qualitative analysis of differential equations and dynamical
systems is the study of asymptotic, long-term behavior of solutions/orbits. Hence much of
dynamical systems involves the study of the existence and structure of invariant sets. The
classical Morse decomposition theorem, due to [1], states that any invariant compact set can
be decomposed into finite disjoint invariant compact sets the connecting orbits between them.
This theorem completely describe the dynamics on the invariant set, so it is very helpful for
us understand the inner structure of invariant sets. See [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] etc for
studies and reviews on attractors, Morse decomposition, and Lyapunov functions.

Random dynamical systems, see [12] for a comprehensive introduction, arise in the model-

ing of many phenomena in physics, biology, economics, climatology, etc and the random effects
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often reflect intrinsic properties of these phenomena rather than just to compensate for the de-
fects in deterministic models. The history of study of random dynamical systems goes back to
Ulam and von Neumann [13] and it has flourished since the 1980s due to the discovery that the
solutions of stochastic ordinary differential equations yield a cocycle over a metric dynamical
system which models randomness, i.e. a random dynamical system. Recently, some authors
studied the Morse decomposition and Lyapunov second method for random dynamical sys-
tems, see [14, 15, 16, 17, 18, 19, 20, 21] for details. In this note, we review Morse decomposition

theorem for random dynamical systems.

1 Random dynamical systems

In this section, we will give some preliminary definitions and propositions for the later use.

Firstly we give the definition of continuous random dynamical systems (cf Arnold [12]).

Definition 1.1. A continuous random dynamical system (RDS), shortly denoted by ¢, consists
of two ingredients:

(i) A model of the noise, namely a metric dynamical system (Q,.%, P, (6;)ct), where (2, %, P)
is a probability space and (t,w) — 6w is a measurable flow which leaves P invariant, i.e.
0,P=PforalltecT.

(ii) A model of the system perturbed by noise, namely a cocycle ¢ over 6, i.e. a measurable
mapping ¢ : T x @ x X — X, (t,w,x) — ¢(t,w,z), such that (¢,z) — ¢(t,w, ) is continuous
for all w € Q and the family ¢(t,w, ) = ¢(t,w) : X — X of random self-mappings of X satisfies
the cocycle property:

0(0,w) =idx, p(t + s,w) = p(t, 0sw) o p(s,w) forall t,seT well (1.1)

Remark 1.2. The time for the base flow (6;) is always assumed to be two-sided, even if ¢ is
defined for nonnegative time only. Furthermore, the maps ¢(¢,w) : X — X are not assumed to
be invertible a priori. The cocycle property implies that for two sided time (T =R or T = Z)
o(t,w) is automatically invertible P-a.s. for every ¢t € T. In fact, in this case p(t,w)™! =

o(—t,0,w) for every t € T.

We now give the definition of random set, which is a basic concept for RDS.

Definition 1.3. Let X be a metric space with a metric dx. A set-valued map w — D(w) taking
values in the closed /compact subsets of X is said to be a random closed/compact set if the map-
ping w — distx (x, D(w)) is measurable for any x € X, where distx (z, B) := inf,cp dx(z,y). A
set-valued map w — U(w) taking values in the open subsets of X is said to be a random open

set if w+— U(w) is a random closed set, where U° denotes the complement of U.
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Definition 1.4. A random set D is said to be forward invariant under the RDS ¢ if ¢ (¢, w)D(w) C
D(6,w) for all t > 0 almost surely; It is said to be invariant if ¢(t,w)D(w) = D(fw) for all

t > 0 almost surely.

Now we enumerate some basic results about random sets in the following propositions, for
details the reader can refer to Arnold [12], Castaing and Valadier [22], Chueshuv [23], Crauel
[24], Hu and Papageorgiou [25].

Proposition 1.5. Let X be a Polish space, then the following assertions hold.

(i) D is a random closed set in X if and only if the set {w : D(w) (U # 0} is measurable for
any open set U C X.

(ii) if D is a random closed set, then so is the closure of D¢.

(iii) if D is a random open set, then the closure clD of D is a random closed set; if D is a
random closed set, then intD, the interior of D, is a random open set.

(iv) D is a random compact set in X if and only if D(w) is compact for every w € Q and the
set {w: D(w) [ C # 0} is measurable for any closed set C' C X.

(v) if {D,,n € N} is a sequence of random closed sets with non-void intersection and there
exists ng € N such that D, is a random compact set, then [, .y Dy is a random compact set
in X.

