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Abstract

Light dark matter (DM) models with isospin violation (ISV) and large DM-nucleon spin-

independent cross section σn may provide a way to understand the confusing DM direct detection

experimental results. Combining with stringent astrophysical and collider constraints, we can fur-

ther deduce the DM properties. In light of general operator analyses, we systematically study the

ISV operators with fn/fp < 0, and show that the required ISV fn/fp ≃ −0.7 must arise from the

DM and first-family quark couplings. Then we discuss three kinds of the ISV models classified

by the mediators: a light Z ′ gauge boson in the extra U(1)X model, a (approximate) spectator

Higgs doublet, and color triplets. In particular, the spectator Higgs doublet model can explain the

Tevatron CDF W + jj anomaly simultaneously. In addition, although the U(1)X gauge boson Z ′

which has kinetic mixing with U(1)Y gauge boson only generates fn = 0, we can combine it with

the conventional Higgs Yukawa couplings to achieve the proper ISV. Especially, most of our models

can address the recent GoGeNT annual modulation as well as all the other DM direct detection

experiments. As a concrete example, we propose the U(1)X model where the U(1)X charged light

sneutrino is the inelastic DM (iDM), and dominantly decays to the light dark states such as Z ′

(MZ′ <1 GeV). With ISV it is consistent with all the DM direct detection experiments and satisfies

all the other constraints.
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I. INTRODUCTION AND MOTIVATION

The way that dark matter (DM) interacts with nucleons is a puzzle by virtue of the

absence of confirmative experiments results. The recent possible progress made on direct

detections may shed light on it. On the one hand, the events from the DAMA/LIBRA [1]

and CoGeNT [2] experiments imply a light DM (LDM) with mass around 8 GeV and a rather

large spin-independent (SI) cross section with nucleon σn ∼ 2× 10−4 pb and σn ∼ 5× 10−5

pb, respectively. On the other hand, the null results from XENON [4] and CDMS [3]

experiments challenge the CoGeNT/DAMA results. Moreover, for the CoGeNT/DAMA

favored DM there may be some expected signals (but not found) from astrophysics or collider

experiments. So how to reconcile these results in a natural way may guide us to identify

some of DM properties.

DM-nucleus interactions with isospin-violation (ISV) may provide an interesting way to

reconcile various direct detection experimental results [5]. ISV is not a novel phenomena [6,

7], which arises when the DM interactions with proton and neutron have different strengths,

fp 6= fn. If fn/fp < 0 the amplitudes between the DM-proton and DM-neutron destructively

interfere, leading to a cancellation in the DM-nucleus amplitude. The degree of cancellation

varies with the concrete nucleus used in the detector target. In this way, the strongest

constraints from XENON are substantially weakened by taking fn/fp = −0.7, especially,

the CoGeNT/DAMA regions may overlap [5]. But this region is excluded by the CDMS-Ge

experiment which use the same atom as the CoGeNT experiment.

However, if one only considers annual modulation (the observed CoGeNT annual mod-

ulation with significance of 2.8σ [8]), inelastic DM (iDM) scenario [9] is able to enhance

modulation and reduce tension between CDMS-Ge and CoGeNT. The Ref. [10] found that

taking fn/fp = −0.7 and the upper-limit quenching factor QNa = 0.43, one can address all

the confusing experimental results consistently via an iDM ∼10 GeV with mass splitting

δ ≃ 15 keV. On the other hand, right now the direct detection experiments may have reached

the level to distinguish fn and fp [11]. Once determined, they definitely convey information

on the DM-quark interactions. In a word, it is worthy of studying the LDM models with

ISV systematically.

Inspired by the aforementioned facts, in this work we make rather thorough analyses on

the LDM models with ISV, focussing on the scalar and fermionic DMs. We outline the

generic characters for the LDM models:

• Proper ISV fn/fp ≈ −0.7. How to get this ISV is highly non-trivial. In fact, we shall

show that the conventional mediators, such as the Higgs/Z/squarks fail to accommo-

date this value at least in the case of a single dominated mediator. So, we need to

investigate the new mediators beyond them.
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• Large DM-nucleon SI scattering cross section σn ∼ 10−2 pb. In the ISV models,

the nucleus amplitude is reduced by destructively interference. So σn is required to

be about 2 orders larger than the conventional scenario. However, such large cross

section will bring tension (or even be excluded) with some astrophysical or collider

constraints.

• Right DM relic density ΩDMh
2 ≃ 0.11. We may relax this constraint by allowing

possible new annihilation channels beyond the Standard Model (SM) fermions as final

states. In actual model building, LDM usually can annihilate to light dark sector

states, which will be very helpful sometime.

• The possible minimal models which may explain the other new physics as well. Espe-

cially, we try to account for the Tavetron physics such as the CDF W+2jets anoma-

lies [12].

In this paper, we systematically study the ISV operators with fn/fp < 0 via the effective

operaror analyses. In particular, we show that the required ISV fn/fp ≃ −0.7 must arise

from the couplings between the DM and first-family quarks. Moreover, we propose three

kinds of the ISV models classified by the mediators: a light Z ′ gauge boson in the extra

U(1)X model, a (approximate) spectator Higgs doublet, and color triplets. Interestingly, the

spectator Higgs doublet model can explain the Tevatron W + jj anomaly simultaneously. In

addition, combining the U(1)X gauge boson Z ′ which has kinetic mixing with U(1)Y gauge

boson with the conventional Higgs Yukawa couplings, we also obtain the proper ISV. We

emphasize that most of our models can address the recent GoGeNT annual modulation as

well as all the other DM direct detection experiments. To be concrete, we propose the U(1)X

model where the U(1)X charged light sneutrino is the inelastic DM (iDM), and dominantly

decays to the light dark states such as Z ′ (MZ′ <1 GeV). With ISV it is not only consistent

with all the DM direct detection experiments but also satisfies all the other constraints.

The paper is organized as follows. In Section II, we make some general effective operator

analyses for the dark matter models with ISV. In Section III, we present three kinds of the

ISV models by considering the different mediators. In Section IV, a concrete model with

sneutrino iDM is discussed. Conclusion and discussions are given in Section V, and finally

some useful formulas are collected in the Appendices.

II. GENERIC OPERATOR ANALYSES

Let us address the setup for generic operator analyses which simplify the discussions.

The ISV mainly comes from the different U(1)X charges for uR and dR quarks, or from the
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different Yukawa couplings between the DM and the first-family quarks.

A. Effective ISV Operators for the CoGeNT/DAMA Experiments

General anatomy of the interactions between the DM and SM fields involves a large class

of effective operators ODMf̄Γf with Γ = 1, γµ, γ5... where f is the SM fermion, and ODM

denote the corresponding DM bilinear operators. However, they are greatly reduced if we are

just interested in the operators that are relevant to the CoGeNT/DAMA experiments. And

we can further recover their SU(3)C × U(1)EM−UV completion by specifying the possible

mediators that connect the DM and the SM fermions, please see the Appendix A for details.

At first, we pick out the operators generating SI cross sections, and only three of them

are not non-relativistic (NR) suppressed [13, 14]:

q̄q, q̄γµq, (Ga
µν)

2. (1)

In a concrete model, only a subset of them maybe generated simultaneously. Obviously, the

gluon operators can not generate ISV and then are dropped in our discussions. Converting

to the operators on the DM-SM particle interactions, we obtain the scalar and vector inter-

actions, which are respectively given in Eqs. (2) and (3). In this paper, we use aq and bq to

describe the operator coefficients for the scalar and vector type interactions, respectively.

aqiχ̄χq̄iqi, aqiφ
†φq̄iqi, (2)

bqiχ̄γ
µχq̄iγµqi, bqiφ

†∂
↔

µφq̄iγµqi, (3)

where χ is a fermionic DM while φ is a scalar DM. If χ is Majorana or φ is real, then the cor-

responding vector interactions vanishes automatically. Operators χ̄γ5χq̄q and χ̄γµγ5χq̄γµq

also generate SI cross section, nevertheless NR suppressed. In our notation, q = u, d denotes

the up- and down-type quarks respectively, with i the family index (all fields are written in

the mass eigenstates). We will show that only the first-family quarks are crucial to produce

ISV. To suppress the potential large flavor violation, the quark bilinears are supposed to

be diagonal in the flavor space. But in some cases, we will find that this assumption is not

hold so naively. The operator coefficients aq and bq are assumed to be suppressed by high

threshold scale (e.g., mass scale of mediator) Λ ≫ MDM unless we specify.

