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In the case of the absence of a multidimensional bare cosmological constant,
the only matter which corresponds to the proposed metric ansatz is a perfect
fluid with the vacuum equation of state in the external space and the dust-like
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parameter γ. We demonstrate that γ = 1/3 which strongly contradicts the
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1. Introduction

Any physical theory is correct until it does not conflict with the experimental data.
Obviously, the Kaluza-Klein model is no exception to this rule. There is a number of
well-known gravitational experiments in the solar system, e.g., the deflection of light,
the perihelion shift and the time delay of the radar echoes (the Shapiro time-delay
effect). In the weak-field limit, all these effects can be expressed via parameterized
post-Newtonian (PPN) parameters β and γ [1, 2]. These parameters take different
values in different gravitational theories. There are strict experimental restrictions on
these parameters [3, 4, 5, 6]. The tightest constraint on γ comes from the Shapiro
time-delay experiment using the Cassini spacecraft: γ−1 = (2.1±2.3)×10−5. General
Relativity is in good agreement with all gravitational experiments [7]. Here, the PPN
parameters β = 1 and γ = 1. The Kaluza-Klein model should also be tested by the
above-mentioned experiments.

In our previous papers [8, 9, 10] we have investigated this problem in the case of
toroidal compactification of internal spaces. We have supposed that in the absence of
gravitating masses the metrics is a flat one. Gravitating compact objects (point-like
masses or extended massive bodies) perturb this metrics, and we have considered these
perturbations in the weak-field approximation. First, we have shown that in the case of
three-dimensional external/our space and dust-like equations of state‡ in the external
and internal spaces, the PPN parameter γ = 1/(D − 2), where D is a total number
of spatial dimensions. Obviously, D = 3 (i.e. the General Relativity case) is the only
value which does not contradict the observations [8]. Second, in papers [9, 10], we
have investigated the exact soliton solutions. In these solutions a gravitating source
is uniformly smeared over the internal space and the non-relativistic gravitational
potential exactly coincides with the Newtonian one. Here, we have found a class of
solutions which are indistinguishable from General Relativity. We have called such
solutions latent solitons. Black strings and black branes belong to this class. They
have the dust-like equation of state p0 = 0 in the external space and the relativistic
equation of state p1 = −ε/2 in the internal space. It is known (see [10, 11]) that in the
case of three-dimensional external space with a dust-like perfect fluid, this combination
of equations of state in the external and internal spaces does not spoil the internal
space stabilization. Moreover, we have shown also that the number d0 = 3 of the
external dimensions is unique. Therefore, there is no problem for black strings and
black branes to satisfy the gravitational experiments in the solar system at the same
level of accuracy as General Relativity. However, the main problem with the black
strings/branes is to find a physically reasonable mechanism which can explain how
the ordinary particles forming the astrophysical objects can acquire rather specific
equations of state pi = −ε/2 (tension!) in the internal spaces. Thus, in the case of
toroidal compactification, on the one hand we arrive at the contradiction with the
experimental data for the physically reasonable gravitating source in the form of a
point-like mass, on the other hand we have no problem with the experiments for black
strings/branes but arrive at very strange equation of state in the internal space. How
common is this problem for the Kaluza-Klein models?

To understand it, in the present paper we investigate a model with spherical
compactification of the internal space. Therefore, in contrast to the previous case the

‡ Such equations of state take place in the external and internal spaces for a point-like mass at rest.
For ordinary astrophysical extended objects, e.g., for the Sun, it is also usually assumed that the
energy density is much greater than pressure.
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background metrics is not flat but has a topology R×R
3 × S2. To make the internal

space curved, we must introduce a background matter. We show that in the case of
the absence of a bare six-dimensional cosmological constant, the only matter which
corresponds to this background metrics is the one which simulates a perfect fluid with
the vacuum equation of state in the flat external space and the dust-like equation
of state in the curved internal space. To get the PPN parameters in this model, we
perturb the background metrics and matter by a compact gravitating massive object
with the dust-like equation of state in the external and internal spaces (e.g., a point-
like mass). Our investigation shows that we arrive at the same conclusions as in the
case of the toroidal compactification, e.g., the PPN parameter γ = 1/3 which exactly
coincides with the formula γ = 1/(D− 2) for D = 5. Obviously, this value contradicts
the observations.

The paper is organized as follows. In section 2 we get the background matter
corresponding to the background metric ansatz. Then we perturb this background
by the massive compact object with the dust-like equations of state and obtain the
perturbed metric coefficients. It gives us a possibility to calculate the PPN parameter
γ in section 3. The main results are summarized in section 4. In appendixes A and
B we present formulae for the components of the Ricci tensor and, with the help of
them, investigate the relations between the perturbed metric coefficients.

2. Background solution and perturbations

To start with, let us consider a factorizable six-dimensional static background metrics

ds2 = c2dt2 − dx2 − dy2 − dz2 − a2(dξ2 + sin2 ξdη2) (2.1)

which is defined on a product manifold M = M4 ×M2. M4 describes external four-
dimensional flat space-time and M2 corresponds to the two-dimensional internal space
which is a sphere with the radius (the internal space scale factor) a. Now, we want
to define the form of the energy-momentum tensor of matter which corresponds to
this geometry. In contrast to the models in [8, 9, 10] with toroidal compactification
where the external and internal background metrics are flat and there is no need for
the matter to create such a flat background, in the present paper, we need such a
bare matter to make a curved internal space. Obviously, this form is defined by the
Einstein equation

κTik = Rik − 1

2
Rgik , (2.2)

where κ ≡ 2S5G̃6/c
4. Here, S5 = 2π5/2/Γ(5/2) = 8π2/3 is the total solid angle (the

surface area of the four-dimensional sphere of a unit radius) and G̃6 is the gravitational
constant in the six-dimensional space-time.

