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The two primary goals for a telescope are sensitivity and angular resolution. Interferome-
try among telescope arrays has become a standard technique in astronomy, allowing greater
resolving power than would be available to a single telescope. In today’s IR and optical in-
terferometric arrays [1, 2], photons arriving at different telescopes must be physically brought
together for the interference measurement, limiting baselines to a few hundred meters at most
because of phase fluctuations and photon loss in the transmission. Improved resolution would,
if accompanied by adequate sensitivity, have many scientific applications, such as detailed ob-
servational studies of active galactic nuclei, more sensitive parallax measurements to improve
our knowledge of stellar distances, or imaging of extra-solar planets. The field of quantum
information has extensively studied the task of reliably sending quantum states over imperfect
communications channels. The technology of quantum repeaters [3] can, in principle, allow
the transmission of quantum states over arbitrarily long distances with minimal error. Here
we show how to apply quantum repeaters to the task of optical and infrared interferometry
to allow telescope arrays with much longer baselines than existing facilities. The traditional
intended application for quantum repeaters is to increase the range of quantum key distri-
bution, but the application to interferometric telescopes has more stringent demands in a
number of ways. Quantum repeaters are still under development, and our work provides a
new goal for research in that area. It sets a new slate of requirements for the technology, but
simultaneously broadens the appeal of successfully building quantum repeater networks.

We begin by reviewing the standard approach to optical and infrared interferometry, known as “direct
detection,” [1, 2] but we will perform the analysis by assuming that only a single photon — rather than a
classical wave — is arriving from the source. We consider first an idealized set up with two telescopes and no
noise, as pictured in figure 1. Because the source may not be directly overhead, the light must travel further
to reach telescope L than to reach telescope R. The additional distance is b sin θ, where b is the length of
the “baseline” (the distance between the telescopes in the interferometer) and θ is the angle from vertical of
the source. If the light has wavelength λ, the extra distance means that the light arriving at telescope L has
a phase shift φ = (b sin θ)/λ relative to the light arriving at telescope R. We have a single photon arriving,
but it could arrive at either telescope, and since the source is far away, the probability of arriving at each
telescope is equal. For a point source, we thus have the state

|0〉L|1〉R + eiφ|1〉L|0〉R, (1)

with |0〉 and |1〉 indicating 0 and 1-photon states and the subscript indicating the telescope. If we can
measure φ with high precision, that tells us the location of the source very precisely.

Often we are interested in sources that have some structure on the scale we can resolve with the interfer-
ometer. Different locations on an astrophysical source are usually emitting light incoherently, so the state
we should consider instead is a mixed state, formed by a mixture of photons coming from different locations
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Figure 1: Basic set-up of a direct detection interferometer
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on the source. Because different locations give slightly different phase shifts φ, the off-diagonal components
of the density matrix decrease. We get a density matrix of the form

ρ =
1

2


0 0 0 0
0 1 V∗ 0
0 V 1 0
0 0 0 0

 (2)

in the basis |0〉L|0〉R, |0〉L|1〉R, |1〉L|0〉R, |1〉L|1〉R. V is known as the “visibility.” V(~b) is a function of not
just the size but also the orientation of the baseline between the telescopes.

The light from the two telescopes is then brought together. The light from telescope R is subjected to
an additional delay relative to the light from telescope L so that when the photons are combined in the
interferometer, the path travelled by an L photon differs from the path travelled by an R photon by less
than the coherence length of the incoming light. In addition, the delay line is adjustable, producing a known
phase δ for the light from telescope R. In figure 1, the light then enters a Michelson interferometer. We see
the photon in output port 1 with probability

1

2

[
1 + Re

(
Ve−iδ

)]
, (3)

and in output port 2 with probability [1 − Re(Ve−iδ)]/2. By adjusting the delay line to sweep through
different values of δ, we can measure both the amplitude and the phase of V.

With just a single pair of telescopes with a fixed baseline, we don’t have enough information to reconstruct
the original source brightness distribution, but when we have an array of telescopes with a variety of different
baselines, we get much more information. The van Cittert-Zernike theorem [4] states that the visibility (as
a function of the baseline) is the Fourier transform of the source distribution. Thus, if we could measure the
visibility for all baselines, we could completely image the source. With only a limited number of baselines, the
discrete Fourier transform may nonetheless give a good approximation of the source brightness distribution.

There are two major difficulties involved in implementing the set-up described in figure 1. First, if the
telescopes are ground-based, density fluctuations in the atmosphere modify the relative phase shift between
the telescopes. The phase noise is large enough to completely swamp the signal we wish to measure. This
can be dealt with by using space-based telescopes, by various forms of phase referencing to recover the
original phase information, or, in an array of many telescopes, by calculating closure phases, which combine
the interference results from different pairs of telescopes in such a way to cancel out telescope-specific phase
shifts due to atmospheric fluctuations or other causes [1].

