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Abstract. We investigate classical gravitational tests for the Kaluza-Klein
model with spherical compactification of the internal two-dimensional space.
In the case of the absence of a multidimensional bare cosmological constant,
the only matter which corresponds to the proposed metric ansatz is a perfect
fluid with the vacuum equation of state in the external space and the dust-like
equation of state in the internal space. We perturb this background by a compact
massive source with the dust-like equation of state in both external and internal
spaces (e.g., a point-like mass), and obtain the metric coefficients in the weak-
field approximation. It enables to calculate the parameterized post-Newtonian
parameter v. We demonstrate that v = 1/3 which strongly contradicts the
observations.
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1. Introduction

Any physical theory is correct until it does not conflict with the experimental data.
Obviously, the Kaluza-Klein model is no exception to this rule. There is a number of
well-known gravitational experiments in the solar system, e.g., the deflection of light,
the perihelion shift and the time delay of the radar echoes (the Shapiro time-delay
effect). In the weak-field limit, all these effects can be expressed via parameterized
post-Newtonian (PPN) parameters 8 and v [I 2]. These parameters take different
values in different gravitational theories. There are strict experimental restrictions on
these parameters [3] [ 5 [6]. The tightest constraint on v comes from the Shapiro
time-delay experiment using the Cassini spacecraft: y—1 = (2.14:2.3) x 10~°. General
Relativity is in good agreement with all gravitational experiments [7]. Here, the PPN
parameters 5 = 1 and v = 1. The Kaluza-Klein model should also be tested by the
above-mentioned experiments.

In our previous papers [8] [0, [10] we have investigated this problem in the case of
toroidal compactification of internal spaces. We have supposed that in the absence of
gravitating masses the metrics is a flat one. Gravitating compact objects (point-like
masses or extended massive bodies) perturb this metrics, and we have considered these
perturbations in the weak-field approximation. First, we have shown that in the case of
three-dimensional external/our space and dust-like equations of statdﬂ in the external
and internal spaces, the PPN parameter v = 1/(D — 2), where D is a total number
of spatial dimensions. Obviously, D = 3 (i.e. the General Relativity case) is the only
value which does not contradict the observations [8]. Second, in papers [9, 0], we
have investigated the exact soliton solutions. In these solutions a gravitating source
is uniformly smeared over the internal space and the non-relativistic gravitational
potential exactly coincides with the Newtonian one. Here, we have found a class of
solutions which are indistinguishable from General Relativity. We have called such
solutions latent solitons. Black strings and black branes belong to this class. They
have the dust-like equation of state pg = 0 in the external space and the relativistic
equation of state p; = —e/2 in the internal space. It is known (see [10, [I1]) that in the
case of three-dimensional external space with a dust-like perfect fluid, this combination
of equations of state in the external and internal spaces does not spoil the internal
space stabilization. Moreover, we have shown also that the number dy = 3 of the
external dimensions is unique. Therefore, there is no problem for black strings and
black branes to satisfy the gravitational experiments in the solar system at the same
level of accuracy as General Relativity. However, the main problem with the black
strings/branes is to find a physically reasonable mechanism which can explain how
the ordinary particles forming the astrophysical objects can acquire rather specific
equations of state p; = —e/2 (tension!) in the internal spaces. Thus, in the case of
toroidal compactification, on the one hand we arrive at the contradiction with the
experimental data for the physically reasonable gravitating source in the form of a
point-like mass, on the other hand we have no problem with the experiments for black
strings/branes but arrive at very strange equation of state in the internal space. How
common is this problem for the Kaluza-Klein models?

To understand it, in the present paper we investigate a model with spherical
compactification of the internal space. Therefore, in contrast to the previous case the

1 Such equations of state take place in the external and internal spaces for a point-like mass at rest.
For ordinary astrophysical extended objects, e.g., for the Sun, it is also usually assumed that the
energy density is much greater than pressure.
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background metrics is not flat but has a topology R x R? x S2. To make the internal
space curved, we must introduce a background matter. We show that in the case of
the absence of a bare six-dimensional cosmological constant, the only matter which
corresponds to this background metrics is the one which simulates a perfect fluid with
the vacuum equation of state in the flat external space and the dust-like equation
of state in the curved internal space. To get the PPN parameters in this model, we
perturb the background metrics and matter by a compact gravitating massive object
with the dust-like equation of state in the external and internal spaces (e.g., a point-
like mass). Our investigation shows that we arrive at the same conclusions as in the
case of the toroidal compactification, e.g., the PPN parameter v = 1/3 which exactly
coincides with the formula v = 1/(D — 2) for D = 5. Obviously, this value contradicts
the observations.