(vi) if f: 2 x X — X is a function such that f(w,-) is continuous for all w and f(-,x) is
measurable for all z, then w — f(w,D(w)) is a random compact set provided that D is a
random compact set.

(vii) if D is a random closed set, then graph(D) := {(w,z)|x € D(w)} is a measurable subset
of F x B(X); conversely, given D : Q — 2% taking values in the closed subsets of X, if
graph(D) € F x B(X), then D is an F“-measurable (in particular, F*-measurable, with F*
being the completion of the o-algebra F with respect to the measure P) random closed set, i.e.
the mapping w +— distx (z, D(w)) is F“-measurable for any = € X;

(viii) if D is an F'-measurable random closed set, then there exists a F-measurable random
closed set D such that D = D almost surely.

(ix) (Measurable Selection Theorem). Let a multifunction w — D(w) take values in the subspace
of closed non-void subsets of X. Then D is a random closed set if and only if there exists a

sequence {v, : n € N} of measurable maps v,, :  — X such that
vp(w) € D(w) and D(w)={v,(w),n € N} forall weQ.

In particular if D is a random closed set, then there exists a measurable selection, i.e. a
measurable map v :  — X such that v(w) € D(w) for all w € Q.

(x) (Projection Theorem). Let X be a Polish space and M C € x X be a set which is measurable
with respect to the product o-algebra F x B(X). Then the set

oM ={weQ: (w,z) € M for some z € X}

-3
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is universally measurable, i.e. belongs to F*, where Il stands for the canonical projection of

Q x X to Q. In particular, it is measurable with respect to the P-completion F* of F.

Definition 1.6. Assume that D is a random set, then the omega-limit set of D, Qp, is defined
to be

Qp(w) := ﬂ U o(s,0_sw)D(0_sw).

t>0 s>t

Definition 1.7. For given two random sets D and A, we say A (pull-back) attracts D if
tlim d(p(t,0_w)D(0_w)|A(w)) =0
—00

holds almost surely, where d(A|B) stands for the Hausdorff semi-metric between two sets A, B,
i.e. d(A|B) = sup,¢inf,cpdx(z,y); and we say A attracts D in probability or weakly attracts
D if

P— tlirglo d(p(t,w)D(w)|A(frw)) = 0.

2 Morse decomposition for random dynamical systems

We now introduce “backward orbit” for random semiflow:

Definition 2.1. (i) For fixed w and z, a mapping o.(w) : R~ — X is called a backward orbit
of ¢ through x driven by w if it satisfies the cocycle property:

oo(w) =z, opys(w) = p(s,0;w) o oy(w) for V¢ < 0,8 > 0,t+ s <0.

(ii) Let M denote the set of all X-valued random variables and x € M. A mapping o : R~ — M
is called a backward orbit of ¢ through x if for all w € €2, the following cocycle property holds:

oo(w) = z(w), orrs(w) = (s, 0iw) o op(w) for ¥Vt < 0,5 > 0,t+ s <0.
Also we can introduce “entire orbit” for random semiflow:

Definition 2.2. (i) For fixed w and x, a mapping o.(w) : R — X is called an entire orbit of ¢
through x driven by w if it satisfies the cocycle property:

oo(w) =z, opps(w) = (s, 0w) o op(w) for vVt € R, s > 0.

(ii) Let z € M. A mapping o : R — M is called an entire orbit of ¢ through z if for all w € ,
the following cocycle property holds:

oo(w) = z(w), ows(w) = (s, 0w) o op(w) for Vt € R, s > 0.
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By the cocycle property of o, it is clear that for arbitrary £ > 0 and w € €2 we have
oi(w) = p(t,w) o op(w).

That is, when an entire orbit o of ¢ is restricted to Rt (called forward orbit), then it coincides
with the orbit of ¢, which is the same as the deterministic case.
We can give an alternative definition of (forward, backward) invariant sets for random

semiflow:

Definition 2.3. (i) A random set D is called forward invariant if D = D} almost surely, where

D} (w) = {z]p(t,w)z € D(Ow) for all t > 0};

(ii) A random set D is called backward invariant if D = D_ almost surely, where
D (w) := {z[3 a backward orbit o in D through z, i.e. o¢(w) € D(fiw),Vt < 0};
(iii) A random set D is called invariant if D = D, almost surely, where
D,(w) := {z|3 an entire orbit ¢ in D through z, i.e. oy(w) € D(6w),Vt € R}.