As it can be easily seen from appendix A, the only nonzero components of the Ricci
tensor for the metrics (2.1) are R44 = 1 and R55 = sin2 ξ, and the scalar curvature is
R = −2/a2. Therefore, the energy-momentum tensor satisfies the following condition:

Tik =







(

1/
(

κa2
))

gik for i, k = 0, ..., 3;

0 for i, k = 4, 5.
(2.3)

Clearly, such matter can be simulated by a perfect fluid with the vacuum equation of
state in the external space and the dust-like equation of state in the internal space.
It is convenient to introduce the following notation: Λ4 ≡ 1/(κa2). Because of the
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flatness of the external space-time in (2.1), an effective four-dimensional cosmological
constant [12, 13] Λ(4)eff should be equal to zero. Indeed, it is not difficult to verify
that it takes place in the considered case.

Now, we want to perturb this background by a point-like mass. It is well known
that a point-like massive source is a good physical approximation in four-dimensional
space-time to calculate the classical gravitational tests [7]. These calculations show
that General Relativity is in good agreement with observational data. We intend to get
the corresponding formulae in the case of the six-dimensional background metrics (2.1)
in the presence of the background matter (2.3), and to compare the obtained results
with the known observational data. To perform it, we perturb our background ansatz
by a static point-like massive source with non-relativistic rest mass density ǫρ(r5). We
introduce an infinitesimal prefactor ǫ to keep during calculations the corresponding
orders of perturbations. At the end of calculations this parameter should be set equal
to unity. It is worth noting that we take into account the point-like nature of the
matter source only for the calculation of the non-relativistic gravitational potential
(see the next section). In the present section we do not specify the concrete form of
ρ(r5). In this general case, we assume that the dust-like (i.e. pressure is much less than
energy density) massive source with the rest mass density ρ represents a static compact
astrophysical object. There are two separate cases. In the first case, the matter source
is uniformly smeared over the internal space. Here, multidimensional ρ and three-
dimensional ρ3 rest mass densities are connected as follows: ρ = ρ3(r3)/(4πa

2). In

the case of a point-like mass m, ρ3(r3) = mδ(r3), where r3 = |r3| =
√

x2 + y2 + z2.
In the second case (without smearing), the rest mass density is a function of all five
spatial coordinates. In the present paper we consider mainly the latter case.

For the perturbed metrics we choose the metric ansatz in the form

ds2 = Ac2dt2 +Bdx2 + Cdy2 +Ddz2 + Edξ2 + Fdη2 , (2.4)

where the metric coefficients A,B,C,D,E and F are functions of all spatial
coordinates, e.g., A = A(r5). We also suppose that, up to corrections of the first
order in ǫ, the metric coefficients read

A ≈ A0 + ǫA1(r5), B ≈ B0 + ǫB1(r5), C ≈ C0 + ǫC1(r5),

D ≈ D0 + ǫD1(r5), E ≈ E0 + ǫE1(r5), F ≈ F 0 + ǫF 1(r5) , (2.5)

where the metric coefficients A0, B0, C0, D0, E0 and F 0 are defined by the background
metrics (2.1):

A0 = 1, B0 = C0 = D0 = −1, E0 = −a2, F 0 = E0 sin2 ξ . (2.6)

We suppose that the perturbed metrics preserves its diagonal form. Obviously,
the off-diagonal coefficients g0α, α = 1, . . . , 5, are absent for the static metrics. It is
also clear that in the case of uniformly smeared (over the internal space) perturbation,
all metric coefficients depend only on x, y, z (see, e.g., [14]), and the metric structure
of the internal space does not change, i.e. F = E sin2 ξ. It is not difficult to show, that
in this case the spatial part of the external metrics can be diagonalized by coordinate
transformations. Moreover, if we additionally assume the spherical symmetry of the
perturbation with respect to the external space, then all metric coefficients depend on
r3 and B(r3) = C(r3) = D(r3). Taking into account all these arguments, we suppose
that the diagonal form is preserved also for an arbitrary distribution ǫρ(r5), and we
show below that Einstein’s equations have solution for the given metric ansatz.



Weak-field limit of Kaluza-Klein models with spherical compactification I: problematic aspects5

Now, for the metric ansatz (2.4), we want to solve the Einstein equation (2.2)
which we rewrite in the form

Rik = κ

(

Tik −
1

4
Tgik

)

. (2.7)

The energy-momentum tensor consists of two parts:

Tki = T̃ki + T̂ki . (2.8)

Here, T̃ki is the energy-momentum tensor of the perturbed background matter (2.3)
and T̂ki is the energy-momentum tensor of the perturbation. In the non-relativistic
approximation the only nonzero component of the latter tensor is T̂ 0

0 ≈ ǫρ(r5)c
2 and

up to linear in ǫ terms T̂00 ≈ ǫρ(r5)c
2. Concerning the energy momentum tensor of

the background matter, we suppose that perturbation does not change the equations
of state in the external and internal spaces. For example, if we had dust in the internal
space before the perturbation, the same equation of state should be preserved after
the perturbation. The vacuum equation of state in the external space should be also
preserved. Here, the perturbation results in the appearance of a small fluctuation:

Λ4 → Λ4 + ǫΛ
(1)
4 . Therefore, up to the first order correction terms, the nonzero

components of the energy-momentum tensor read

T00 ≈ 1

κa2
+ ǫ

(

1

κa2
A1 + ρc2 + Λ

(1)
4

)

, (2.9)