The paper is organized as follows. In section 2 we get the background matter
corresponding to the background metric ansatz. Then we perturb this background
by the massive compact object with the dust-like equations of state and obtain the
perturbed metric coefficients. It gives us a possibility to calculate the PPN parameter
~ in section 3. The main results are summarized in section 4. In appendixes A and
B we present formulae for the components of the Ricci tensor and, with the help of
them, investigate the relations between the perturbed metric coefficients.

2. Background solution and perturbations

To start with, let us consider a factorizable six-dimensional static background metrics
ds® = Adt* — da? — dy?® — dz? — a*(d€? + sin €dn?) (2.1)

which is defined on a product manifold M = My x Ms. M, describes external four-
dimensional flat space-time and M5 corresponds to the two-dimensional internal space
which is a sphere with the radius (the internal space scale factor) a. Now, we want
to define the form of the energy-momentum tensor of matter which corresponds to
this geometry. In contrast to the models in [8 [, [10] with toroidal compactification
where the external and internal background metrics are flat and there is no need for
the matter to create such a flat background, in the present paper, we need such a
bare matter to make a curved internal space. Obviously, this form is defined by the
Einstein equation

1
KL = Rig — §Rgik , (2.2)

where r = 255G /c*. Here, S5 = 2°/2/T'(5/2) = 872/3 is the total solid angle (the
surface area of the four-dimensional sphere of a unit radius) and Gy is the gravitational
constant in the six-dimensional space-time.

As it can be easily seen from appendix A, the only nonzero components of the Ricci
tensor for the metrics () are Ryq = 1 and Rs5 = sin® &, and the scalar curvature is

R = —2/a?. Therefore, the energy-momentum tensor satisfies the following condition:
(1/ (ka?)) gix for i,k =0,...,3;
Ty = (2.3)
0 for i,k =4,5.

Clearly, such matter can be simulated by a perfect fluid with the vacuum equation of
state in the external space and the dust-like equation of state in the internal space.
It is convenient to introduce the following notation: A4 = 1/(ka?). Because of the



Weak-field limit of Kaluza-Klein models with spherical compactification I: problematic aspectsd

flatness of the external space-time in (2]), an effective four-dimensional cosmological
constant [12} [13] A(4)ss should be equal to zero. Indeed, it is not difficult to verify
that it takes place in the considered case.

Now, we want to perturb this background by a point-like mass. It is well known
that a point-like massive source is a good physical approximation in four-dimensional
space-time to calculate the classical gravitational tests [7]. These calculations show
that General Relativity is in good agreement with observational data. We intend to get
the corresponding formulae in the case of the six-dimensional background metrics (2.1])
in the presence of the background matter (2.3]), and to compare the obtained results
with the known observational data. To perform it, we perturb our background ansatz
by a static point-like massive source with non-relativistic rest mass density ep(rs). We
introduce an infinitesimal prefactor € to keep during calculations the corresponding
orders of perturbations. At the end of calculations this parameter should be set equal
to unity. It is worth noting that we take into account the point-like nature of the
matter source only for the calculation of the non-relativistic gravitational potential
(see the next section). In the present section we do not specify the concrete form of
p(rs). In this general case, we assume that the dust-like (i.e. pressure is much less than
energy density) massive source with the rest mass density p represents a static compact
astrophysical object. There are two separate cases. In the first case, the matter source
is uniformly smeared over the internal space. Here, multidimensional p and three-
dimensional p3 rest mass densities are connected as follows: p = p3(r3)/(47a?). In
the case of a point-like mass m, p3(rs) = md(rz), where r5 = |r3| = /22 + y2 + 22.
In the second case (without smearing), the rest mass density is a function of all five
spatial coordinates. In the present paper we consider mainly the latter case.

For the perturbed metrics we choose the metric ansatz in the form

ds? = Adt*> + Bdx® + Cdy? + Ddz* + Ed€* + Fdn? (2.4)

where the metric coefficients A, B,C,D,E and F are functions of all spatial
coordinates, e.g., A = A(rs). We also suppose that, up to corrections of the first
order in €, the metric coefficients read

A~ A4 eAl(rs), B=xBY+eBl(rs), C=~C°+eCl(rs),

D~ D%+ eD'(rs), E=~E°+¢eB'(r5), F~F°+eF'(rs), (2.5)
where the metric coefficients A%, B®, C?, D°, E° and F° are defined by the background
metrics (1))

A=1, B°=C"=D"=-1, E°=—a? F°=E"sin’¢. (2.6)