Remark 2.4. (i) Clearly a random set D is invariant if and only if it is both forward invariant
and backward invariant.

(ii) The forward invariant set and invariant set defined in Definition 2.3 coincide with that of
Definition 1.4. The equivalence of forward invariance is obvious. Invariance in Definition 2.3
clearly implies invariance in Definition 1.4. If D is invariant in the sense of Definition 1.4, for
x € D(w) and any k € N, by the fact ¢(k,0_jw)D(0_rw) = D(w), there exists z; € D(0_jw)
such that p(k, 0_yw)x, = x. Then o(w) := p(k+t,0_rw)z), € D(0;w) by the invariance of D in
the sense of Definition 1.4, for t € [—k,0]. Similarly, by ¢ (1, 0_ 4 1)w)D(0—(r41yw) = D(0_pw),
there exists @41 € D(0_(r41)w) such that ¢(1,0_(p11)w)zri1 = 2. Inductively in this way,
we obtain a backward orbit through x, hence D is invariant in the sense of Definition 2.3.

(iii) If Dy and D, are forward invariant, then clearly D;UDy and DN D5 are forward invariant;
If D; and D, are invariant, then clearly D; U Dy is invariant, while D1 N Dy is not necessarily
invariant (since Dy N Dy is not necessarily backward invariant), which differs from random flow

case, see page 35 in [12].

It is known that given an invariant random set D and = € D(w), there exists a backward
orbit lying on D through x. A natural question is, for any random variable z € D, does there

exist a backward orbit lying on D through x7 The answer is yes, see the following lemma.

Lemma 2.5. Assume that D is an invariant random closed set, then for any random variable

on D there exists a backward orbit lying on D through this random variable.
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Proof. We know that, for given k € Z~ and for each w, there exists an Zy(w) € D(0w) from
which we obtain a backward orbit from time k to time 0 (present time). Hence we need only
to show that we can select appropriate Zj such that the mapping w — Zj(w) is measurable.
In other words, we need to show o5, € M, which implies o, € M, Vk < s < 0. For arbitrary
t > 0, denote p~!(¢,w)x the preimage of z under ¢. Consider the semiflow © corresponding to
@, given by O;(w,x) := (Oyw, p(t,w)z), which is an F x B(X )-measurable mapping from Q x X
to itself for fixed ¢ > 0. The preimage of (w,z) under 0, is ©; *(w,z) = (0_;w, o~ (t,w)x).

Since D is a random closed set, we have
graph(D) := {(w,z)|z € D(w)} € F x B(X)

by Proposition 1.5 (vii). Hence we have ©; ' (graph(D)) € F x B(X) by the measurability of
©;. It is cleat that
graph(D") = ©; " (graph(D(0w))),

where

DY (w) := ¢ ' (t,w)D(Ow).
Therefore D' is an F“-measurable random closed set, by Proposition 1.5 (vii) again. By
Proposition 1.5 (viii) we may assume that D' is an F-measurable random closed set. In
particular, for given k € Z~, D™% N D is a nonempty random closed set by Proposition 1.5
(vii) and (viii). By the measurable selection theorem (see Proposition 1.5 (ix)), we can choose

a random variable & € D% N D. This completes the proof. O

Throughout this section, we use S to denote the invariant random compact set we will
decompose, say, S is a global random attractor. By Lemma 2.5, for any point (random variable)
on S, there exists backward orbit lying on S through this point (random variable). Afterwards,
when we say backward orbits, we refer those lying on S unless otherwise stated (since there

may be backward orbit not lying on S but lying on the entire state space — X).

Definition 2.6. An invariant random compact set A C S is called a (local) attractor if there
exists a random open neighborhood U of A relative to S such that Qpy(w) = A(w). (without
loss of generality, we can assume that U is forward invariant.) The basin of attraction of A is
defined by

B(A)(w) :={z € S(w)|e(t,w)z € U(bw) for some t > 0}

and the repeller R corresponding to A is defined by
R(w) = S(w)\B(A)(w).
(A, R) is called an attractor-repeller pair.

Note that since S is a random compact set, by Lemma 3.2 in [17] (the proof of Lemma 3.2

is also applicable here), B(A) is independent of the choice of U.

- 6-
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Lemma 2.7. Assume that (A, R) is an attractor-repeller pair in S, then A, B(A), and R are

invariant random sets.