Tii ≈ − 1

κa2
+ ǫ

(

1

κa2
Bi − Λ

(1)
4

)

, i = 1, 2, 3 , (2.10)

where B1 ≡ B1, B2 ≡ C1 and B3 ≡ D1. The trace of total energy-momentum tensor
is

T = T i
i ≈ 4

κa2
+ ǫ
(

ρc2 + 4Λ
(1)
4

)

. (2.11)

Therefore, the diagonal components of the Einstein equation (2.7) up to linear in ǫ
terms read:

R00 ≈ ǫ
3

4
κρc2 , (2.12)

R11 = R22 = R33 ≈ ǫ
1

4
κρc2 , (2.13)

R44 ≈ 1− ǫ

(

E1

a2
− κΛ

(1)
4 a2 − a2

4
κρc2

)

, (2.14)

R55 ≈ sin2 ξ − ǫ

(

F 1

a2
− κΛ

(1)
4 a2 sin2 ξ − a2 sin2 ξ

4
κρc2

)

. (2.15)

Taking into account (A1), we can write the 00-component as follows:

△3A
1 +

1

a2
△ξηA

1 =
3

2
κρc2 . (2.16)

All off-diagonal components of the Einstein equation (2.7) are equal to zero: Rik =
0 , i 6= k. Therefore, we can use the results of appendix B. Then, all three components
11, 22 and 33 are reduced to one equation

△3B
1 +

1

a2
△ξηB

1 =
1

2
κρc2 , (2.17)

where we use expressions (A3)-(A5) and relations (B1). Hence, the metric coefficients
A1 and B1 are related as follows: A1 = 3B1, i.e. it is the case 2 of appendix B.
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It is not difficult to verify with the help of (B13), (B15) and (B16) that 44 and 55
components are reduced to one equation

△3E
1 +

1

a2
△ξηE

1 =
1

2
κρc2a2 + 2κΛ

(1)
4 a2 − 2

a2
E1 . (2.18)

From the system of equations (2.16)-(2.18) and the relation (B9) (which is also valid
in the case 2) we can conclude that

κΛ
(1)
4 =

E1

a4
(2.19)

and equation (2.18) reads

△3E
1 +

1

a2
△ξηE

1 =
a2

2
κρc2 . (2.20)

3. Parameterized post-Newtonian parameter γ: a contradiction to

observations

Now let us solve the equation (2.16). Denoting A1 ≡ 2ϕ/c2, we obtain the Poisson
equation:

△3ϕ+
1

a2
△ξηϕ = S5G6ρ(r5) , (3.1)

where G6 = 3G̃6/2. In the case of toroidal compactification, we have GD =
[2(D−2)/(D−1)]G̃D where D = D+1 is an arbitrary number of space-time dimensions
[8]. So, our particular formula follows from this general relation for D = 6. It is not
difficult to verify that in the case of a point-like mass m with ρ = mδ(r5), the equation
(3.1) has the following solution (see also [15]):

ϕ = −S5G6

4πa2
m

r3

+∞
∑

l=0

l
∑

m=−l

Y ∗

lm(ξ0, η0)Ylm(ξ, η) exp

(

−
√

l(l+ 1)

a
r3

)

, (3.2)

where ξ0, η0 denote the position of the source on the two-dimensional sphere (without
loss of generality we can choose ξ0 = 0, η0 = 0) and Ylm are Laplace’s spherical
harmonics. Obviously, in the limit r3 → +∞, the non-relativistic gravitational
potential should coincide with the Newtonian one:

ϕ(r3 → +∞) → −GNm

r3
, (3.3)

where GN is the Newtonian gravitational constant. Taking into account that the zero
Kaluza-Klein mode l = 0, m = 0 gives the main contribution in (3.2) for r3 → +∞
and that Y00 = 1/

√
4π, we get the relation between six-dimensional and Newtonian

gravitational constants

S5G6

4πa2
= 4πGN (3.4)

which exactly coincides with the corresponding relation in the case of toroidal
compactification for D = 6 and the internal space volume V2 = 4πa2 (see, e.g., the
equation (20) in [9]).

Therefore, the perturbation A1 of the 00 metric coefficient reads

A1 = −4π
rg
r3

+∞
∑

l=0

l
∑

m=−l

Y ∗

lm(ξ0, η0)Ylm(ξ, η) exp

(

−
√

l(l + 1)

a
r3

)

, (3.5)
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where the gravitational radius rg = 2GNm/c2. Perturbations of other metric
coefficients can be found with the help of relations (B13). Obviously, the radius
of the astrophysical objects, such as the Sun, is much larger than the compactification
scale of the internal space: R3 ≫ a. Then, for r3 & R3 we can limit ourselves to the
zero mode in (3.5). Therefore, at these distances the metrics (2.4) reads

ds2 ≈
(

1− rg
r3

)

c2dt2 −
(

1 +
1

3

rg
r3

)

(

dx2 + dy2 + dz2
)

− a2
(

1 +
1

3

rg
r3

)

(

dξ2 + sin2 ξdη2
)

. (3.6)

In the case of the matter source which is uniformly smeared over the internal space
(a particular example of the case 2 in appendix B), we have ρ(r5) = mδ(r3)/(4πa

2),
and the equation (3.1) is reduced to the ordinary three-dimensional Poisson equation
△3ϕ = 4πGNmδ(r3) with the solution ϕ = −GNm/r3 → A1 = −rg/r3.

It can be easily seen from the expression (3.6) (see [1, 2]), that the parameterized
post-Newtonian (PPN) parameter γ reads

γ =
1

3
. (3.7)

The tightest constraint on γ comes from the Shapiro time-delay experiment using the
Cassini spacecraft: γ−1 = (2.1±2.3)×10−5 [3, 4, 5, 6]. Obviously, the PPN parameter
γ (3.7) does not satisfy this restriction.