Next, there are other operators that do not contribute to the leading order SI cross section

in the NR limit, nevertheless usually generated together with the other operators in Eq. (2)

and Eq. (3) in a UV completed theory. Interestingly, they are important to determine the

relic density of DM. The indirect detection signals and the annihilation rates from these

operators are collected in the Appendix A. To be concrete, we present these operators in
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the following

χ̄γ5χf̄γ5f, χ̄χf̄γ5f, χ̄γ5χf̄f,

χ̄γ5γµχf̄γ
5γµf, χ̄γµχf̄γ

5γµf, χ̄γ5γµχf̄γ
µf,

χ̄σµνχf̄σµνf, χ̄σµνγ5χf̄σµνf,

|φ|2f̄γ5f, φ†∂
↔

µφf̄γ
µγ5f... . (4)

For the LDM we only have to consider the SM states lighter than MDM which the LDM

can annihilate into. So Eqs. (2)-(4) give a general effective operator description on the DM

models inspired by the CoGeNT/DAMA experiments. Having established the setup, in the

following we shall investigate the ISV from scalar and vector interactions.

First let us consider scalar interactions given in Eq. (2). To construct the DM-nucleon

effective operators from microscopic DM-quark interactions, we must calculate the quark

bilinear matrix elements in the nucleon states. In the case of scalar interaction, they are

given by

mq〈n|q̄q|n〉 = mnf
(n)
Tq

, (5)

where n denotes either the proton or neutron, and mq the quark mass. For the light quarks,

the form factors f
(p)
Tu

= 0.020 ± 0.004, f
(n)
Tu

= 0.014 ± 0.003, f
(p)
Td

= 0.026 ± 0.005, f
(n)
Td

=

0.036± 0.008, and f
(p,n)
Ts

= 0.118± 0.062 [15]. The heavy quarks q = c, b, t contribute to the

nucleon mass through the triangle diagram [16] as follows

mq〈n|q̄q|n〉 =
2

27
mn

(
1−

∑

q=u,d,s

f
(n)
Tq

)
≡ 2

27
mnf

(n)
TG

, (6)

where fTG
≃ 0.84 and 0.83 for the proton and neutron respectively. Through the above two

equations, we get the DM-nucleon effective couplings

fn ∝ an =mn

[
∑

q=u,d,s

aq
f
(n)
Tq

mq
+

2

27

(
1−

∑

q=u,d,s

f
(n)
Tq

)
∑

c,b,t

aq
mq

]
≡

∑

q=quarks

Bn
q aq, (7)

where the dimensionless quantities Bn
q ≡ f

(n)
Tq

mn/mq, encoding the ISV in the nucleus itself.

We use the quark masses: mu = 0.002 GeV, md = 0.005 GeV, ms = 0.095 GeV, mc = 1.25

GeV, mb = 4.2 GeV, mt = 172.3 GeV. Then we get

Bp
u ≈ 9.3, Bn

u ≈ 6.5, Bp
d ≈ 5.1, Bn

d ≈ 7.1, (8)

Bp,n
s ≈ 1.2, Bp,n

c ≈ 0.05, Bp,n
b ≈ 0.015, Bp,n

t ≈ 0.00035. (9)

By the way, in Eq. (7) fn = an for a fermionic DM. Whereas for s scalar DM aq has dimension

+1, and if the DM-nucleus SI scattering cross section written in the form of Eq. (B1), then

actually fn = an/2MDM. Hereafter we will absorb the 1/2MDM into aq for the scalar DM.
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Remarkably, from Eqs. (7)-(9) it is obvious that only the DM and u/d quark interactions

break isospin effectively. Immediately, we draw the conclusion: if scalar interactions account

for CoGeNT/DAMA experiments, the DM and first-family quark interactions must give the

predominant contribution. Then the ISV fn = Ifp transformed into quark level is simply

given by

au
ad

≃ IBp
d −Bn

d

Bn
u − IBp

u
< 0, (10)

and the ratio is about −0.77 for I = −0.7 (throughout this work, we shall use this ISV as

a referred value, as well the referred DM mass MDM = 8 GeV). Furthermore, the general

effective DM-proton couplings with ISV can be organized in such a form

fp ≃
(
Bp

dB
n
u − Bn

dB
p
u

Bn
u − Bp

uI

)
× ad ≃

10−5

√
δC

GeV−2 (11)

It is factorized into DM-quark effective coupling and a model-independent factor casted in

the bracket, which takes value −2.5 for I ≃ −0.7. We typically require DM-proton SI cross

section σp = 0.01 pb, in turn fp is determined to be around the value given above. By the

way, it applies to both scalar and vector interactions in a notation given in Eq. (B1).

The above conclusion excludes the models with conventional Higgs mediator, e.g., in the

one/two Higgs doublet SM and in the Minimal Supersymmetric Standard Model (MSSM)

where the Higgs fields not only dominantly mediate interactions but also generate the SM

fermion masses. In such models, we have

aui/di

mui/di

∝ 1

vu/d
, (12)

with vu/d the vacuum expectation value (VEV) of Higgs field Hu/d. It is independent on

the mediator-quark couplings, consequently the second and third families give main contri-

butions by virtue of larger form factor, thus the isospin is preserved. But if the Higgs field

is a spectator Higgs field whose VEV is zero or very small, its Yukawa couplings with SM

fermions are free parameters. And then the light quark contributions to SI crosse section

can definitely exceed the contributions from heavy quarks.

Now turn to the vector interactions. The quark bilinear matrix elements in the nucleon

states are greatly simplified by virtue of the conservation of the vector current, to which

the sea quarks and gluons do not contribute. As a consequence, the effective interactions

between DM and nucleons are simply given by

Lvec = bnχ̄γµχn̄γ
µn, bnφ

†∂
↔

µφn̄γ
µn,

fp = bp = 2bu + bd, fn = bn = 2bd + bu. (13)
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Notice that even in the case where these vector interactions are generated by other interac-

tions, e.g., colored mediators discussed later, the above description still holds. So the ISV

bn = Ibp corresponds to the coupling ratio at the quark level

bu
bd

=
2− I
2I − 1

, (14)

for I = −0.7 it takes a value −9 : 8. Obviously, similar to the case for the scalar interactions,

the ISV from vector interactions also must come from the interactions between mediator/DM

and the first-family quarks. And the DM-proton effective coupling is

fp =
3

2I − 1
bd, (15)

and fp = −1.25bd for I = −0.7.

As given in the introduction, we should pay special attention on the inelastic DM

(iDM) [9]. In the U(1)X model, the vector currents involving DM couple to the vector

gauge boson non-diagonal, which in the mass basis are

gabχ̄aγ
µχbZ

′
µ, gabφ

†
a∂
↔

µφbZ
′
µ, (16)

where gab ∼ δab, and χ is pseudo Dirac while φ is approximate complex scalar. In other

words, for the ISV iDM, an U(1)X model should receive special attention and we shall

consider it in details later.

Comments are in orders: (i) The scalar interaction realization of proper ISV depends

on both the isospin-violations in the nucleons itself, i.e., B
(p)
u,d 6= B

(n)
u,d , and the DM-quark

interactions, whereas the vector interactions only depends on the latter. (ii) The thermal

DM with right relic density has annihilation rate 〈σanv〉 ≃ 1 pb ∼ 102σp, given σp ∼ 10−2

pb. On the other hand, due to crossing symmetry, the annihilation rate and scattering rate

from the operators accounting for the direct detection experiments scale as follows

〈σanv〉
σp

∼ M2
DM

µ2
p

. (17)

It just gives the ratio at right order for LDM around 10 GeV. Interesting, this numerical

coincidence involving three basic elements of DM, the mass, relic density as well as scattering

rate. In this regard, it “justifies” the GoGeNT/DAMA inspired LDM models with ISV. Of

course, the rough argument ignores the velocity suppression for the operators like χ̄χq̄q, but

it is still sensible. Since in a complete model the pseudo-scalar type operators (χ̄γ5χ)(q̄γ5q)

usually do exist, and has comparable coefficients. And we will see it via concrete discussions

later.
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B. Some Constraints

For a light DM with mass around 8 GeV and having quite large DM-nucleon scattering

rate, it suffers from a list of model independent constraints (denoted as C1−4 in the following),

coming from the cosmology, astrophysics and collider as follows

C1: PAMELA The PAMELA measures the anti-proton spectrum from 1-100 GeV, and it

has no deviation from background [17]. Since the LDM couples to quark substantially,

it probably renders the low energy spectrum of the anti-proton excess due to crossing

symmetry [18, 19]. This constraint holds when the LDM has rather large annihilation

rate (> 0.1 pb) into quarks today, thus invalid for the DM annihilation with velocity

suppressing. Moreover, such constraints usually can be avoided by choosing proper

astrophysical parameters [18].