Proof. (i) The invariance of A follows immediately from its definition.

(ii) The forward invariance of B(A) follows directly from the definition of B(A) and the forward
invariance of U. For arbitrary x € B(A)(w), if for any backward orbit o through z, there exists
some ty < 0 such that oy, € R(0;,w). By the definition of R, we know that any point in R can

not enter into B(A) in positive time, so we obtain that R is forward invariant. Therefore,
o(—to, Oy, w)or, (W) = 0p(w) = x € R(w),

a contradiction. That is, B(A) is backward invariant.
(iii) By (ii) we only need to show the backward invariance of R. For arbitrary x € R(w), if for
any backward orbit ¢ through z, there exists some t, < 0 such that o, € B(A)(0;,w). Then

by the forward invariance of B(A), we have
P(—to, Or,w)or, (w) = 00(w) = x € B(A)(w),
a contradiction. Hence R is backward invariant. L]

Remark 2.8. Denote B(R)(w) := S(w) \ A(w) for each w.

1. Similar to the proof of Lemma 2.7 (ii), we obtain that if D C S is forward invariant, then
D¢ := S\ D is backward invariant set. Furthermore, D¢ is strongly backward invariant
in the sense that any backward orbit through the point (hence the random variable, note
that the backward orbit through a random variable is a choice of a backward orbit through

a point) on S lies on D°.

2. Observe that different from the random flow case, the complementary of a backward
invariant set need not be forward invariant. Particularly, B(R) is not necessarily forward

invariant since the forward orbit through the point in B(R) may enter A.

3. Since A is forward invariant, B(R) is strongly backward invariant. Similarly, the random
set S\ (AUR) is strongly backward invariant, but not necessarily forward invariant. Note
that the forward orbit through the point in S\ (AU R) can enter A, but never enter R.

4. Note that if a random set D C S is strongly backward invariant in the above sense, then
D¢ is forward invariant. That is, the reason that the complementary of a backward in-
variant set is not necessarily forward invariant lies in that the set is not strongly backward

invariant.
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Definition 2.9. Assume that z is a random variable in S, and ¢ is an entire orbit through x.

Then the omega-limit set Q, and the alpha-limit set Q% of o are defined to be

0 (w) = () Ulo0-w)}

T>0¢>T
and
Q5 (w) == ﬂ U{a,t(étw)},
T>0>T
respectively.

It is clear that

Qo (w) := () ULt 0-w)z(0_1w)},

T>0t>T
i.e. the omega-limit set of o only depends on the random variable x, so €2, can also be denoted
by Q,; while the alpha-limit set depends on the entire orbit o. Clearly a point y € Q,(w)
(respectively y € Q% (w)) if and only if there exist sequences t,, — 400 (respectively t,, — —00)

and y,, = 0y, (6_;,w) such that y, — y as n — +o0.

Lemma 2.10. Assume that x is a random variable in S, and o is an entire orbit through x.

Then Q, and Q% are invariant random compact sets.

Proof. The random variable x can be regarded as a random set consisting of just a single point,
so ), is an invariant random compact set.
For arbitrary y € Qf (w), there exist sequences ¢, — 400 and y,, = o_4,(6;,w) such that
Yn — Yy as n — +oo. For s > 0, we have
plswly = lim p(s,w) oo, (0;,w)

= lim ¢(s,w)o0_4, (6;,_s00sw)
n—-+oo

= n1—1>1’-'£100 O-S_tn (etn_s o esw)

= lim o_, (6, ofsw) (lett, —s=1,)
n—-+oo

€ (Ow),

where the 1st equality holds by the continuity property of ¢ with respect to x, the 3rd equality
holds by the cocycle property of o, and the last inclusion relation holds by the definition of €27.
This verifies the forward invariance of 2.

For arbitrary y € Q% (fsw) with s > 0, there exist sequences t,, — 400 and y,, = o_¢, (6, o
Osw) such that y, — y as n — +o00. Then we have

y= lim o_4 (6;, o6sw)
n—+oo
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= lim o_(;,_5(0,—s00w) (lett,+s=1,)

n—-+oo

= lim <)0(s7w)0——7'n(97'n,—3098w)
n—-+o0o

= lim ¢(s,w)o_., (0,,w)
n—-+oo

= o(s,w) lim o, (6,)

= p(s,w)z,

where the last two equalities hold by the pre-compactness of {o_, (0, w)ln € N}, and by
taking a subsequence we assume that the subsequence converges to x € 7. This verifies
QF (Osw) C (s, w)Q(w).