It is worth noting that in the case of toroidal compactification we get γ = 1/(D−2)
[8] which results exactly in our formula (3.7) for D = 5. Therefore, spherical
compactification with considered background matter (2.3) does not save the situation
with the point-like massive source. Similar to the case of toroidal compactification,
we also come to a contradiction to the observations. The metrics (B14) indicates that
the same conclusion must also occur in the case of compact astrophysical objects (not
necessarily point-like) with dust-like equations of state in the external and internal
spaces and an arbitrary distribution ρ(r5). It can be easily seen that in this general
case the ratio B1/A1 = 1/3 for ∀ ϕ. However, to satisfy the experimental constraints,
this ratio should be very close to 1, namely 1 + (2.1 ± 2.3) × 10−5. Therefore,
there is a common feature among the model with toroidal compactification and the
present model with spherical compactification which leads to a contradiction with the
observations.

4. Conclusion

In our paper we investigated classical gravitational tests for the Kaluza-Klein model
with spherical compactification of the internal space. The external spacetime is flat.
We supposed that a multidimensional bare cosmological constant is absent. In this
case, the only matter which corresponds to proposed metric ansatz is the one which can
be simulated by a perfect fluid with the vacuum equation of state in the external space
and the dust-like equation of state in the internal space. We perturbed this background
by a compact massive source with the dust-like equation of state in both spaces. In
the weak-field limit, the perturbed metric coefficients were found as a solution of the
system of Einstein equations. It enabled to calculate the PPN parameter γ. We
found that for our model γ = 1/3 which strongly contradicts the observations. The
similar situation takes place for models with toroidal compactification. We think
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that it happens because in both of these types of models the internal spaces are not
stabilized. The second part of our research will be devoted to solving this problem.
We shall see that our guess is correct and in the case of stabilized internal spaces
considered models can be in agreement with observations.
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5. Appendix A: Components of the Ricci tensor

In this appendix we consider the six-dimensional space-time metrics of the form of
(2.4):

ds2 = Ac2dt2 +Bdx2 + Cdy2 +Ddz2 + Edξ2 + Fdη2 ,

where the metric coefficients A,B,C,D,E and F satisfy the decomposition (2.5).
Now, we define the corresponding components of the Ricci tensor up to linear in ǫ
terms.

5.1. Diagonal components

R00

=
Bt

4c2B

(

−2Btt

Bt
+

At

A
+

Bt

B

)

+
Ax

4B

(

−2Axx

Ax
+

Bx

B
− Cx

C
− Dx

D
− Ex

E
− Fx

F
+

Ax

A

)

+
Ct

4c2C

(

−2Ctt

Ct
+

At

A
+

Ct

C

)

+
Ay

4C

(

−2Ayy

Ay
+

Cy

C
− By

B
− Dy

D
− Ey

E
− Fy

F
+

Ay

A

)

+
Dt

4c2D

(

−2Dtt

Dt
+

At

A
+

Dt

D

)

+
Az

4D

(

−2Azz

Az
+

Dz

D
− Bz

B
− Cz

C
− Ez

E
− Fz

F
+

Az

A

)

+
Et

4c2E

(

−2Ett

Et
+

At

A
+

Et

E

)

+
Aξ

4E

(

−2Aξξ

Aξ
+

Eξ

E
− Bξ

B
− Cξ

C
− Dξ

D
− Fξ

F
+

Aξ

A

)

+
Ft

4c2F

(

−2Ftt

Ft
+

At

A
+

Ft

F

)

+
Aη

4F

(

−2Aηη

Aη
+

Fη

F
− Bη

B
− Cη

C
− Dη

D
− Eη

E
+

Aη

A

)

≈ ǫ

2

[

△3A
1 +

1

a2
△ξηA

1

]

. (A1)

Here, indexes denote the corresponding partial derivatives (e.g., Ax ≡ ∂A/∂x) and we
introduce the Laplace operators:

△3 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, △ξη ≡ ∂2

∂ξ2
+

cos ξ

sin ξ

∂

∂ξ
+

1

sin2 ξ

∂2

∂η2
. (A2)

For R11, R22 and R33 we obtain respectively:

R11

=
Ax

4A

(

−2Axx

Ax
+

Bx

B
+

Ax

A

)

+
Bt

4c2A

(

−2Btt

Bt
+

At

A
− Ct

C
− Dt

D
− Et

E
− Ft

F
+

Bt

B

)
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+
Cx

4C

(

−2Cxx

Cx
+

Bx

B
+

Cx

C

)

+
By

4C

(

−2Byy

By
+

Cy

C
− Ay

A
− Dy

D
− Ey

E
− Fy

F
+

By

B

)

+
Dx

4D

(

−2Dxx

Dx
+

Bx

B
+

Dx

D

)

+
Bz

4D

(

−2Bzz

Bz
+

Dz

D
− Az

A
− Cz

C
− Ez

E
− Fz

F
+

Bz

B

)

+
Ex

4E

(

−2Exx

Ex
+

Bx

B
+

Ex

E

)

+
Bξ

4E

(

−2Bξξ

Bξ
+

Eξ

E
− Aξ

A
− Cξ

C
− Dξ

D
− Fξ

F
+

Bξ

B

)

+
Fx

4F

(

−2Fxx

Fx
+

Bx

B
+

Fx

F

)

+
Bη

4F

(

−2Bηη

Bη
+

Fη

F
− Aη

A
− Cη

C
− Dη

D
− Eη

E
+

Bη

B

)