We suppose that the perturbed metrics preserves its diagonal form. Obviously,
the off-diagonal coefficients ggo, @ = 1,...,5, are absent for the static metrics. It is
also clear that in the case of uniformly smeared (over the internal space) perturbation,
all metric coefficients depend only on z,y, z (see, e.g., [14]), and the metric structure
of the internal space does not change, i.e. F' = Esin?¢&. It is not difficult to show, that
in this case the spatial part of the external metrics can be diagonalized by coordinate
transformations. Moreover, if we additionally assume the spherical symmetry of the
perturbation with respect to the external space, then all metric coefficients depend on
rg and B(rs) = C(r3) = D(r3). Taking into account all these arguments, we suppose
that the diagonal form is preserved also for an arbitrary distribution ep(rs), and we
show below that Einstein’s equations have solution for the given metric ansatz.
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Now, for the metric ansatz (24]), we want to solve the Einstein equation (Z2))
which we rewrite in the form

1
Rik =K <Tik — ZTgik> . (27)
The energy-momentum tensor consists of two parts:
Thi = Thi + Thi - (2.8)

Here, Ty; is the energy-momentum tensor of the perturbed background matter (2.3)
and Ty; is the energy-momentum tensor of the perturbation. In the non-relativistic
approximation the only nonzero component of the latter tensor is Tg ~ ep(rs)c? and
up to linear in € terms Tho ~ ep(rs)c?. Concerning the energy momentum tensor of
the background matter, we suppose that perturbation does not change the equations
of state in the external and internal spaces. For example, if we had dust in the internal
space before the perturbation, the same equation of state should be preserved after
the perturbation. The vacuum equation of state in the external space should be also
preserved. Here, the perturbation results in the appearance of a small fluctuation:
Ay — Ag+ eAfll). Therefore, up to the first order correction terms, the nonzero
components of the energy-momentum tensor read

Tho 22 1 L o 2, A

00 ™= @ + € (ﬁA + pc + 4 ’ (2'9)

Ty~ — —— e[ 2B — AW i=1,2,3 (2.10)
117 maQ KJG2 7 4 ) )~y Y

where B; = B!, B, = C! and B3 = D!. The trace of total energy-momentum tensor
is
i 4 1
T=T = ﬁ—l—e(pcz-i-élAfl )> . (2.11)

Therefore, the diagonal components of the Einstein equation (271 up to linear in €
terms read:

Roo = eg/@pc2 , (2.12)
1
R11 = R22 = R33 ~ GZHpCQ s (213)
E! a?

Ryu~1—c¢ (? — nAEll)cLQ - Z/@pcz) , (2.14)
Fl 2 32

Rss ~ sin?& — e (—2 — kAPa?sin?¢ — %nfnpc?) . (2.15)
a

Taking into account (AJ]), we can write the 00-component as follows:
1 3
AgA' + S NepAl = §f$p02 : (2.16)
2 0%

All off-diagonal components of the Einstein equation ([2.7) are equal to zero: R, =
0,7 # k. Therefore, we can use the results of appendix B. Then, all three components
11, 22 and 33 are reduced to one equation

1 1
1 1 2
A3B + EA&]B = 5:‘<ch y (217)
where we use expressions (A3)-(AH) and relations (BIl). Hence, the metric coefficients

A' and B! are related as follows: A' = 3B, ie. it is the case 2 of appendix B.
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It is not difficult to verify with the help of (BI3)), (BI3) and (BIf) that 44 and 55

components are reduced to one equation
1 1 1 2
DSE' + Dy B! = ghpca® + 26AMa? — B (2.18)

From the system of equations (Z.I6)-(2I8) and the relation (BY) (which is also valid
in the case 2) we can conclude that

El

KA = = (2.19)
and equation ([2I8) reads
1, 1 1 _a®
AsE* + FA&]E = g kpc. (2.20)

3. Parameterized post-Newtonian parameter ~: a contradiction to
observations

Now let us solve the equation ([ZI6]). Denoting A' = 2¢/c?, we obtain the Poisson
equation:

1
Az + EA&]SD = S5Ggp(rs), (3.1)

where Gg = 3@6/2. In the case of toroidal compactification, we have Gp =
[2(D—-2)/(D—1)]Gp where D = D41 is an arbitrary number of space-time dimensions
[8]. So, our particular formula follows from this general relation for D = 6. It is not
difficult to verify that in the case of a point-like mass m with p = md(rs), the equation
(1) has the following solution (see also [15]):

S5G6m = d « < l(l—|—1) >
N )

Y= T dra? s Z Z Y. (€05 m0) Yim (€, m) exp - (3.2)

=0 m=—1

where £y, 10 denote the position of the source on the two-dimensional sphere (without
loss of generality we can choose £, = 0, 79 = 0) and Y}, are Laplace’s spherical
harmonics. Obviously, in the limit 73 — 400, the non-relativistic gravitational
potential should coincide with the Newtonian one:

GN’ITL

p(rs = +00) = — ot (3.3)

where G is the Newtonian gravitational constant. Taking into account that the zero
Kaluza-Klein mode I = 0, m = 0 gives the main contribution in B2]) for r3 — +oo
and that Yoo = 1/ \/E, we get the relation between six-dimensional and Newtonian
gravitational constants
S5Ge
4ma?
which exactly coincides with the corresponding relation in the case of toroidal
compactification for D = 6 and the internal space volume Vo = 4ma? (see, e.g., the
equation (20) in [9]).
Therefore, the perturbation A! of the 00 metric coefficient reads

:_47T Z Z Y (S0, m0) Yim (€, 77)€XP< l(l+1) 3) , (3.5)

l 0 m=—1

= 47TGN (34)
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where the gravitational radius r, = 2Gnxm/c®. Perturbations of other metric
coefficients can be found with the help of relations (BI3]). Obviously, the radius
of the astrophysical objects, such as the Sun, is much larger than the compactification
scale of the internal space: R3 > a. Then, for r3 2 R3 we can limit ourselves to the
zero mode in ([BE). Therefore, at these distances the metrics ([24]) reads

1
ds® ~ <1 — T—g) Adt? — <1 + —T—g) (d:z:2 +dy? + dz2)
T3 3 T3

—a? (1 + %%) (d€? + sin® &dn?) (3.6)

In the case of the matter source which is uniformly smeared over the internal space
(a particular example of the case 2 in appendix B), we have p(r5) = md(r3)/(4ma?),
and the equation (B.1) is reduced to the ordinary three-dimensional Poisson equation
Nz = 4nG ymd(rs) with the solution ¢ = —Gym/rs — Al = —r,/rs.

It can be easily seen from the expression (3.6 (see [1} [2]), that the parameterized
post-Newtonian (PPN) parameter v reads

1
T=73- (3.7)
The tightest constraint on v comes from the Shapiro time-delay experiment using the
Cassini spacecraft: y—1 = (2.14£2.3)x 1075 [3[4,[5,[6]. Obviously, the PPN parameter
~ BZ0) does not satisfy this restriction.
It is worth noting that in the case of toroidal compactification we get v = 1/(D—2)
[8] which results exactly in our formula (B for D = 5. Therefore, spherical
compactification with considered background matter (2Z3]) does not save the situation
with the point-like massive source. Similar to the case of toroidal compactification,
we also come to a contradiction to the observations. The metrics (BI4]) indicates that
the same conclusion must also occur in the case of compact astrophysical objects (not
necessarily point-like) with dust-like equations of state in the external and internal
spaces and an arbitrary distribution p(rs). It can be easily seen that in this general
case the ratio B! /A = 1/3 for V ¢. However, to satisfy the experimental constraints,
this ratio should be very close to 1, namely 1 + (2.1 + 2.3) x 1075. Therefore,
there is a common feature among the model with toroidal compactification and the
present model with spherical compactification which leads to a contradiction with the
observations.

4. Conclusion

In our paper we investigated classical gravitational tests for the Kaluza-Klein model
with spherical compactification of the internal space. The external spacetime is flat.
We supposed that a multidimensional bare cosmological constant is absent. In this
case, the only matter which corresponds to proposed metric ansatz is the one which can
be simulated by a perfect fluid with the vacuum equation of state in the external space
and the dust-like equation of state in the internal space. We perturbed this background
by a compact massive source with the dust-like equation of state in both spaces. In
the weak-field limit, the perturbed metric coefficients were found as a solution of the
system of Einstein equations. It enabled to calculate the PPN parameter v. We
found that for our model v = 1/3 which strongly contradicts the observations. The
similar situation takes place for models with toroidal compactification. We think
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that it happens because in both of these types of models the internal spaces are not
stabilized. The second part of our research will be devoted to solving this problem.
We shall see that our guess is correct and in the case of stabilized internal spaces
considered models can be in agreement with observations.
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5. Appendix A: Components of the Ricci tensor

In this appendix we consider the six-dimensional space-time metrics of the form of

2):
ds* = Ac?dt* + Bdx® + Cdy® + Ddz* + Ed€* + Fdn? ,

where the metric coefficients A, B,C, D, E and F satisfy the decomposition (Z3]).
Now, we define the corresponding components of the Ricci tensor up to linear in €
terms.