Therefore, we have showed that ¢(s,w)Q%(w) = Q% (fsw), hence completed the proof. [J

Lemma 2.11. Assume that x is a random variable with o being an entire orbit through x, and
A is a random attractor with R being the corresponding repeller. Then we have:

(i) if © € R almost surely, then Q, C R and 2 C R almost surely;

(i1) if x € B(A)\A almost surely, then Q, C A and Q). C R almost surely;

(iii) if € A almost surely, then Q, C A almost surely; if Q0% C A almost surely, then o lies
on A almost surely, i.e. for arbitrary t € R, we have oy C A almost surely;

(iv) if x € B(A) almost surely, then Q, C A almost surely; if x € B(R) := S\ A almost surely,
then Q) C R almost surely.

Proof. (i) By the forward invariance of R, the former is obvious. By the forward invariance of
B(A) we obtain that all backward orbits through x must lie on R, so by the definition of Q2
we have 0% C R almost surely.

(ii) The former follows directly from Lemma 4.3 in [20] (it is clear that Lemma 4.3 also
holds for random semiflow). Assume that U is a forward invariant random open neighborhood
of A relative to S such that Qy = A and let V = S\U. For arbitrary random variable y € V|
let 0¥ be a backward orbit through y. Then by the forward invariance of U, ¢¥ lies on V. Hence
we have 2, C V almost surely. If Q¥, ¢ R with positive probability, letting Ry := R U,
then R; is an invariant random compact set by Lemma 2.10 and Remark 2.4 (iii). Then we
can choose a random variable z such that z € R; almost surely and z € R;\R with positive

probability. On one hand, €2, C R; almost surely by the invariance of R;, which implies

P — lim d(e(t,w)z(w)| Ry (frw)) = 0.

t—o0
On the other hand z € B(A) with positive probability, which implies that
Tim d(p(t, )2(w) [ A(6)) = 0
with positive probability, a contradiction to the fact that R; N A = ) almost surely. Therefore,

for arbitrary random variable y € V', we have 27, C R almost surely.

9.
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Let U, :== ¢(n,0_,w)U(0_,w), n € N, then we have U, C U, by the forward invariance
of U. Moreover, each U, is a forward invariant random open neighborhood of A relative to S
and Q= A. Clearly we have

Alw) = nlggo Up(w).
Letting V,, = S\U,, for arbitrary random variable z € V,,, we have Q. C R almost surely
by the above argument. Since n is arbitrary, for arbitrary random variable in S\ A with a
backward orbit o, we have % C R almost surely. This completes the proof of (ii).

(iii) The former is trivial. Since A is forward invariant, any backward orbit through a
random variable in S\ A must lie on S\ A. If there exists some ¢y, € R such that P{w|oy,(w) ¢
A(fy,w)} = d > 0, then for all s < ¢y we have P{w|os(w) ¢ A(Osw)} > 0, i.e. P{w|os(w) C
S(0sw)\A(Osw)} > 6. Then by the proof of (ii) it follows that €} C R with positive probability,
a contradiction to the fact that QF C A almost surely.

(iv) The former follows directly from (ii) and (iii), while the later has been proved during
the proof of (ii). O

Remark 2.12. Similar to the proof of Lemma 2.11 (iii), if Q, C R a.s., then 0, € R a.s. for all
teR.

Definition 2.13. Assume that (A;, R;) are attractor-repeller pairs of ¢ on the invariant random

compact set S with
D=4 A G- CA,=Sand S=Ry 2R 2 2R, =0.
Then the family D = {M;}" ; of invariant random compact sets, defined by
M, =A;NR;_1, 1 <i<n,

is called a Morse decomposition of S, and each M; is called Morse set. If D is a Morse
decomposition, Mp is defined to be U?:l M;.

Remark 2.14. (i) Fori # j,say i < j, M;NM; = A,NR,_1NA;NR;_; C A,NR;_1 C AiNR; = 0.
(ii) Each Morse set M; is invariant, which is trivial if ¢ is a random flow, but requires explanation
in the case of random semiflow. Clearly each M; is forward invariant. For any point = €
M;(w) = Ai(w) N R;_1(w), there exists a backward orbit ¢ in A; by the backward invariance of
A;. By the forward invariance of R ; = B(A;_1), any backward orbit through a point in R; 1

must lie on R; ;. Hence we have o lying on M;, i.e. M; is backward invariant.