≈ − ǫ

2

[

−△3B
1 +

(

A1 +B1 − C1 −D1 − E1

a2
− F 1

a2 sin2 ξ

)

xx

− 1

a2
△ξηB

1

]

, (A3)

R22

=
Ay

4A

(

−2Ayy

Ay
+

Cy

C
+

Ay

A

)

+
Ct

4c2A

(

−2Ctt

Ct
+

At

A
− Bt

B
− Dt

D
− Et

E
− Ft

F
+

Ct

C

)

+
By

4B

(

−2Byy

By
+

Cy

C
+

By

B

)

+
Cx

4B

(

−2Cxx

Cx
+

Bx

B
− Ax

A
− Dx

D
− Ex

E
− Fx

F
+

Cx

C

)

+
Dy

4D

(

−2Dyy

Dy
+

Cy

C
+

Dy

D

)

+
Cz

4D

(

−2Czz

Cz
+

Dz

D
− Az

A
− Bz

B
− Ez

E
− Fz

F
+

Cz

C

)

+
Ey

4E

(

−2Eyy

Ey
+

Cy

C
+

Ey

E

)

+
Cξ

4E

(

−2Cξξ

Cξ
+

Eξ

E
− Aξ

A
− Bξ

B
− Dξ

D
− Fξ

F
+

Cξ

C

)

+
Fy

4F

(

−2Fyy

Fy
+

Cy

C
+

Fy

F

)

+
Cη

4F

(

−2Cηη

Cη
+

Fη

F
− Aη

A
− Bη

B
− Dη

D
− Eη

E
+

Cη

C

)

≈ − ǫ

2

[

−△3C
1 +

(

A1 + C1 −B1 −D1 − E1

a2
− F 1

a2 sin2 ξ

)

yy

− 1

a2
△ξηC

1

]

, (A4)

R33

=
Az

4A

(

−2Azz

Az
+

Dz

D
+

Az

A

)

+
Dt

4c2A

(

−2Dtt

Dt
+

At

A
− Bt

B
− Ct

C
− Et

E
− Ft

F
+

Dt

D

)

+
Bz

4B

(

−2Bzz

Bz
+

Dz

D
+

Bz

B

)

+
Dx

4B

(

−2Dxx

Dx
+

Bx

B
− Ax

A
− Cx

C
− Ex

E
− Fx

F
+

Dx

D

)

+
Cz

4C

(

−2Czz

Cz
+

Dz

D
+

Cz

C

)

+
Dy

4C

(

−2Dyy

Dy
+

Cy

C
− Ay

A
− By

B
− Ey

E
− Fy

F
+

Dy

D

)

+
Ez

4E

(

−2Ezz

Ez
+

Dz

D
+

Ez

E

)

+
Dξ

4E

(

−2Dξξ

Dξ
+

Eξ

E
− Aξ

A
− Bξ

B
− Cξ

C
− Fξ

F
+

Dξ

D

)

+
Fz

4F

(

−2Fzz

Fz
+

Dz

D
+

Fz

F

)

+
Dη

4F

(

−2Dηη

Dη
+

Fη

F
− Aη

A
− Bη

B
− Cη

C
− Eη

E
+

Dη

D

)

≈ − ǫ

2

[

−△3D
1 +

(

A1 +D1 −B1 − C1 − E1

a2
− F 1

a2 sin2 ξ

)

zz

− 1

a2
△ξηD

1

]

. (A5)

The components R44 and R55 read respectively:

R44

=
Aξ

4A

(

−2Aξξ

Aξ
+

Eξ

E
+

Aξ

A

)

+
Et

4c2A

(

−2Ett

Et
+

At

A
− Bt

B
− Ct

C
− Dt

D
− Ft

F
+

Et

E

)
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+
Bξ

4B

(

−2Bξξ

Bξ
+

Eξ

E
+

Bξ

B

)

+
Ex

4B

(

−2Exx

Ex
+

Bx

B
− Ax

A
− Cx

C
− Dx

D
− Fx

F
+

Ex

E

)

+
Cξ

4C

(

−2Cξξ

Cξ
+

Eξ

E
+

Cξ

C

)

+
Ey

4C

(

−2Eyy

Ey
+

Cy

C
− Ay

A
− By

B
− Dy

D
− Fy

F
+

Ey

E

)

+
Dξ

4D

(

−2Dξξ

Dξ
+

Eξ

E
+

Dξ

D

)

+
Ez

4D

(

−2Ezz

Ez
+

Dz

D
− Az

A
− Bz

B
− Cz

C
− Fz

F
+

Ez

E

)

+
Fξ

4F

(

−2Fξξ

Fξ
+

Eξ

E
+

Fξ

F

)

+
Eη

4F

(

−2Eηη

Eη
+

Fη

F
− Aη

A
− Bη

B
− Cη

C
− Dη

D
+

Eη

E

)

≈ 1− ǫ

2

{

(A1 −B1 − C1 −D1)ξξ −△3E
1 −

E1
ηη

a2 sin2 ξ

− 1

a2 sin2 ξ

[(

F 1
ξξ − 2

cos 2ξ

sin 2ξ
F 1
ξ

)

− 2

sin 2ξ

(

F 1
ξ − 2

cos ξ

sin ξ
F 1

)

− sin 2ξ

2
E1

ξ

]}

, (A6)

R55

=
Aη

4A

(

−2Aηη

Aη
+

Fη

F
+

Aη

A

)

+
Ft

4c2A

(

−2Ftt

Ft
+

At

A
− Bt

B
− Ct

C
− Dt

D
− Et

E
+

Ft

F

)

+
Bη

4B

(

−2Bηη

Bη
+

Fη

F
+

Bη

B

)