5.1. Diagonal components

Roo
B 2By Ay B Ay 2A,., B, C, D, E, F, A,
T 1eB (‘ B, +z+§>+@(‘ A, +§‘?‘6‘f‘?+7)
+ G (_2Ctt ﬁ 9)_’_@(_2’4%}_’_%_&_&_&_&4_&)
42\ ¢, A C) 4\ A, C B D E F A
Dy ( 2Dy Ay Dt> A, ( 2A,, D, B, C, FE, F, Az>
+ - —+ =+ R + =
4¢2D Dy A D 4D A, D B C E F A
LB (_2Ett Ay E>+ <2Agg Ee Be Ce De Fe A
4c2E FE, A E A E B C D

Ft 2Ftt + At + Ft +
4¢2F Ey A F

1
~ % {A3A1 + ﬁAg,,Al] . (A1)

Here, indexes denote the corresponding partial derivatives (e.g., A, = 0A/dx) and we
introduce the Laplace operators:

_0? 0? 0? 0% cos€ D 1 02
3=@+8—y2+w, Agn:8—€2+ﬁa—€+@8—nz.
For R11, R2o and R33 we obtain respectively:

Ry
A 2A,. B, A, B 2By A+ C:y Dy FE; F B
__(_ A, §+7> 402A(_ B. A C D E F+B>

A (A2)
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Cp [ 2Css By, O, By( 2By, C, A D, E, F, B,
Yo ( c, "B +’c>) s, ( B, 'c A D E T B
+ DI 2Dil)il) + BI 2BZZ Z AZ OZ EZ FZ BZ

4D D, BT D A C E F ' B
LB ( 26w B B\ 23& _g_g_&_&&

4E E, B ' E 4 A C D F ' B
LB 2P B B\, By __ﬁ_ﬁ_&_&+&

4 F, B ' F 4F A C D FE B
v enpts (e oot B L ra B (A3)
T2 ’ a?  a?sin’¢/),, a® & ’

R
o Ay 2Ayy Cy Ay Ot 2Ctt At Bt Dt Et Ft Ct
—m<‘ 4, "cta)Twea\"e "AaT B D E F'e
+& _2Byy+ﬂ+ﬂ +& _2011 Bx_&_&_&_&_F&

4B B, C ' B 4B C, B A D E F ' C
_;’_& _2Dyy+%+& +CZ _2OZZ &—&—%—%—E—i—%

4D D, [)) 4D C, D A B E F  C

E, ( 2By, Cy y Ce (20 B A B D¢ Fe Ck
+4E( Ey+C+E T 1B ¢ E A B D F T

F, [ 2F, C, F, ¢, ( 2C, F, A, B, D, E, C,
+4( Fy+O+F taF C, F A4 B D E T

€ El F! 1
~ — = [—A5CT Al l_pt-pt——= =N, C! A4
5 |[~0sC+ (Al +C i Smgg)yy 50 Ch| L (A4)
Ras
AL 24, N D, N A, N D, °Dy A, B, C, E, F D,
T 4A A, D A 4c2A D, A B C E F D
+& _QBZZ_F&_;’_% +& _2Dmm %—ﬁ—%—&—&"r&

4B B. D B 4B D, B A C E F D

c, [/ 20,. D, C, p,( 2D, C, A, B, E, F, D,
+4C( CZ+1)+O)+4C( D, "C A B E F'D

E. [ 2E,, D, E, De ( 2D¢e  Ee A Be Ce F: Dy
+4E( EZ+D+E)+4E< De E A B ¢ T D

F. [ 2F,, D, F, D, ( 2D,, F, A, B, C, E, D,
1 ( FZ+D+F>+4 ( D, F A B C E D

€ 1 1 1 1 1 E! F! 1 1

N_i{ﬂgD Ci+D B' - C' - = Tate) 8¢ D (A5)

The components Ry4 and Rss read respectively:

Ry
A£< 2A¢e | Ee A£>+ Ey ( 2By Ay By Gy Dy Ft+Et>

A\ "Eta) A" Es "2a B ¢ D FTE
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By ( 2B¢e  E: Bg) E, ( 2FE,. B, A, C, D, F, n Em)
E