Lemma 2.15. Assume that A is an attractor in S with a forward invariant neighborhood N C S
and the basin of attraction B(A) C S. Then for arbitrary random closed set K C B(A), there

exists a measurable mapping w — Tk (w) > 0 such that, for P-almost all w € ), we have

p(t,w)K(w) C N(fw), Vit > T (w). (2.1)

- 10 -
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Proof. For given K C B(A) and Vx € K(w), there exists a 7(w, x) such that
o(T(w, x),w)r € INtN (Or(,0)w)

by the definition of basin of attraction. So there exists an open neighborhood U(w, z) of = such
that
o(1(w, x), w)U(w, ) C intN (0 w).

By the compactness of K(w), there exists a finite collection of such neighborhoods suffice to
cover K (w). So there exists a 7(w, K) such that o(7(w, K),w)K(w) C intN (0., xyw)-
Let
Tk (w) = inf{t > 0|p(t,w)K(w) C N(6w)}.

By the above argument, Tk (w) is finite. By the measurable selection theorem, we have
d(K(w)|N(w)) = sup ignfd(xn (W), Yym(w)),

where z,,y,, are two sequences of random variables such that K(w) = {z,(w),n € N} and

N(w) = {ym(w),m € N}, respectively. Hence the mapping w +— d(K (w)|N(w)) is measurable.

For arbitrary a > 0, by the forward invariance of IV, we have

{wTk(w) > a} = [ {wldlp(s,w)K(w)|N(0w)) > 0}.
s<a,s€Q
So the mapping w — Tk (w) is measurable. This completes the proof. O

Lemma 2.16. Assume that A is a random attractor in S and B(A) C S is the corresponding
basin of attraction. Then for any random closed set D C B(A), A pull-back attracts D.

Proof. Assume that N is a forward invariant neighborhood of A, then by Lemma 2.15 we know
that for any random closed set D C B(A) there exists a measurable Tp > 0 such that, for
P-almost all w € €,

o(t,w)D(w) C N(bw), Vit > Tp(w).

Hence for given non-random e > 0 and given non-random k£ € N, there exists non-random
ke > 0 such that P{w|Tp(0_rw) < ke} > 1 —€. So we have

P{wlp(t,0_t 0 0_jw)D(0_; 0 0_jw) C N(0_xw),t > ke}
=P{w|p(t,0_rw)D(0_w) C N(0;00_jw),t > k.}
>1—c¢

by the measure preserving property of ;. Hence

P{w|p(k, 0_rw) o p(t,0_ 0 0_rw)D(0_; 0 0_jw)
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C (P(k,H,kOJ)N(G,kW),t > l{?e} >1—ce

Therefore,

P{w| | @t + k, 0__xw)D(0_,_4w) C @(k,0_yw)N(0_rw)} > 1 —e.

t>k,

By the definition of omega-limit set, we obtain that
P{w|Qp(w) C o(k,0_rw)N(0_rw)} > 1 —€.
Since € > 0 is arbitrary, we have Qp C p(k,0_jw)N(0_,w) P-a.s. Thus

Qp(w) C () @lk, O_rw)N(O_rw) = Qy(w) = Aw)

keN

holds for P-almost all w € . Here (), .y @(k,0_rw)N(0_rw) = Qn(w) holds because N is

forward invariant, which follows that
o(t,0_1w)N(0_w) C @(s,0_sw)N(0_sw), Vt>s.
Note that Qp pull-back attracts D, so A also does. This completes the proof of the lemma. [

Lemma 2.17. Assume that Ay, A C S are two random attractors with basins of attraction
B(Ay), B(As), respectively. Assume that D is a random compact set satisfying D C B(A;) U
B(A3) almost surely. Then Ay U Ay pull-back attracts D.

Proof. Choose a random compact set D; C B(A;) almost surely and choose Dy C B(Aj)
almost surely such that D C Dy U Dy almost surely. Therefore, by (ii) and Lemma 2.16, we

obtain for P-almost all w
QD((A)) C QD1UD2 ((.U) = QDl (CU) U QD2(CU) C Al((U) U AQ((U)

By the definition of omega-limit set, it is clear that Qp pull-back attracts D, so A; U A,
pull-back attracts D. This completes the proof. O

Remark 2.18. It is obvious that the result of Lemma 2.17 holds for finite case, i.e. if the random

compact set D C |J;—, B(A;) almost surely, then (), A; pull-back attracts D.