+
Fx

4B

(

−2Fxx

Fx
+

Bx

B
− Ax

A
− Cx

C
− Dx

D
− Ex

E
+

Fx

F

)

+
Cη

4C

(

−2Cηη

Cη
+

Fη

F
+

Cη

C

)

+
Fy

4C

(

−2Fyy

Fy
+

Cy

C
− Ay

A
− By

B
− Dy

D
− Ey

E
+

Fy

F

)

+
Dη

4D

(

−2Dηη

Dη
+

Fη

F
+

Dη

D

)

+
Fz

4D

(

−2Fzz

Fz
+

Dz

D
− Az

A
− Bz

B
− Cz

C
− Ez

E
+

Fz

F

)

+
Eη

4E

(

−2Eηη

Eη
+

Fη

F
+

Eη

E

)

+
Fξ

4E

(

−2Fξξ

Fξ
+

Eξ

E
− Aξ

A
− Bξ

B
− Cξ

C
− Dξ

D
+

Fξ

F

)

≈ sin2 ξ − ǫ

2

{

(A1 −B1 − C1 −D1)ηη −△3F
1 −

E1
ηη

a2
− 1

a2

(

F 1
ξξ − 2

cos 2ξ

sin 2ξ
F 1
ξ

)

+
sin 2ξ

2

(

E1
ξ

a2
+ (A1 −B1 − C1 −D1)ξ

)

+
cos ξ

a2 sin ξ

(

F 1
ξ − 2

cos ξ

sin ξ
F 1

)

+
1

a2
sin ξ

cos ξ

(

F 1
ξ − sin 2ξE1

)

}

. (A7)

5.2. Off-diagonal components

R01 = − 1

2C
Ctx − 1

2D
Dtx − 1

2E
Etx − 1

2F
Ftx

+
AxCt

4AC
+

AxDt

4AD
+

AxEt

4AE
+

AxFt

4AF
+

BtCx

4BC
+

BtDx

4BD

+
BtEx

4BE
+

BtFx

4BF
+

CtCx

4C2
+

DtDx

4D2
+

EtEx

4E2
+

FtFx

4F 2
,

R02 = − 1

2B
Bty −

1

2D
Dty −

1

2E
Ety −

1

2F
Fty

+
AyBt

4AB
+

AyDt

4AD
+

AyEt

4AE
+

AyFt

4AF
+

CtBy

4BC
+

CtDy

4CD
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+
CtEy

4CE
+

CtFy

4CF
+

BtBy

4B2
+

DtDy

4D2
+

EtEy

4E2
+

FtFy

4F 2
,

R03 = − 1

2B
Btz −

1

2C
Ctz −

1

2E
Etz −

1

2F
Ftz

+
AzBt

4AB
+

AzCt

4AC
+

AzEt

4AE
+

AzFt

4AF
+

DtBz

4BD
+

DtCz

4CD

+
DtEz

4DE
+

DtFz

4DF
+

BtBz

4B2
+

CtCz

4C2
+

EtEz

4E2
+

FtFz

4F 2
,

R04 = − 1

2B
Btξ −

1

2C
Ctξ −

1

2D
Dtξ −

1

2F
Ftξ

+
AξBt

4AB
+

AξCt

4AC
+

AξDt

4AD
+

AξFt

4AF
+

EtBξ

4BE
+

EtCξ

4EC

+
EtDξ

4ED
+

EtFξ

4EF
+

BtBξ

4B2
+

CtCξ

4C2
+

DtDξ

4D2
+

FtFξ

4F 2
,

R05 = − 1

2B
Btη −

1

2C
Ctη −

1

2D
Dtη −

1

2E
Etη

+
AηBt

4AB
+

AηCt

4AC
+

AηDt

4AD
+

AηEt

4AE
+

FtBη

4BF
+

FtCη

4FC

+
FtDη

4FD
+

FtEη

4FE
+

BtBη

4B2
+

CtCη

4C2
+

DtDη

4D2
+

EtEη

4E2
.

Obviously, for the static metrics these components are identically equal to zero. Let
us now calculate the remaining 10 off-diagonal components:

R12 = − 1

2A
Axy −

1

2D
Dxy −

1

2E
Exy −

1

2F
Fxy

+
ByAx

4AB
+

ByDx

4BD
+

ByEx

4BE
+

ByFx

4BF
+

CxAy

4AC
+

CxDy

4CD

+
CxEy

4CE
+

CxFy

4CF
+

AxAy

4A2
+

DxDy

4D2
+

ExEy

4E2
+

FxFy

4F 2

≈ ǫ

(

−1

2
A1 +

1

2
D1 +

1

2a2
E1 +

1

2a2 sin2 ξ
F 1

)

xy

, (A8)

R13 = − 1

2A
Axz −

1

2C
Cxz −

1

2E
Exz −

1

2F
Fxz

+
BzAx

4AB
+

BzCx

4BC
+

BzEx

4BE
+

BzFx

4BF
+

DxAz

4AD
+

DxCz

4CD

+
DxEz

4DE
+

DxFz

4DF
+

AxAz

4A2
+

CxCz

4C2
+

ExEz

4E2
+

FxFz

4F 2

≈ ǫ

(

−1

2
A1 +

1

2
C1 +

1

2a2
E1 +

1

2a2 sin2 ξ
F 1

)

xz

, (A9)