4BBgE+§4BEIBACDF

20&& E& LG\ By (2B Gy A By Dy F By
C 4C E, c A B D F F
D 2D55 5 D¢ E, 2., D, A, B, C, F, E,
J— _l’_ — - - - - - - - - +_
4D D 4D E, D A B c F FE
LR ZF& Be  Fe), By (2w By Ay By G Dy By
4F F 4F E, F A B C D E
€ E}
~1—-(A'-B'-C' - AN o p—
2{( Dh)ee ’ a2 sin® ¢
1 cos 2¢ 2 cosé sin 2¢
- —— || FLX =2 F!) - F}—2——F') - —2F! A6
a281n2§[< € Tsin2¢ f) sm2g(f sin& 5 Pe|p,  (AG)
Ryss
Ay ( 2Aw Fy AN F (2P A B G D E_F
44 4, F A 4c2 A F,, A B C D E F
+& _237777_;’_&4_& +& 2Py &—ﬁ—%—&—&-f—&
4B B, F B 4B F, B A C D E F
cy 2C,, F, C, F, 2F, ¢, A, B, D, E, F,
+4C( ¢, " F¢)"we\"F e A" B D EF
_;’_& _2D7777+&+& _|_Fz _QFZZ DZ_&_%_%_%_F&
4D D, F D 4D F, D A B ¢ FE F
LBy ( 2Bw Fy B\, Fe( 2 Fo A B Ce D [
4 E, F F 4F F E A B ¢ D F
1
- 2 € 1 1 1 1 1 E 1 1 cos2§ 4
~ sin 5—5{(14 B'—C" —D")y, — AsF —%—;( gt sin2§FE
sin 2§ ¢ 1 1 1 1 cos¢ 1 cosé
—+4+ (A" -B" -C"-D -2 F
2 <2+( Je +a2s,in§ ¢ siné
1 sing , 1
o cost (F{ —sin2¢E )} (A7)
5.2. Off-diagonal components
1 1 1 1
Roin= — —=Ciy — =—=Dty — —=Fz — —= I
ol 2C " oD 2p T op !

A.C.  A.Dy  AE. A F, BiCp, BiD,

4AC 4AD 4AF 4AF = 4BC 4BD
BtE;E BtFm CtC;E DtDw EtEm FtF;E

4BE  4BF = 4C? 4D? 4FE? 4F2 7’

1 1 1 1
Roz = = 52 Buy = 55Dy = 5By — 551
A,B,  AD, AyE, AF  C/B,y L C:D

1AB ~ 4AD " 1AE T 1AF T iBC T ACD
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CiBy  CiFy | BBy DDy  EE,  FF

4CE  4CF 4B2 4D? 4FE? 4F2
Roz = — %Btz - %Ctz - %Etz - %th

Ath Ath AzEt Ath Dth Dtcz

4AB 4AC ~ 4AE  4AF  4BD  4CD

Dth Dth Bth CtOz Eth Fth

Y upE Tapr Tapz T ace tame T ar
1 1 1 1
Roy= — — Byt — —Che — —Dye — —F,
04 9B T 90T T op T T op e

AB.  A:C, AD, A, EBe ECs
148 T 1ac T 1ap T 1ar TiBE T 1EC
EDe | EiFe BB  CCe DiDe | FiF:

t9ED TaEr Tape T a2 T ape T ae
1 1 1 1
Ros = — —Byy — —C4yp — — D,y — —E
05 oB ™ oM T p Tt T 9T

AnBt AnCt AnDt AnEt FtBn FtC'n

14B T 1AC T 14D T 14E T 1BF T IFC

kD, FE, BB, CC, DD, EE,

4FD 4FFE 4B2 4C? 4D? 42 -

Obviously, for the static metrics these components are identically equal to zero. Let
us now calculate the remaining 10 off-diagonal components:

+

+

1 1 1 1
- __Aac __Dz __Ez __Fz
Fz DY DY) DY DR DY
B,A, B,D, ByE, B,F, C,A, C.D,
4AB ' 4BD ' 4BE ' 4BF ' 4AC ' 4CD
c.E, C.F, A,A, D.,D, E.E, F.F,
ACE ' 4CF = 4A2 4D2 4FE?2 4F?
1 1 1 1
~el—-A'+-D'+ —p' 4+ —— _ F! A8
6( 20 TP Tt Togae ), (A8)
1 1 1 1
- __Aacz__ xz__Exz__Fzz
T 24 3¢ " 3E oF
+&@ B.C, B,E, &m+m@ D,.C,
4AB ' 4BC ' 4BE ' 4BF = 4AD ' 4CD
N D.,E, D,F, A,A, C.C, E,E., F,F,
ADE ' 4DF ' 4A2? 402 4FE?2 4F?2
1 1 1 1
~el-—-A'+Z0'+ —F' '+ —— _ F! A9
6( 24 3% ot Toaanze ) (A49)
1 1 1 1
Roz = — ﬂAyz - EByz - ﬁEyz - ﬁFyz
@%+@&+@@+@Q+%&+%&
4AC ' 4BC ' ACE ' 4ACF 4AD  4BD
N D,E. D,F, A,A, B,B. FE,E., F,F,

4DE  ADF 4A2 4B2? 4F? 4F?