C2: Sun Neutrino Because of the large DM-nucleon cross section, the Sun captures DM

particles with large rate. These DM particles subsequently (cascade) annihilate into

neutrinos, which are expected to be observed by the Super-Kamiokande. It excludes

the thermal DM with predominantly annihilation modes into τ τ̄/νν̄/4τ as well as

heavy quarks modes b̄b, c̄c [20]. We have to emphasize that such neutrino constraint

is so strong that generically one has to sufficiently suppress the DM annihilation via

these channels, especially directly to neutrinos.

C3: CMB The lack of distortions in the Cosmic Microwave Background (CMB) spectrum

due to DM annihilations at redshifts z ∼ 500− 1000 may give constraint on the GeV

scale DM [21]. To make DM being a thermal relic, its annihilation modes should be

dominated by the µ or τ modes (and corresponding 4 leptons), alternatively the DM

annihilation is velocity dependent.

C4: Colliders DM-nucleus recoil can be converted to the DM production at the hadronic

colliders, and the lack of relevant signals provides another constraint [22, 23]. In the

ISV scenario the Tevatron gives very strong constraint. Vector interactions (as weak

as σp ∼ 0.001 pb) have been excluded definitely while the scalar interactions also

close to the exclusion line, as given in the Fig. 1. It implies that the iDM with ISV

must not be viable. To evade such Tevatron constraint from the effective operator

analyses, we require that the mediator is light and its mass is much smaller than DM

mass. In this way, the DM-nucleon cross section is enhanced by lighter mediator mass

since σn ∝ 1/M4
mediator whereas DM production at the collider scales as 1/s, so the

constraint made in Ref. [22, 23] is evaded. In addition, Ref. [24] gives the LEP bound
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on the operators ODMēΓe, and shows that this operator is not allowed to provide main

annihilation channel of DM freeze-out.

Let us summarize the constraints and point their possible implications (a recent more quan-

titative similar consideration see Ref. [25]). Among them, C1 can be satisfied thus not very

serious. But C2 is a universal constraint independent on the DM spin, and from it we may

expect that DM annihilates into µ or light quarks since the final state e± is excluded by C4.
It is consistent with LDM in the CoGeNT/DAMA region where LDM likely annihilates into

up and down quarks with cross section around 1pb, e.g., in the models given in Section IIIB

and Section IIIC. Then C3 may disfavor it. But take the astrophysical uncertainty into

account, we just regard it as a referred constraint. Last but not the least, C4 gives the

most powerful constraint in actual model building, it picks out the models whose DM-quark

interaction either is a scalar type or via a light vector mediator exchange. In the case of

light mediators as in Section IIIA, there is an elegant way to avoid various constraints by

virtue of DM dominant invisible annihilation modes (to light states), and we shall discuss

it in detail in the Section IV.

III. LIGHT DARK MATTER MODELS WITH ISV

In this Section, we systematically construct the ISV models. Let us explain our convention

first. The s−channel Feymann diagrams have the vertices between DM-DM-mediators and

between quark-quark-mediators, while the t−channel Feymann diagrams have the vertices

betweem DM-quark-mediators. Thus, our s−channel and t−channel Feymann diagrams

correspond to the t−channel and s/u−channel Feymann diagrams in the direct detection

experiments, respectively. For simplicity, we shall not consider the DM models where the

gauge bosons are DM candidates since they are generically complicated. Thus, the dark

matter particles are either a scalar or a fermion. For s−channel Feymann diagrams, the

mediators must be a scalar or a gauge boson since they can couple to two quarks. For

t−channel Feymann diagrams, the mediators must be a color triplet fermion if DM is a

scalar. And the mediator must be a color triplet scalar or vector boson if DM is a fermion.

Because the models with color triplet vector boson are complicated in general, we will not

study them in this paper. Therefore, we shall consider three kinds of LDM models with

ISV, where the mediators are dominantly the U(1)X gauge boson Z ′, a spectator Higgs

doublet, and color triplets respectively. For the first and second kinds of models, mediators

propagate in the s−channel, thereby ISV is independent on the DM-mediator couplings,

which simplifies the discussion. However, the color triplets propagate in t−channel, and

their analyses are a little bit involved.
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FIG. 1: Top: favored regions and exclusion contours in the (MDM, σn) plane, ISV fn/fp = −0.7, δ =

0; Bottom (for the annual modulation): ISV fn/fp = −0.7, δ = 15 keV. Collider exclusion for some

operators are also imposed. The data are from Ref. [10] and Ref. [23].

A. Chiral U(1)X Vector Boson

A simple way to produce ISV is to introduce an exotic U(1)X gauge boson as the mediator.

From the discussions in the last Section, we only consider the light Z ′. In practice, some of

the following discussions that merely involve in the direct detection apply to any Z ′ boson

with mass much larger than the transfer momentum. First, we briefly prove that the Z boson

in the SM can only generate ISV with |fn/fp| ≪ 1. Explicitly, the Lagrangian between the
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Z boson and SM quarks

LNC ⊃ 1

cos θw

[
ūLγ

µ

(
1

2
− 2

3
sin2 θw

)
uL + ūRγ

µ

(
−2

3
sin2 θw

)
uR

+d̄Lγ
µ

(
−1

2
+

1

3
sin2 θw

)
dL + d̄Rγ

µ

(
+
1

3
sin2 θw

)
dR

]
Zµ . (18)

Utilizing the formula Eq. (13), one can easily get

bp
bn

= −
(
1− 4 sin2 θw

)
≈ −0.08 ≪ 1. (19)

We emphasize that this result depends only on the SM structure.

Now consider Z ′ from an exotic U(1)X . We can gain some insight into the structure

of the quark charges under U(1)X , by investigating the ISV origin. And the discussions

have nothing to do with concrete information in dark sector. We start from the Z ′ and SM

fermion current couplings

LNC = −gX
∑

i,j

f̄iγ
µ [(QfL)ijPL + (QfR)ijPR] fjZ

′
µ, (20)

where gX is the gauge coupling of U(1)X and QfL/R
are the charge matrices of the left- and

right-handed fermions in family space. To not induce the tree-level flavor changing neutral

current (FCNC), we reasonably assume they are diagonal matrices (for Abelian gauge group

it must be ture). In the quark sector, transforming quarks into the mass eigenstates via

qL/R → V †
qL/R

qL/R (the same letters are used to label gauge basis and mass basis), we have

L′
NC =− gX

∑

q=u,d;i,j

q̄iγ
µ
[(
VqLQqLV

†
qL

)
ij
PL +

(
VqRQqRV

†
qR

)
ij
PR

]
qjZ

′
µ

⊃− gX
2

∑

q,i

[
(QqL)i|(VqL)1i|2 + (QqR)i|(VqR)1i|2

]
q̄γµqZ ′

µ + ... (21)

In the second line, we explicitly show the first family, while dots collects axial vector current

and other families.

In this paper, we consider that the charge matrices are family universe (QqL/R
)i ≡ QqL/R

,

then the unitary of VqL/R
ensures that the SM fermion mixings will not induce flavor violation

in Eq. (21). And the first-family quark charges give rise to proper ISV:

bu
bd

=
QuL

+QuR

QdL +QdR

=
QqL +QuR

QqL +QdR

. (22)

In the second equation QuL
=QdL= QqL is taken since uL and dL are in the same SU(2)L

multiplet. Clearly, the ISV effect is ascribed to the different right-handed up and down

quark charges. So quarks must belong to the chiral representation under U(1)X , and we are
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forced to work in the two Higgs doublet model (2HDM) where Hu couples to up-type quarks,

while Hd only couples to the down-type quarks and charged leptons. By the way, it is easy

to check that such U(1)X can not come from E6 gauge symmetry if we want I ≃ −0.7.