R23 = − 1

2A
Ayz −

1

2B
Byz −

1

2E
Eyz −

1

2F
Fyz

+
CzAy

4AC
+

CzBy

4BC
+

CzEy

4CE
+

CzFy

4CF
+

DyAz

4AD
+

DyBz

4BD

+
DyEz

4DE
+

DyFz

4DF
+

AyAz

4A2
+

ByBz

4B2
+

EyEz

4E2
+

FyFz

4F 2

≈ ǫ

(

−1

2
A1 +

1

2
B1 +

1

2a2
E1 +

1

2a2 sin2 ξ
F 1

)

yz

, (A10)
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R15 = − 1

2A
Axη −

1

2C
Cxη −

1

2D
Dxη −

1

2E
Exη

+
BηAx

4AB
+

BηCx

4BC
+

BηDx

4BD
+

BηEx

4BE
+

FxAη

4AF
+

FxCη

4FC

+
FxDη

4FD
+

FxEη

4FE
+

AxAη

4A2
+

CxCη

4C2
+

DxDη

4D2
+

ExEη

4E2

≈ ǫ

(

−1

2
A1 +

1

2
C1 +

1

2
D1 +

1

2a2
E1

)

xη

, (A11)

R25 = − 1

2A
Ayη −

1

2B
Byη −

1

2D
Dyη −

1

2E
Eyη

+
CηAy

4AC
+

CηBy

4BC
+

CηDy

4CD
+

CηEy

4CE
+

FyAη

4AF
+

FyBη

4BF

+
FyDη

4FD
+

FyEη

4FE
+

AyAη

4A2
+

ByBη

4B2
+

DyDη

4D2
+

EyEη

4E2

≈ ǫ

(

−1

2
A1 +

1

2
B1 +

1

2
D1 +

1

2a2
E1

)

yη

, (A12)

R35 = − 1

2A
Azη − 1

2B
Bzη −

1

2C
Czη −

1

2E
Ezη

+
DηAz

4AD
+

DηBz

4BD
+

DηCz

4CD
+

DηEz

4ED
+

FzAη

4AF
+

FzBη

4BF

+
FzCη

4CF
+

FzEη

4FE
+

AzAη

4A2
+

BzBη

4B2
+

CzCη

4C2
+

EzEη

4E2

≈ ǫ

(

−1

2
A1 +

1

2
B1 +

1

2
C1 +

1

2a2
E1

)

zη

, (A13)

R14 = − 1

2A
Axξ −

1

2C
Cxξ −

1

2D
Dxξ −

1

2F
Fxξ

+
BξAx

4AB
+

BξCx

4BC
+

BξDx

4BD
+

BξFx

4BF
+

ExAξ

4AE
+

ExCξ

4EC

+
ExDξ

4ED
+

ExFξ

4EF
+

AxAξ

4A2
+

CxCξ

4C2
+

DxDξ

4D2
+

FxFξ

4F 2

≈ ǫ

(

1

2
(−A1 + C1 +D1)ξ +

1

2a2 sin2 ξ
F 1
ξ − cos ξ

2a2 sin ξ
E1 − cos ξ

2a2 sin3 ξ
F 1

)

x

,(A14)

R24 = − 1

2A
Ayξ −

1

2B
Byξ −

1

2D
Dyξ −

1

2F
Fyξ

+
CξAy

4AC
+

CξBy

4BC
+

CξDy

4CD
+

CξFy

4CF
+

EyAξ

4AE
+

EyBξ

4BE

+
EyDξ

4ED
+

EyFξ

4EF
+

AyAξ

4A2
+

ByBξ

4B2
+

DyDξ

4D2
+

FyFξ

4F 2

≈ ǫ

(

1

2
(−A1 +B1 +D1)ξ +

1

2a2 sin2 ξ
F 1
ξ − cos ξ

2a2 sin ξ
E1 − cos ξ

2a2 sin3 ξ
F 1

)

y

,(A15)

R34 = − 1

2A
Azξ −

1

2B
Bzξ −

1

2C
Czξ −

1

2F
Fzξ

+
DξAz

4AD
+

DξBz

4BD
+

DξCz

4CD
+

DξFz

4FD
+

EzAξ

4AE
+

EzBξ

4BE
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+
EzCξ

4CE
+

EzFξ

4FE
+

AzAξ

4A2
+

BzBξ

4B2
+

CzCξ

4C2
+

FzFξ

4F 2

≈ ǫ

(

1

2
(−A1 +B1 + C1)ξ +

1

2a2 sin2 ξ
F 1
ξ − cos ξ

2a2 sin ξ
E1 − cos ξ

2a2 sin3 ξ
F 1

)

z

, (A16)

R45 = − 1

2A
Aξη − 1

2B
Bξη − 1

2C
Cξη − 1

2D
Dξη

+
EηAξ

4AE
+

EηBξ

4BE
+

EηCξ

4CE
+

EηDξ

4DE
+

FξAη

4AF
+

FξBη

4BF

+
FξCη

4CF
+

FξDη

4FD
+

AξAη

4A2
+

BξBη

4B2
+

CξCη

4C2
+

DξDη

4D2

≈ ǫ

(

1

2
(−A1 +B1 + C1 +D1)ξ +

cos ξ

2 sin ξ
(A1 −B1 − C1 −D1)

)

η

. (A17)

6. Appendix B: Relations between metric coefficients

First, we investigate expressions (A8)-(A10) in the case R12 = R13 = R23 = 0. It can
be easily seen that the equation R12 = 0 has a solution

−1

2
A1 +

1

2
D1 +

1

2a2
E1 +

1

2a2 sin2 ξ
F 1 = C1(z, ξ, η)f1(x) + C2(z, ξ, η)f2(y) ,

where C1(z, ξ, η), C2(z, ξ, η), f1(x) and f2(y) are arbitrary functions. We also assume
that in the limit |x|, |y|, |z| → +∞ the perturbed metrics reduces to the background
one. Thus, all perturbations A1, B1, C1, D1, E1 and F 1 as well as their partial
derivatives vanish in this limit. Therefore, the right hand side of the above equation
is equal to zero. Similar reasoning can be applied to equations R13 = 0 and R23 = 0.
Then, we arrive at the following relations:

B1 = C1 = D1 = A1 − 1

a2
E1 − 1

a2 sin2 ξ
F 1 . (B1)

We consider models where the Einstein equation for all off-diagonal components
is reduced to

Rik = 0 for i 6= k . (B2)

We want to analyze these equations for components (A11)-(A17) with regard to the
relations (B1).