Theorem 2.19. Assume that D = {M;}"_, is a Morse decomposition of S, determined by
attractor-repeller pairs (A;, R;), i = 1,...,n. Then Mp determines the limiting behavior of ¢

on S. Moreover, there are no “cycles” between the Morse sets. More precisely, we have:

(i) For any random variable x in S, there exists an entire orbit o through x such that Q, C Mp

and Q) C Mp almost surely.

- 12 -
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(i) If o is an entire orbit through the random variable x satisfying that Q, C M, almost surely
and % C M, almost surely for some 1 < p,q < n, then p < q; Moreover, p = q if and

only if o lies on M,.

(iii) If o1,...,0, are l entire orbits through the random varibales 1, ..., x; respectively such
that for some 1 < jo,...,5 < n, Qy C M, and 2 C My, for k =1,...,1, then
Jo < g1 Moreover, jo < j; if and only if o does not lie on Mp with positive probability

k—1

for some k, otherwise jo = ---= jj.

Proof. (i) Since
D=R{& R & &R, =S5,
let R; = RS\R¢ ,. Then S = Ui, R; almost surely and R; = B(A;)\B(A;_). Hence for

arbitrary random variable in R;, it is attracted by A; but not by A;_;. For arbitrary random
variable z in S, choose n random variables xy,...,z, such that x; € I:Ei almost surely and
z(w) = z;(w) when w € Q;, where Q; := {w|z(w) € Ry(w)},i=1,...,n. By the fact z; € R; =
R{N R;_1 we know that x; is attracted by A; N R;_1 = M, almost surely. Then by Lemma 2.17

we obtain for P-almost all w

n n

Qp(w) = Q(w) C U Q.. (w) C U M;(w) = Mp(w).

Since

S=A;2A72-- 24, =0,
let A; = A5 \AS = B(Ri_,) N A;, i = 1,...,n. Then S = |JI_, 4; almost surely. By (iv)

of Lemma 2.11, for given random variable z € A;, we have Q C R;_; almost surely for any
backward orbit o through z. Since z € A; C A;, by the invariance of A;, there ewists a
backward orbit o through x lying on A; (we can not guarantee generally that any backward
orbit through = must lie on A;). Hence for this o we have Q% C A; almost surely. Therefore,
we have obtained that for any random variable € A;, there exists a backward orbit o through
it such that Q C A; N R;_y = M, almost surely. For arbitrary random variable y € S, choose
n random variables ;, i = 1,...,n such that y; € A; almost surely and y(w) = y;(w) when
w € Q;, where Q; := {w|y(w) € A;(w)}. By above argument, for each i, there exists a backward
orbit o; through y; such that 27 C M; almost surely. “Attaching” the corresponding parts of
these 0;’s together when y lies on flz-, we obtain a backward orbit ¢ through y. By the choice
of o, we have . .
o c|Jos, UM =Mp
i=1 i=1
almost surely as desired.
(ii) Since Q, C M, = A, N R, almost surely, we have z € Aj_, almost surely. By the
fact that Qf C M, = A, N R,_; almost surely, we have o lying on A, almost surely by (iii) of

- 13-
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Lemma 2.11. In particular, og = x € A, almost surely. Hence we have x € A7 | N A, almost
surely. If ¢ < p, then A, C A, 1, hence A, N A7, = (0 almost surely, a contradiction.

If o lies on M, then we have Q,,Q; C M, almost surely by the fact that M, is an
invariant random compact set. That is, we must have p = ¢q. Conversely, if p = ¢, the fact
Q, =Q, C M, =A,NR,_; implies x € R,_; almost surely. It follows that o lies on R,_; since
any backward orbit through a random variable in R,_; must lie on it. } C M, = A, N R,
implies that o lies on A, by (iii) of Lemma 2.11. So we have obtained that o lieson A,NR,_; =
M, almost surely.

(iii) follows from (ii) immediately. O

Remark 2.20. In (i) of Theorem 2.19, we obtain that, for given random variable z, there exists
an entire orbit through x satisfying 2, C Mp and Q) C Mp almost surely. While in the
deterministic case, any entire orbit has this property, see [1] for the flow case and [10] for the
semiflow case. But their methods are not applicable here. We are not sure whether the similar

result holds for random semiflow.
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