Through simple arguments, some useful conclusions are draw. The U(1)X gauge invari-

ance of Yukawa interactions give

QqL −QuR
+QHu = 0, QqL −QdR +QHd

= 0 . (23)

If we do not introduce additional colored vector-like fermions, the SU(3)2CU(1)X anomaly

cancellation condition gives

3

(
QqL − QuR

2
− QdR

2

)
= 0 . (24)

From these two equations, we get QHu = −QHd
, and then we just need to introduce one

Higgs doublet for the non-supersymmetric models. Combining them and Eq. (13), we get

the charge conditions to obtain proper ISV

QuR
=

7− 5I
6(1− I)QHu , QdR = − 5− 7I

6(1− I)QHu , QqL =
1 + I

6(1− I)QHu . (25)

And I=-0.7 leads to a somewhat peculiar solution: QuR
= 35/34QHu, QdR = −33/34QHu

and QqL = 1/34QHu [44]. However, if Eq. (24) is relaxed by introducing new colored vector-

like fermions, the elegant solution may be found. But we just assume Eq. (24) is held in

this paper.

Finally, the large DM-nucleon recoil cross section is easily achieved with light mediator.

Assume the Dirac or complex scalar DM carries U(1)X charge QDM, then in light of Eq. (15)

and Eq. (25), we have

fp =
g2XQDMQHu

M2
Z′

2

1− I

≈ 1.2× 10−5 ×
(
1GeV

MZ′

)2(
g2XQDMQHu

10−5

)
, (26)

where I = −0.7 is took. So typically we require a very weakly coupled (at least to quarks)

U(1)X .

Furthermore, the DM particles can be a scalar or a fermion. In particular, the U(1)X

gauge symmetry can be broken down to a Z2 discrete symmetry, which stabilizes the DM

particles. Thus, we do not need to introduce extra discrete symmetry for DM particle to be

stable.

12



B. (Approximate) Spectator Higgs Doublet

Higgs doublet is another typical mediator. But as argued in Section IIA, if the Higgs

doublet mediates DM-quark interactions meanwhile accounts for the SM fermion masses,

the allowed ISV will be ignorable. So we have to introduce the Higgs doublet that is a

(approximate) spectator to the electroweak symmetry breaking, namely it is only in charge

of mediating the DM-SM fermion interactions. The origin of ISV arises from the Yukawa

interactions involving in quark sector

−LY ⊃
(
yu,1q̄LǫH

†
1uR + yd,1q̄LH1dR

)
+
(
yu,2q̄LǫH

†
2uR + yd,2q̄LH2dR

)
+ h.c. . (27)

Here H1 is the conventional SM Higgs fields whose neutral component acquires a VEV

〈H0
1 〉 ≡ v around 174 GeV. While H2 =

(
H+, H0+iA0

√
2

)T
, which carries the same SM

quantum numbers as H1, is the spectator Higgs with ignorable VEV. Thus, yu/d,2 are free

parameters, which we shall address this issue in details later. Quite interestingly, recently

such a spectator Higgs doublet is also inspired to explain the CDFW+2jets anomaly [35, 36].

Now we shall consider the spectator Higgs and dark sector interactions. To keep the

discussion as general as possible, we do not specify to any concrete model. The CP-even

particle H0 mediates DM-nucleon SI scattering, and as usual, H0 probes the dark sector via

the operators

a|φ|2H0, χ̄(α− βγ5)χH0, (28)

aA|φ|2A0, χ̄(αA − βAγ
5)χA0, (29)

where the CP-odd Higgs field A0 does not generate SI cross section but opens another DM

annihilation channels. In our scenario, we assume that H0 barely mixes with the CP-even

Higgs component of H1, thus, such mixing factor can be ignored. The DM particles can be

stable by introducing the Z2 disccrete symmetry. If the DM particle is a real or complex

scalar through Higgs port [38], we can realize the first term in Eq. (28) easily via the following

renormalizable term

λφ|φ|2H1H2 + h.c. ⇒ a =
√
2λφv. (30)

If the dark matter is a fermion, to have the renormalizable interactions between the DM and

H0, one may consider a dark sector containing term λSχ̄χ, and the singlet scalar S further

mixes withH0 after the electroweak symmetry breaking. A more interesting possibility arises

in the supersymmetric models, e.g., in the next to the MSSM where the light neutralino χ̃1

is the DM [39].
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The ISV is determined by the flavor structure of H2 Yukawa couplings with quarks.

Transforming quarks into the mass eigenstates, we find that Eq. (27) turns to be

LY ⊃H0 − iA0

√
2

ūYuuPRu−H−d̄YduPRu

+
H0 + iA0

√
2

d̄YddPRd+H+ūYudPRd+ h.c., (31)

where the effective Yukawa coupling matrices are defined by Yqq′ ≡ V †
qL
yq′,2Vq′,R. Generally

speaking, Y−matrices are not diagonal, consequently the spectator neutral Higgs mediates

tree-level FCNC. But yq,2 and VqR are free, thus, the flavor problem may be solved by choosing

them properly. Integrating out H0, the operator coefficients for the SI cross sections are

aq =
a√

2(2MDM)

1

m2
H0

(Yqq)11 ,
α√
2m2

H0

(Yqq)11 . (32)

And in light of Eq. (10), the ISV I ≈ −0.7 is obtained provided that the Yukawa coupling

ratio (Yuu)11/(Ydd)11 ≈ −0.77. Of course, we also require (Yqq)22,33 sufficiently small so that

the DM interact dominantly with the first-family quarks mediated by the scalar interaction.

Now we further assume the spectator Higgs is the source of the W+2jets anomaly via

the process pp̄ → H± → W±H0/A0 → ℓ+ℓ−ν + jj [35]. As a consequence the measured

invariant mass of two jets fixes the charged Higgs mass mH0 ≃ 150 GeV. For the benchmark

scenario given in Ref. [35]: (Yuu)11 ≃ 0.06 and mH± ≃ 250 GeV, then to produce σp ∼ 0.01

pb, we obtain

a (Yuu)11 ∼ 1.6GeV, a (Ydd)11 ∼ −2.0GeV,

α (Yuu)11 ∼ 0.10, α (Ydd)11 ∼ −0.13 . (33)

For a real scalar or Majorana DM we only need half of these values. But H0 will decay to

a pair of DM, with branch decay width ratios over the one of H0 → uū as follows

Γ(H0 → 2DM)

Γ(H0 → uū)
∼ (Yuu)

−4
11

3

(
a(Yuu)11
MH0

)2

,
1

3

(
α(Yuu)11
(Yuu)211

)2

. (34)

In the above estimation we have used the tree-level decay for H0 decays to quarks, nev-

ertheless the QCD corrections are important. For the (real) scalar DM the two chan-

nels are comparable, thus, the scenario is viable. Whereas for the fermionic DM H0 pre-

dominantly invisible decays to DM. The situation can be improved by considering process

pp̄ → H0 → W±H∓ → ℓ+ℓ−ν + jj [35], further inverting H0 and H± mass hierarchy. Then

H± → W±+DM+DM decay width is suppressed by additional phase factor factor 1/(2π)3.

Moderately increasing (Yuu)11 and/or lowering mH0 so as to increase the production rate of

H±, the fermionic DM may also be consistent with W + jj.

14



Finally we investigate the condition that such (quasi) spectator Higgs doublet appears.