First, it can be easily seen that Einstein equations (B2) for components (A14)-
(A16) give

−A1
ξ +B1

ξ + C1
ξ +

1

a2 sin2 ξ
F 1
ξ − cos ξ

a2 sin ξ
E1 − cos ξ

a2 sin3 ξ
F 1 = C3(ξ, η) , (B3)

where C3(ξ, η) is an arbitrary function. From the boundary conditions at |x|, |y|, |z| →
+∞ we find that C3(ξ, η) = 0. Taking it into account, we get from (B1) and (B3)
respectively

−A1 +B1 +
1

a2 sin2 ξ
F 1 = − 1

a2
E1 (B4)

and

−A1
ξ +B1

ξ +
1

a2 sin2 ξ
F 1
ξ − cos ξ

a2 sin ξ
E1 − cos ξ

a2 sin3 ξ
F 1 = −B1

ξ . (B5)
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Differentiating (B4) with respect to ξ, we obtain

−A1
ξ +B1

ξ +
1

a2 sin2 ξ
F 1
ξ − 2 cos ξ

a2 sin3 ξ
F 1 = − 1

a2
E1

ξ . (B6)

Subtraction (B6) from (B5) yields

1

a2 sin2 ξ
F 1 = −B1

ξ tan ξ +
1

a2
E1

ξ tan ξ +
1

a2
E1 . (B7)

Let us investigate two separate cases.

1. Smeared extra dimensions

First, we consider the matter source which is uniformly smeared over the internal
space. It results in the metric coefficients A1, B1, C1, D1 and E1 depending only
on the external coordinates x, y and z [14]. We do not require that the diagonal
Einstein equations have the form (2.12)-(2.15), but the off-diagonal components must
be like (B2). Then, equations R15 = R25 = R35 = R45 = 0 (where these off-diagonal
components are defined by (A11)-(A13),(A17)) are automatically satisfied. It can
be easily seen from (B1) that the coefficient F 1 ∼ sin2 ξ. Moreover, to satisfy the
equation (B7), it should have the form

F 1 = E1 sin2 ξ . (B8)

Therefore, (B1) can be rewritten in the form

−A1 +B1 +
2

a2
E1 = 0 . (B9)

2. Arbitrary rest mass density ρ(r5)

In this case, the rest mass density ρ(r5) of a compact astrophysical object is
an arbitrary function of all five spatial coordinates. Here, as a particular example,
the matter source can also be smeared over the internal space. However, the main
difference from the previous case is that the diagonal Einstein equations should have
the form (2.12)-(2.15). This leads to additional conditions

B1 = C1 = D1 =
1

3
A1 , (B10)

which follows from equations (2.16), (2.17) and (B1). The case 1 is related to the
models where (B1) is still valid but the relation B1 = 1/(3A1) may be violated.
Therefore, taking into account relations (B10), the Einstein equationR45 = 0 for (A17)
is automatically satisfied. Let us consider equations (B2) for components (A14)-(A16).
Substitution (B7) back into (B4) gives

− 2B1 +
2

a2
E1 = B1

ξ tan ξ −
1

a2
E1

ξ tan ξ , (B11)

where we take into account the relation (B10). We seek the solution of this equation
in the form

E1 = a2B1 + Ẽ1, 2Ẽ1 = −Ẽ1
ξ tan ξ . (B12)

The solution of the latter equation is Ẽ1 = C4(r3, η)/ sin
2 ξ, where C4(r3, η) is an

arbitrary function. The function Ẽ1 diverges when ξ → 0, π. To avoid this problem,
we require that C4(r3, η) = 0. Thus, Ẽ1 = 0 and E1 = a2B1. In turn, from the
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equation (B7), we obtain: F 1 = E1 sin2 ξ = a2B1 sin2 ξ. Thus, perturbations of the
metric coefficients are related as follows:

B1 = C1 = D1 = A1/3, E1 = a2B1, F 1 = E1 sin2 ξ . (B13)

Therefore, the equality (B9) holds also in this case. Taking into account these relations,
we can easily verify that Einstein equations (B2) for components (A11)-(A13) are
automatically satisfied. Denoting A1 ≡ 2ϕ/c2, we can conclude that the perturbed
metrics should have the following structure:

ds2 ≈
(

1 +
2ϕ

c2

)

c2dt2 +

(

−1 +
2ϕ

3c2

)

(

dx2 + dy2 + dz2
)

+ a2
(

−1 +
2ϕ

3c2

)

(

dξ2 + sin2 ξdη2
)

. (B14)

To complete this appendix (the case 2), we consider now 44 and 55 Ricci tensor
components (A6) and (A7). With the help of relations (B13), it is not difficult to
verify that

sin2 ξ ×R44 = R55 . (B15)

Moreover, the expression (A6) can be rewritten in the following form:

R44 ≈ 1 +
ǫ

2

[

△3E
1 +

1

a2
△ξηE

1

]

= 1 +
a2

3
R00 . (B16)

Similarly, the components 11 and 22 are connected with the component 00 as follows:

R11 = R22 = R33 =
1

3
R00 . (B17)
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