1 1 1 1
~el-—=A'+-B'+ —FE'+ —_F! A10
¢ < gt TP Toph 2a?sin? ¢ ve (A10)
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Ris

Q

Ras

Q

Ras

Q

Ry =

_|_

Q

Roy

Q

1 1 1 1
~ 344 = 35 %n ~ 5P~ gt
B,A, B,C, B,D, B,E, F,A, F.C,
4AB 4BC 4BD 4BE 4AF 4FC
kD, FFE, AA, C.C, D.,D, EE,
4FD AFE 4 A2 4C? 4D? 4E2
1 1 1 1
Al oty Ipty Lt
€ < 5 + 20 + 5 + 502 . ;
1 1 1 1
- ﬂAyn - ﬁ yn ED?M - ﬁEyn
c,A, Cy,B, C,D, CyE, F/A, F,B,
4AC 4BC 4CD 4CE 4AF 4BF
kD, FE, AA, ByB, D,D, E,E,
4FD 4FFE 4 A2 4B2 4Dz2 4E2
1 1 1 1
Al Bl Iply gt
‘ ( gt TP o o ’
yn
1 1 1 1
- _Az - _Bz - _Cz - _Ez
2471 9B T o T o TN
D,A, DyB, D,C, DyE, F,A, F.B,
4AD 4BD 4CD 4ED 4AF 4BF
F.C, F.,E, AA, B.,B, C.,C, E.FE,
4CF AFE 4 A2 4B2 4C? 4E2
1 1 1 1
__Al _Bl _Cl _El
¢ ( 2 TP Tt Tt )
1 1 1 1
__A;E __C;E __Dm __F;E
247 T 90" T op Tt T oF ¢
BeA, BeCp, BeD, BeF, EA: E,C;
4AB 4BC 4BD 4BF 4AF 4EC
E.D: E F: AyAc CyC¢ DyDe F,Fe
4ED 4FF 4 A2 4C? 4Dz2 4F?
1 1 cosé cosé
~(—A'+C'+ DY) + ! ——5——FE'—
¢ (2 ( Je 2a2sin?¢ ¢ 2a%siné 202 sin® ¢
1 1 1 1
- ﬂAyé — opBue = 5pDvs = 55 Fue
CﬁAy CﬁBy CEDy Cny EyA£ EyB£
4AC 4BC 4CD ACF 4AF 4BE
EyDE EyFE AyAE ByBE DyDE FyFé
4ED 4FEF 4A2 4B2 4D? 4F7?
1 1 cos& cos&
- _Al + Bl + Dl + 1 . 1 _
¢ (2 ( Je 2a2sin?¢ ¢ 2a2siné 2a2 sin® &
1 1 1 1
== __Az __Bz __Oz __Fz
247 T ap Tt T o0 T 2kt
D¢A, De¢B, D¢C, D¢F, FE,A: FE.B¢
4AD 4BD 4CD 4FD 4AF 4BFE

(A11)

(A12)

(A13)

F1>m ,(A14)

F1> ,(A15)



Weak-field limit of Kaluza-Klein models with spherical compactification I: problematic aspectsl3

B.Ce | E:F | AA¢  B.Be C.Cc F.Fe
ACE " 4FE = 4A2 7 4B T 4C? T 4F?

1 1 cosé cosé
~el|=(—A'+B 4 CHe + — . o F1> ,(A16
€ (2( )£ 2a2 sin2§ 13 2a2 81n€ 2a2 Sin?)g B ( )
1 1 1 1
Ris = — 57 Aen — 55 Ben — 550 — 55D
L ByAe  ByBe  EiCe  EyDe  FeAy  FeB,
4AF 4BE 4CFE 4DFE 4AF 4BF
FeCy  FeDy  AcAy  BeBy  CeCy  DeDy
4CF 4FD 4A2 4B2 4C? 4D?
1 cos&
~el=(-A'+B'+C'+ D? At —-pt—-ct-DY) . Al
e<% +B +C" + k+%mé C 0 (A17)

n
6. Appendix B: Relations between metric coefficients

First, we investigate expressions (A8)-(AI0) in the case Ris = R13 = Roz = 0. It can
be easily seen that the equation R;5 = 0 has a solution
1, 1

Lot U I S
SAT+ gD+ o B 2a2sin2§F = Ci(2,&,n) f1(z) + Ca(z,€,n) f2(y) ,

where C1(z,&,1),Ca(z,&,7), fi(x) and f2(y) are arbitrary functions. We also assume
that in the limit |z|, |y, |2] = +oo the perturbed metrics reduces to the background
one. Thus, all perturbations A!, B',C' D', E' and F' as well as their partial
derivatives vanish in this limit. Therefore, the right hand side of the above equation

is equal to zero. Similar reasoning can be applied to equations R;3 = 0 and Ra3 = 0.