Equivalently speaking, when v2 is small enough, the Yukawa couplings yu/d,2 become free

parameters. Roughly it requires (Yuu)11v2 < mu, (Ydd)11v2 < md, where (Yuu)11 ∼ 0.06

are taken to explain W+2jets. Thus, we have v2 < 0.05 GeV. Now let us consider the

renomalizable scalar potential of two Higgs doublet model

V =µ2
1|H1|2 + µ2

2|H2|2 + µ2
12(H

†
1H2 +H†

2H1) +
λ1

2
|H1|4 +

λ2

2
|H2|4

+ λ3|H1|2|H2|2 + λ4|H†
1H2|2 +

λ5

2
(H†

1H2)
2 +

λ∗
5

2
(H†

2H1)
2, (35)

where all parameters are assumed to be real for simplicity. The small v2 can be achieved by

a small Higgs mixing term µ2
12 . O(10) GeV2, which can be seen by the tadpole equations

∂V

∂H0

= µ2
12v + λ2v

3
2 + λ3v

2v2 + λ4v
2v2 + λ5v

2v2 = 0, (36)

from which it gives v2 ∼ −µ2
12v/((λ3 + λ4 + λ5)v

2 + µ2
2) ∼ O(10)MeV with λ3,4,5 ∼ O(0.1).

In conclusion, it is not difficult to get an approximate spectator Higgs doublet to account

for ISV as well the W+jj anomaly, given a scalar DM.

C. Color Triplets

The color triplet mediators are distinguished from the Z ′ and Higgs mediators since

they mediate DM-quark interaction in the t−channel. In addition, they usually generate

hybrid interactions, namely generating scalar and vector interactions simultaneously. It is

more convenient to study such models from complete Lagrangian directly. In this paper, we

concentrate on the fermionic DM particle and scalar color triplet mediators. The discussions

for the scalar DM particle and fermionic color triplet mediators are similar, and will not be

studied here. Moreover, to stabize the DM particles, we consider the discrete Z2 symmetry.

In particular, the DM particle and the color triplet mediators should be Z2 odd.

We consider the most general mediators structure, each quark type uL/R and dL/R is

accompanied by a color triplet mediator q̃L/R, just like the corresponding squarks in the

MSSM. Since we are aiming at ISV, only the first family will be considered. Then the model

preserving SU(3)C ×U(1)em gauge symmetry takes a general form, adopting notation easily

matches to the MSSM:

L =−mχχ̄χ−
∑

α,β=L/R

m2
uαβ

ũαũ
†
β −

∑
m2

dαβ
d̃αd̃

†
β

−
α∑

q=u,d

[
λqαχ̄(1 + γ5)qq̃

†
α + λ′

qαχ̄(1− γ5)qq̃
†
α + h.c.

]
. (37)
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Since q̃L and q̃R carry identical SU(3)C × U(1)EM quantum numbers, we allow triplets

left-right (L-R) mixing as well as quark-mediators coupling with opposite chirality (L-R

coupling), namely λqL 6= 0 and λ′
qR

6= 0. They are sources of chiral symmetry breaking. The

triplet mass eigenstates are denoted by q̃1,2, related to gauge eigenstates by q̃α =
∑

l Fqαlq̃l:

FqL1 =cos θq, FqL2 = sin θq, FqR1 = − sin θq, FqR2 = cos θq. (38)

tan θq =xq −
√

1 + x2
q < 0, xq ≡

(
m2

q̃L
−m2

q̃R

)
/2m2

q̃LR
. (39)

The corresponding mass eigenvalues are given by mq̃1,2 . Then the interactions can be rewrit-

ten in a from

L ⊃ − χ̄ (αq
l + βq

l γ5) qq̃l + h.c.,

αq
l =

∑

α

(
λqα + λ′

qα

)
Fqαl, βq

l =
∑

α

(
λqα − λ′

qα

)
Fqαl. (40)

In light of Eq. (A9) and Eq. (A12), integration out Φ leads to the effective operators

involving SI cross section in the form of Eq. (2) and Eq. (3). And the operator coefficients

au =− 1

m2
ũl

Re
(
λ∗
uα
λ′
uβ
F ∗
uαlFuβl

)
,

bu =− 1

2m2
ũl

(
λuαλ

∗
uβ

+ λ′
uα
λ′∗
uβ

)
FuαlF

∗
uβ l

. (41)

Also, the expressions for ad and bd are obtained by replacing u with d in the above equations.

There are two interesting limits. One is the chiral limit au/d → 0, arises when both L-R

mixing and L-R coupling are ignorable, then the scalar interactions vanish [45], leaving the

pure vector interactions. In other words, interactions mediated by triplets in the chiral limit,

the iDM scenario can be realized even in the absence of a vector gauge boson. This novel

phenomena should receive special attention, but such models can not give negative I since

bu and bd take the same sign. In contrast, in the Majorana limit where the DM is a Majorana

fermion (or real scalar), the vector interactions vanish. In conclusion, colore triplets must

generate ISV via the scalar interaction, and chiral limit must be avoided. In general it is

expected that we both the scalar and vector interactions, as well as fn = an + bn.

L-R couplings usually are small, since the SM quarks and corresponding mediators are

chiral and then are distinguished. In the MSSM, the lightest supersymmetric particle (LSP)

is usual neutralino. The Higgsino component in the LSP neutralino has such coupling from

superpotential, which nevertheless is tied to the chiral symmetry breaking in SM and then is

tiny. Of course, one can relax this constraint by recurring to neutralino from spectator Higgs

doublet, but the following discussion will not much different to the previous subsection, so

we do not take it into account and only consider the L-R mixing as unique chiral symmetry
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breaking source. So we have λqL = λ′
qR

= 0, and

aq = −
λ′
qL
λqR

m2
q̃1

×
(
m2

q̃2
−m2

q̃1

2m2
q̃2

sin 2θq

)
≡ −

λ′
qL
λqR

m2
q̃1

Fq, (42)

with q = u, d. Clearly, if the two states are highly degenerate or L-R mixing is small, the

effective coupling will be suppressed. So we consider the general case with Fq ∼ O(1), as a

result, according to Eq. (11) with I = −0.7

fp = 0.5× 10−5 ×
(
λ′
dL
λdR

1

)(
500GeV

mq̃1

)2(
Fq

1

)
GeV−2, (43)

for complex scalar double this estimated value.

An application of this result is the supersymmetric model with light U(1)X−gaugino LSP,

and the first-family squarks mediate DM-quark interactions (the second and third family

contributions can be suppressed due to heavier masses or smaller U(1)X charges). Relevant

terms are

L ⊃ −
√
2

2
QqLgXB̃X (1− γ5) qq̃

†
L

−
√
2

2
QuR

gXB̃X (1 + γ5)uũ
†
R −

√
2

2
QdRgXB̃X (1 + γ5) dd̃

†
R + h.c., (44)

where Q denotes U(1)X charge. The couplings defined in Eq. (37) are inherited from gauge

couplings

λ′
dL

=λ′
uL

=

√
2

2
gXQqL , λdR =

√
2

2
gXQdR , λuR

=

√
2

2
gXQuR

. (45)

But actually aq are only semi-quantized, by virtue of extra parameters Fq/m
2
q̃1
. And now

we have

au
ad

=
QuR

QdR

(
m2

d̃1
Fu

m2
ũ1
Fd

)
≃ −0.77. (46)

From Eq. (39), it is seen that QuR
/QdR <0 is still a necessary condition to get I < 0,

implying a chiral U(1)X .

In practice, the MSSM with U(1)Y bino dominated LSP just fits this scenario. However,

it fails to explain CoGeNT/DAMA quantitatively. In light of Eq. (43) and Eq. (45), even

we have Fd ∼ 1, to make squark masses lie above collider lower bound (&500 GeV), we

still need large quark gauge coupling gXQq ∼ O(1) (not excluded by collider for sufficiently

heavy Z ′). Whereas the (s)quark U(1)Y gauge couplings are too small. We have to stress

that, exotic U(1)X is still interesting enough, since it realizes ISV in an economic way, asides

from introducing U(1)X vector multiplet. Moreover, it does not trigger flavor problem.
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Finally comment on another interesting aspect of the existence of color triplets at low

energy based on SM. In the model given by Eq. (37), the Yukawa couplings λq/u/d generically

are complex c-number, so they introduce new physical CP phases. Recall that the SM fails to

give sufficient baryon asymmetry, then these new color triplet mediators (If they are scalars,

no anomalies will be introduced.) not only account for proper ISV, but also potentially

provides adequate enough baryon asymmetry via heavy color triplet decays. Amazingly, for

a Dirac dark matter, it is possible to realize asymmetric DM by the triplet common decay

so as to resolve the coincidence puzzle ΩDMh
2 : Ωbh

2 ≈ 5 : 1. By the way, non-annihilating

asymmetric Dirac DM automatically satisfies astrophysical constraints. We believe it is a

minimal unified framework to realize ISV, asymmetric DM as well as baryogenesis, and we

leave it for future work [37].

D. Dual Mediators

In the previous discussions we concentrate on ISV arises due to a single-type mediator, and

no conventional mediators succeed in giving proper ISV. However, as proved in Section IIIA,

the SM Z−boson actually only mediates DM-neutron interaction. So combining Z boson

with Higgs field (without ISV effect) in principle can produce proper ISV. In fact, a complex

sneutrino DM ν1 [30, 31] just fits this scenario. Unfortunately, Z mediator plays no role in

the ISV scenario. To satisfy the constraint from the Z−boson invisible decay (into a pair of

DMs) width [33], we obtain the model independent constraint on the vertex gZ11
Zµν̃1∂

↔
µν̃

∗
1 ,

whose effective coupling must be smaller than 0.023, i.e., gZ11
< 0.023. Then we have

fn ≈ −M−2
Z g gZ11

/4 cos θw ∼ −0.5 × 10−6GeV−2, far to enough in the ISV scenario.

Another mediator frequently appears in the literatures is an exotic Xµ boson of U(1)X

under which the SM fields are neutral, whereas U(1)X and U(1)Y have kinetic mixing term

so that Xµ can mediate DM-quark interaction. As noticed in the Ref. [7], this kind of Xµ

only mediates DM-proton interactions. Let us show this point explicitly. We consider the

gauge kinetic sector of U(1)X × U(1)Y

Lgauge = −1

4
F µν
Y FY µν −

1

4
F µν
X FXµν +

θ

2
F µν
Y FXµν . (47)

We are interested in the small mixing limit θ ≪ 1, since it will not significantly affect the

Z invisible decay width even with U(1)X charged LDM. Moreover, we consider the collider

favored light Xµ scenario therefore MX < MDM ≪ MZ . Then, after the electroweak symme-

try breaking, working in the mass eigenstate basis (Zµ, Aµ, Xµ), we obtain the interactions
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between the Xµ and the SM current at the leading order of θ [34]

Lcoupling ⊃θXµ

(
cos θwJ

µ
em +O(M2

X/M
2
Z)J

µ
Z

)
,

Jµ
em =g sin θw

[
2

3
ūγµu+

(
−1

3

)
d̄γµd+ (−1) ēγµe

]
. (48)

Apparently, the kinetic mixing just induces the coupling between theXµ and electromagnetic

current Jµ
em. So Xµ behaves like the photon that also only mediates DM-proton interaction.

We have shown that X can violate isospin. Next we consider the DM and light gauge

boson gauge interactions, including the following DM-Xµ effective couplings

−LDM ⊃ gDMXµφ
∗∂
↔

µφ, gDMXµχ̄γ
µχ. (49)

So the DM-proton interaction effective operator coefficients are given by

bp =

(
g sin 2θw

2

)(
gDMθ

M2
X

)
. (50)

The Xµ alone is not adequate to produce right I, so we introduce the conventional Higgs

as another mediator. The relevant discussion has been represented in Section IIIB, here

we just identify H0 as the SM Higgs h, then the DM-quark effective couplings are given by

Eq. (32). In this case in the Eq. (7) aq/mq ∝ 1/v is family universal, and we get the isospin

conserved contribution

ap ≈ an ≈ mn√
2(2MDM)

a

v

1

m2
h

(
f
(n)
Ts

+ 3× 2

27
f
(n)
TG

)

= 0.15× 10−5

(
10GeV

MDM

)(
100GeV

mh

)2

GeV−2. (51)

We only include the s quark and heavy quarks contribution that gives a value ≃ 0.31 in

the bracket. Moreover, we assume that the λφ|H|2|φ|2 term gives the coupling constant a

as well as λφ = 1. Perturbitivity and naturalness (large λφ contribute sub-TeV mass to the

DM) do not favor large λφ. But the two Higgs DM model with large tan β enhancement

can solve this numerical problem. For example, consider a simplified case where φ couples

to Higgs fields mainly via a term λφ|φ|2HdHu, then in the Eq. (51) via H0
d mediation (we

assume the heavier CP-even Higgs is dominated by H0
d)

a

v
→

√
2λφvu
vd

=
√
2λφ tanβ. (52)

and now it is required that λφ tanβ/(mH0

d
/100GeV)2 ∼ 1. In conclusion, the total DM-

nucleon coupling fp = ap + bp, fn = an ≈ ap, and the proper ISV is produced as follows

bp
ap

=
I

1− I , (53)
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which is readily to be realized.

Analysis on fermionic DM can be employed similarly, with the replacement a/2MDM → α.

In general, the numerical problem is exacerbated, and maybe somewhat light mh (even with

large tanβ) is required to enhance the cross section, just as required in the NMSSM with

neutralino LSP [39].

IV. SNEUTRINO IDM WITH LIGHT Z ′ MEDIATOR

Interestingly, the light iDM models with ISV can explain the CoGeNT and DAMA annual

modulation consistently, as well as reconcile them with all other results [10]. In particular,

we can evade the other astrophysical constraints naturally in quite a few models, for example,

the spectator Higgs mediator models. To be concrete, we shall propose sneutrino iDM model

with a very light and very weakly coupled Z ′ mediator.

A. Motivation for iDM

In the first place, in light of the general analyses made in Section IIB, the Z ′ should be

lighter than the DM. We even require MZ′ < 1 GeV to escape from various astrophysical

exclusion elegantly. It is much lighter than the consideration like in Ref. [27], nevertheless

natural since the Z ′ mass scale closes to the LDM mass scale [46]. The light Z ′ mediator

allows very weakly coupling gX ≪ 1, in this way the Tevatron [22, 23] and LEPII [40] con-

straints are satisfied. Moreover, kinetic block mechanism makes the DM main annihilation

products to be soft 2e or/and 2µ today. Then the constraints from Sun neutrino, CMB as

well as PAMELA can be readily satisfied.

We explicitly show how this mechanism works for a scalar iDM. At the early Universe, the

DM has two kinds of comparable annihilation channels: DM+DM→ qq̄ via Z ′ mediation,

as well as the invisible annihilation modes DM+DM→ XX , with X the sub-GeV hidden

states such as Z ′ (we take it as an example). Then the total annihilation rate is

σan|v| ∼
∑

±

1
4
g4XQ

2
DM (QfL ±QfR)

2

16π

cf
M2

DM

v2 +

(
g4XQ

4
DM

16π

1

M2
DM

+ ...

)
, (54)

where Qf is understood to be effective charge in the mass eigenstates. Terms in the bracket

collect DM annihilation into hidden states. Provided that the U(1)X charges for the SM

fermions and DM particle are comparable, today the second term overwhelmingly dominates

(since v ∼ 10−3), subsequently the Z ′ cascade decays into e/µ/γ have no dangerous modes,

thus the strong tension with astrophysics is resolved.
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In contrast, the Dirac iDM annihilation modes DM+DM→ f f̄ have no v2 suppressing,

so it is quite unnatural to suppress dangerous modes to desired level. In fact, direct an-

nihilations into the SM fermions (assuming family universal Z ′) are almost fixed by cross

symmetry. According to Eq. (26), to get the adequately large DM-proton (inelastic) scat-

tering rate σp ∼ O(0.1) pb, we need g2XQHuQDM ∼ 10−4. On the other hand, from Eq. (54)

we know that the direct DM annihilations into the SM fermions have a rate about O(10−2)

pb. While the Dirac DM annihilations via s−wave have even larger rate O(10−1) pb. This

result is derived from cross symmetry, thus, the Dirac DM annihilation rate can be reduced

by no way, except by lowering Z ′ mass even orders lighter. Or one can consider only the u

and d quark charges under U(1)X to avoid Sun neutrino constraint, but it leads to a weird

model. In conclusion, scalar iDM with sub-GeV Z ′ mediator moreover dominantly decays

to sub-GeV light hidden states is a preferred model for the GoGeNT annual modulation.