Then, we arrive at the following relations:
B —C'=p' =4 - 1p = L

- B1
a? aZsin’ ¢ (BL)

We consider models where the Finstein equation for all off-diagonal components

is reduced to
Rin=0 for i#k. (B2)
We want to analyze these equations for components (A11)-(ATT) with regard to the

relations (BI).

First, it can be easily seen that Einstein equations (B2]) for components (AT4)-

(AI0) give

1
—~ Al + B} +Cl+ ———F}
e BT T e

cosé cosé

1 _
- B P = Calen). (B3)

where C5(&,n) is an arbitrary function. From the boundary conditions at |z|, |y|, |z| —
+00 we find that C3(¢,n) = 0. Taking it into account, we get from (BIl) and (B3)
respectively

1 1
- A'+B' 4+ —Fl=_——_F! B4
e aZsin’ ¢ a? (B4)
and
1
A4 Bl g S8 g CSE g (py)

a2sin?¢ ¢ a?sing aZsin® ¢
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Differentiating (B4]) with respect to &, we obtain

1 2cosé 1
— A+ B+ ——F' - 2 F'= - FE!. B6
¢ CTa2sin?¢ ¢ a?sin’¢ a2t (B6)
Subtraction (B6) from (BE) yields
1 1 1 Lo Lo

Let us investigate two separate cases.
1. Smeared extra dimensions

First, we consider the matter source which is uniformly smeared over the internal
space. It results in the metric coefficients A', B',C', D! and E' depending only
on the external coordinates z,y and z [I4]. We do not require that the diagonal
Einstein equations have the form (ZI2))-(2I5), but the off-diagonal components must
be like (B2). Then, equations Ry5 = Ras = R3s = R4s5 = 0 (where these off-diagonal
components are defined by (ATI))-(AT3),(ATT)) are automatically satisfied. It can
be easily seen from (BI) that the coefficient F' ~ sin?¢&. Moreover, to satisfy the
equation (BT, it should have the form

F'= E'sin®¢. (B8)
Therefore, (BI]) can be rewritten in the form

2
—A1+Bl+¥E1:O. (B9)

2. Arbitrary rest mass density p(rs)

In this case, the rest mass density p(rs) of a compact astrophysical object is
an arbitrary function of all five spatial coordinates. Here, as a particular example,
the matter source can also be smeared over the internal space. However, the main
difference from the previous case is that the diagonal Einstein equations should have
the form ([2I2)-(2I5). This leads to additional conditions

B'=C'=D'= %Al, (B10)

which follows from equations ([2.I6), (2I7) and (BIl). The case 1 is related to the
models where (BI)) is still valid but the relation B! = 1/(3A') may be violated.
Therefore, taking into account relations (BI(), the Einstein equation Rys = 0 for (A1)
is automatically satisfied. Let us consider equations (B2) for components (A14))- (A16).
Substitution (B7) back into (B4) gives

2 1
—2B'+ B! = By tan{ — — Fe tan¢, (B11)

where we take into account the relation (BIQ). We seek the solution of this equation
in the form

E'=d’B'+E', 2B'=-E}tant. (B12)
The solution of the latter equation is E' = Cy(r3,n)/sin? €, where Cy(rs,n) is an

arbitrary function. The function E! diverges when § — 0, 7. To avoid this problem,
we require that Cy(r3,n) = 0. Thus, B! = 0 and E' = ¢?B'. In turn, from the
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equation (BT), we obtain: F' = E'sin?¢ = a?B'sin®¢. Thus, perturbations of the
metric coefficients are related as follows:

B'=0c'=D'=A4'/3, E'=d’B', F'=E'sin’¢. (B13)
Therefore, the equality (B3] holds also in this case. Taking into account these relations,
we can easily verify that Einstein equations (B2) for components (ATI)-(AI3) are
automatically satisfied. Denoting A' = 2¢/c?, we can conclude that the perturbed
metrics should have the following structure:

2 2
d? ~ (1+ 22 ) Ed® + (=14 22 ) (de® + dy® + d2?)
c? 3c?

+ a? (—1 + %) (d€? + sin® &dn?) (B14)

To complete this appendix (the case 2), we consider now 44 and 55 Ricci tensor
components (AG) and (AT). With the help of relations (BI3), it is not difficult to
verify that

sin2§ X R44 = R55. (B15)
Moreover, the expression [AG]) can be rewritten in the following form:
€ 11 1 a?
R44 ~1+ 5 A3E + ;AgnE =1+ gRoo . (B16)

Similarly, the components 11 and 22 are connected with the component 00 as follows:

1
R11 = R22 = R33 = gROQ. (B17)
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