B. Light Sneutrino iDM from Low Scale Seesaw Mechanism

In the MSSM extended with low-scale seesaw mechanism, (light) sneutrino is a natu-

ral scalar iDM candidate (We also present a quite simple non-supersymmetric model in

Appendix C.). To realize ISV we further consider a light U(1)X−extension, and the right-

handed neutrino (RHN) is charged under U(1)X . Then it is natural to attribute the origin

of Majorana mass scale to the U(1)X breaking scale. The relevant parts in the minimal

model are

W ⊃yNijLiNjHu +
λi

2
SN2

i + µHuHd, (55)

−Lsoft ⊃
(
mÑi

|Ñi|2 +m2
S |S|2

)
+ A0

(
yNij L̃iÑjHu +

λi

2
SÑ2

i + h.c.

)
, (56)

For simplicity, all parameters are assumed to be real, and soft mass square terms for the

MSSM singlets S and Ni (we simply consider one family only) are around GeV scale or

even smaller. To reduce the parameters, we assume a common trilinear term A0. Because

it controls the mass splitting of Ñi, we further assume it to be very small on our purpose.

Such soft parameter pattern is natural in the gauge mediated supersymmetry breaking

(GMSB) scenario. S carries U(1)X charge QS = −QN/2, and it develops a VEV with

〈S〉 ≡ vs ∼ O(100) GeV. Thus, it breaks the exotic U(1)X gauge symmetry at low scale and

gives the Majorana mass terms for the RHN MN = λvs. Since we want to naturally have a

sneutrino state with mass around 8 GeV to be the LSP, we expect MN ∼ O(10) GeV, and

then the neutrino Yukawa couplings yN ∼ O(10−7) are irrelevant to our discussion.

This model is able to realize the above scenario readily. First, let us consider the U(1)X
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spontaneously breaking. The scalar potential of the S is given by

VS =VF + VD + Vsoft,

VF =|λiSNi + yNjiLjHu|2,

VD =
g2X
2

(
QHu |Hu|2 +QHd

|Hd|2 +QS|S|2 +
∑

f

Qf |f̃ |2
)2

, (57)

and Vsoft = −Lsoft is given by Eq. (56). So the crucial part of the scalar potential of S can

be casted in a form of simple φ4 field theory

VS ⊃− µ2
S|S|2 +

κ

4
|S|4, (58)

where

µ2
S =

(
g2XQHuQS cos 2β

)
v2 −m2

S, κ = 2g2XQ
2
S , (59)

where QHd
= −QHu is used. Interestingly, a simple way to trigger U(1)X breaking is available

even with positive m2
S: the first term in the µ2

S is negative provided

QHuQS < 0, (60)

then µ2
S in principle can be as (positive) small as will. It leads to

vs =

√
2

κ
µS ∼

√
cos 2β|QHu/QS| × v, (61)

at the weak scale. In the above estimation we have set m2
S → 0. In other words, in our

model D−term is adequate to break the U(1)X gauge symmetry without resorting to any

exotic requirements.

Next we examine the mass spectrum. The Z ′ mass is determined by vs. We have to

stress that without S’s VEV one linear combination of Z ′
µ and Zµ is still massless after the

electroweak symmetry breaking. The point is that QHu = −QHd
and then the Higgs mixing

term BµHuHd is allowed. Now, ignoring the small Z−Z ′ mixing effect, at the leading order

we have

MZ′ ≈
√
2gX |QS|vs ≃

√
2|QHu||QS| cos 2β × gXv . (62)

Thus, MZ′ can naturally at the GeV order by choosing gX ∼ 10−2. On the other hand, at

the leading order, the CP-even Higgs field from the singlet S (denoted as hs) has degenerate

mass with the Z ′. However, in this minimal model, LSP tends to be singlino S̃, which has a

light (degenerate with MZ′) Dirac mass term with the U(1)X gaugino λ̃. So the heavier the

Majorana gaugino mass term of λ̃, the lighter the Majorana mass fermion S̃. To solve this
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problem, we introduce extra singlets S ′ (they are maybe required to cancel the U(1)X gauge

anomalies), with terms MiSSi or S
2Si. As a result no light (lighter than Ñ) R−parity odd

particles are left in the particle spectrum.

In this model, DM has many annihilation channels, and we simply assume the dominant

mode is DM+DM→ 2hs via the contact interactions from |λ|2|Ñ ||S|2. Right DM relic

density requires λ ∼ 0.1, which is consistent with vs ∼ O (100) GeV and MN = λvs ∼ 10

GeV.

Finally, the sneutrino LSP is dominated by the RHN sparticle Ñ . Taking into account

that the mass splitting between CP-even and CP-odd states due to non-zero A0, we get an

iDM with mass and splitting

M2
DM = m2

Ñ1

= λ2v2s +m2
Ñ
, δ ≃ λvs

mÑ1

A0. (63)

So to get δ ∼ 10−5 GeV, A0 is expected to be around this scale. It is maybe upset by virtue

of fine-tuning, but a version equipped with inverse seesaw mechanism [29] can resolve this

tuning problem [30]. This model contains an extra singlet N̄ ,

W ⊃ yNLHuN +mNNN̄ +MN̄N̄
2/2. (64)

Then the sneutrino mass splitting can be related to the origin of small neutrino mass rather

than merely the soft mass terms [30]:

δ ∼ mν
mN

mD
+mν

mN

mD

B

mD
, (65)

where we have assumed the Dirac mass term mD = yNvu is much lighter than the second

Dirac mass term mN : mD ≪ mN ≃ mÑ1
. And B is the bilinear soft mass for ˜̄N . Even set

B = 0, in principle mN/mD ∼ 106 just give the right order for δ.

V. DISCUSSION AND CONCLUSION

Light dark matter models with the ISV fn/fp ≈ −0.70 and large DM-nucleon spin-

independent cross section σn ∼ O(0.01) pb may provide a way to understand the confusing

direct detection experimental results. Combining with stringent astrophysical and collider

constraints, we can further deduce the DM properties. In this work, we investigated the

possible origin of ISV. General anatomy on the effective operators generating SI cross section

is made, and we found that ISV essentially arises from the DM and first-family quarks

couplings. To further explore their UV origin, we propose three kinds of models with the

following mediator structure:
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Z ′ from U(1)X The U(1)X must be chiral, and the light Z ′ is strongly favored.

Spectator Higgs Conventional Higgs doublet mediates interactions preserving isospin. So

we have to introduce (approximate) spectator Higgs doublet whose couplings to the

SM quarks are free parameters. Such a Higgs doublet can be used to explain Tevatron

CDF W + jj anomaly.

Color triplets Combining the squarks in the MSSM with exotic U(1)X (quarks strongly

charged under it), we found that the light B̃X LSP can generate proper ISV via the

first-family squark mediation. This scenario is economic furthermore suffers no flavor

problem.

Exotic Z ′ plus Higgs For a SM-neutral U(1)X having kinetic mixing with U(1)Y , its light

gauge boson Xµ only mediates DM-proton interaction. Combining it with a conven-

tional Higgs mediator, we can obtain the right ISV.

Inspired by the CoGeNT annual modulation, we propose a light sneutrino as the iDM. It

is charged under a U(1)X , and the light Z ′ (MZ′ <1 GeV) leads to a proper ISV. Moreover,

this model naturally reconciles the ISV scenario with the stringent constraints from the

astrophysical (such as Sun neutrino) and collider (Tevertron mono-jet search) experiments.

.
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Appendix A: Operators after Integrating Out Mediators

The models on the DM-SM fermions interactions can be classified based on the propaga-

tors mediating DM and SM particle interactions. In this appendix, we borrow some results

from the Ref. [13]. For the scalar DM, it interacts with SM fermions by exchanging a Z ′

boson, a (real) Higgs doublet h and the colored fermion Q, the corresponding Lagrangian is
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given by

L = −1

4
F ′µνF ′

µν +
1

2
m2

Z′ Z ′µZ ′
µ + aφ†∂

↔
µφZ

′µ + q̄γµ(α− βγ5)q Z ′
µ, (A1)

L =
1

2
(∂h)2 − 1

2
m2

hh
2 − aφ†φh− q̄(α− βγ5)qh, (A2)

L = Q̄ (i∂ −mQ)Q− q̄
(
α− βγ5

)
Qφ† − h.c.. (A3)

Integrating out the heavy propagators via equation of motion, we obtain the effective oper-

ators generating SI cross section (other operators belongs to Eq. (4), we do not list here)

Leff ⊃ − aα

m2
Z′

(φ†∂
↔

µφ), (A4)

Leff ⊃ aα

m2
h

φ†φ q̄ q, , (A5)

Leff ⊃ 1

mQ

(
|α|2 − |β|2

)
q̄qφ†φ+

i

m2
Q

(
|α|2 + |β|2

)
q̄γµqφ†∂

↔
µφ. (A6)

For the real scalar DM, vector interactions disappear. Interactions of fermionic DM can be

described analogous to scalar DM

L = −1

4
F ′µνF ′

µν +
1

2
m2

Z′ Z ′µZ ′
µ + χ̄γµ(α− βγ5)χZ ′

µ + q̄γµ(α̃− β̃γ5)qZ ′
µ, (A7)

L =
1

2
(∂h)2 − 1

2
m2

hh
2 − χ̄(α− βγ5)χh− q̄(α̃− β̃γ5)qh, (A8)

L = |∂Φ|2 −m2
Φ|Φ|2 − χ̄(α− βγ5)qΦ− h.c. , (A9)

where Φ denotes the scalar color triplet mediators. And the corresponding effective operators

are

Leff ⊃ − 1

m2
Z′

αα̃ χ̄γµχ q̄γµq, (A10)

Leff ⊃ αα̃

m2
h

χ̄χ q̄q, (A11)

Leff ⊃ 1

4m2
Φ

[(
|α|2 − |β|2

)
χ̄χq̄q +

(
|α|2 + |β|2

)
χ̄γµχq̄γ

µq
]
. (A12)

When the DM is a Majorana fermion or a real scalar, the vector interaction vanishes.

Appendix B: Scattering and Annihilating

In this appendix we briefly introduce the formula involving direct detections and give the

relevant annihilation rates. Ignoring small ISV from the form factor of proton and neutron,

the DM-nucleus SI scattering cross section at zero momentum transfer (not the actual cross

section) can be written in a form [41]

σ0 =
δCµ

2
N

π
[Zfp + (A− Z)fn]

2 , (B1)
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where A is the atomic mass of the nucleus while Z is its atomic number. The reduced mass

µN = MDMmN/(MDM +mN ), and δC = 4 for the self-conjugate particle like Majorana and

real scalar DM, otherwise δC = 1. In the reference DM-proton scattering cross section is

used frequently

σp =
δCµ

2
p

π
f 2
p , (B2)

where µp the DM-proton reduced mass. And fp from scalar interaction in Eq. (2) and vector

interaction in Eq. (3) are respectively given by

Fermionic DM : fp =
∑

q

Bp
qaq; fp = 2au + ad,

Scalar DM : fp =
∑

q

Bp
q

aq
2MDM

; fp = 2au + ad. (B3)

The DM can annihilate into the SM particles, which determines the final relic density after

the annihilation freeze-out. And the thermal average annihilation cross section, expanded

with relative velocity vrel (subscript will be omitted) takes a form of

〈σv〉F.O. = a + b〈v2〉 = (a+ 3b/xf ) (B4)

where xf ≡ MDM/Tf = 3/〈v2〉 with Tf the DM decoupling temperature, for the weakly

interactive massive particle (WIMP) typically having xf ∼ 20 − 30. The DM relic density

can be formulated as

Ωh2 ≈ 1.07× 109xfGeV−1

MPl
√
g∗〈σv〉F.O.

, (B5)

with g∗ as the effective relativistic degree of freedom when the DM decouples. The actual

effective annihilation rate, which is used to determine relic density and calculate signals from

DM annihilation today, is given by

〈σv〉F.O = TDM × (a+ 3b/xf ) , (B6)

wher TDM = 1/2 for the complex DM while TDM = 4 for the self-conjugate DM [42].

The a and b can be extracted out from partial wave expansion of the cross section times

the relative velocity σv = a + bv2 (regarded as a rough thermal averaged cross section).

Here the relative velocity is v = 2
√

1− 4M2
DM/s with s the Mandelstam variable. For the
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fermionic DM, σv from operators involved given by [43],

af χ̄χf̄f :
cf
16π

× 2a2fM
2
DMβ

3
f v

2, (B7)

GP,f√
2
χ̄γ5χf̄γ5f :

cf
4π

×G2
P,fM

2
DMβf , (B8)

GPS,f√
2

χ̄γ5χf̄f :
cf
4π

×G2
PS,fM

2
DMβ

3
f , (B9)

GSP,f√
2

χ̄χf̄γ5f :
cf
16π

×G2
SP,fM

2
DMβf , (B10)

bf χ̄γµχf̄γ
µf :

cf
4π

× 2b2fM
2
DMβf (2 + zf) , (B11)

GA√
2
χ̄γ5γµχf̄γ

5γµf :
cf
4π

×G2
A,fM

2
DMβf

[
zf +

1

12
(4− zf ) v

2

]
, (B12)

GAV,f√
2

χ̄γ5γµχf̄γ
µf :

cf
48π

×G2
AV,fM

2
DMβ

2
f v

2, (B13)

GV A,f√
2

χ̄γµχf̄γ
5γµf :

cf
2π

×G2
V A,fM

2
DMβf , (B14)

GT√
2
χ̄σµνχf̄σµνf :

cf
4π

×G2
T,fM

2
DMβf (7 + zf ) , (B15)

where the final state velocity βf ≡
√

1− zf and zf ≡ m2
f/M

2
DM, the color factor cf = 3 for

quarks otherwise 1. The scalar DM and relevant operators σv are given by

af |φ|2f̄ f :
cf
8π

× 2a2fβ
3
f , (B16)

FV f√
2
φ†∂

↔
µφf̄γ

µf :
cf
4π

× F 2
V fM

2
DMβf

[
2

3
(2 + zf) v

2

]
, (B17)

FSPf√
2
|φ|2f̄γ5f :

cf
8π

× F 2
SPfβf , (B18)

FV Af√
2

φ†∂
↔

µφf̄γ
µγ5f :

cf
4π

× F 2
V AfM

2
DMβf

[
2

3
(2− zf ) v

2

]
. (B19)

Appendix C: A Non-Supersymmetric Scalar iDM Model

In the non-supersymmetric case, there is a simple way to realize iDM at renormalizable

level. The dark sector consists of two SM singlets φ1,2 with mass hierarchy O(8GeV)2 ∼
m2

φ1
≪ m2

φ2
. The relevant scalar potential for iDM generation is quite simple

−V ⊃
(
m2

φ1
|φ1|2 +m2

φ2
|φ2|2

)
+
(
η1φ1φ

∗
2S

2 + η2φ
2
2S

2 + h.c
)
. (C1)

We need to arrange charge assignment properly so that the dark sector conserves the Z2

symmetry to protect DM stable. Singlet S breaks U(1)X at vs ∼ O(100) GeV as the model
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given in the text, which also induces a quartic mass term for the heavy state φ2

−V ⊃ η2v
2
sφ

2
2 + c.c., (C2)

and breaks the dark global U(1) symmetry (acting on φi only). It renders small mass

splitting between the CP-even and CP-odd states of φ1. To extract out the mass splitting

analytically, we diagonlize the mass matrix for φ1,2 by the unitary matrix Uφ, where we

ignore the U(1) breaking mass term. Then we obtain

φ1 → cos θ12φ
′
1 + sin θ12φ

′
2, φ2 → − sin θ12φ

′
1 + cos θ12φ

′
2, (C3)

where the fields with prime are in the (approximate) mass eigenstates. And the mixing angle

θ12 ≃ η1
v2s
m2

φ2

≪ 1 (C4)

is invalid if (η1v
2
s )

2 < m2
1m

2
2 (assure the positivity) and |ηv1v2|, m2

1 ≪ m2
2. With it, sub-

stituting Eq. (C3) into Eq. (C1), then it is not difficult to get the mass splitting for the

φ1

δ = 2η2 sin θ
2
12 ×

v2s
mφ1

≈ 2η2η
2
1

(
vs
mφ2

)4
v2s
mφ1

. (C5)

Thus, we can obtain δ ∼ 10−5 GeV in many ways, even by setting the m2 at the interesting

TeV scale.
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