The second problem is that it is difficult to transport single photons over long distances without incurring
loss of photons and additional uncontrolled phase shifts. For instance, slight variations in path length due to
vibrations are a problem, as are small misalignments of the optical elements, producing reduced interference
fringes. The signal we wish to measure is the amount of interference — for instance, a point source should
have complete constructive and destructive interference, while a uniformly bright field of view should have no
interference at all. Since many different error mechanisms also cause a reduction in the interference visibility,
this is a serious problem. Loss of photons can present a severe limitation on the array’s sensitivity to faint
sources. In practice, these problems limit the baseline size of interferometers using direct detection. Today’s
best optical and infrared interferometers use baselines of only a few hundred meters at most.

The task of transporting quantum states and correcting errors on quantum states has been intensively
studied in the field of quantum information. For the specific task of interferometry, the most relevant strategy
seems to be to use a “quantum repeater” [3, 5]. The idea of a quantum repeater is that, instead of sending a
valuable quantum state directly over a noisy quantum communications channel, one should instead produce
a maximally entangled state such as |01〉 + |10〉 [6], and distribute that over the channel. The entangled
state is known and replaceable, so we can check to see that it has arrived correctly. If it has, then we can
transmit the original quantum state using a technique known as “quantum teleportation” [7].

To teleport a single-qubit quantum state (i.e., one with a two-dimensional relevant Hilbert space) from
an experimenter Alice to an experimenter Bob, Alice and Bob must first share a maximally entangled state.
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Figure 2: Performing an interference measurement between two telescopes using an entangled state.

Then Alice performs a Bell measurement between the qubit she wishes to teleport and the entangled state;
that is, she projects her two qubits into the four states |00〉 ± |11〉, |01〉 ± |10〉. The measurement result can
be described as two classical bits, which Alice sends to Bob. Bob then completes the teleportation procedure
by performing a single-qubit gate which depends on the message he receives from Alice. This reconstructs
exactly Alice’s original qubit state.

In the particular case of an interferometric telescope, it is not necessary to perform the teleportation
explicitly, as we can use the entangled pair directly to measure the visibility. Consider the setup of figure 2.
We now have two separate interference measurements, one at telescope L and one at telescope R. We post-
select on the measurement results, considering only the case where we see one photon at telescope L and
one photon at telescope R. One of these photons has come from the astronomical source, and one has come
from the entangled pair, but we have no way of knowing which is which. We will refer to them as the
“astronomical” photon and the “lab” photon, respectively, when we need to make a distinction between
them. On each side, there are two detectors, and the probability of seeing a photon at the two detectors is
equal. The signal we wish to measure is contained not in the number of photons seen at any given detector,
but in the correlation between which L detector clicks and which R detector clicks.

Again, we assume the astronomical photon has the density matrix ρ given by equation (2). Instead of
performing a variable delay on photons arriving at R, we perform the delay line on the entangled state
when the photon is sent to L. The entangled state being used is thus |0〉L|1〉R + eiδ|1〉L|0〉R. Note that the
interference measurement at detector L is occurring slightly later than the interference measurement at R.
When we post-select, we insist that the observed photons be displaced by precisely this time delay, with an
uncertainty given by the coherence length of the photons.

Half the time, both photons will arrive on the same side. We discard those cases, and focus just on
the instances where we have one photon on each side. We lump together pairs of outcomes. The total
probability of seeing a correlation (L1, R1 or L2, R2), conditioned on having one click at each telescope, is
[1+Re(Ve−iδ)]/2, and the total probability of seeing an anticorrelation (L1, R2 or L2, R1) is [1−Re(Ve−iδ)]/2.
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The measurement of correlation vs. anticorrelation thus tells us the same information as the two outputs of
a Michelson interferometer in a direct detection experiment.

One way to interpret figure 2 is as a post-selected teleportation on the right followed by an interference
experiment on the left. The beam splitter and photo-detectors at R implement a measurement with projectors
|0〉A|1〉E ± |1〉A|0〉E , where the subscript A denotes an astronomical photon mode and E denotes a mode of
the entangled photon. In the case where 0 or 2 photons arrive at R, the teleportation fails, and we must
discard the state, but when 1 photon is detected at R, we succeed in teleporting the arriving A state to L,
where it is interfered with the A mode arriving at L. Of course, the diagram is completely symmetric, so we
can equally well consider it as teleporting the state from L to R.

In principle, the sensitivity of an entangled-state interferometric telescope can be similar to that of a
direct-detection interferometer, but there are a number of significant technological and engineering barriers
to achieving the same level of sensitivity. First, we must ensure that every time one astronomical photon
arrives, there is an entangled photon arriving as well. To achieve this, we need a high-rate true single-photon
source [8, 9] which puts out exactly one photon per field mode. Furthermore, 50% of the light will be
lost in the scheme of figure 2, corresponding to cases where the astronomical photon and entangled photon
arrive at the same telescope. The loss can be reduced to 1/n for an array of n telescopes by using a “W”
state as the entangled state, consisting of a single photon split coherently between the n telescopes. The
most stringent limitation comes from the limited timing resolution τc of the detectors. We must filter the

photons to a bandwidth of less than λ2

2πτc
so that photons arriving at times separated by τc or less remain

indistinguishable and can interfere. With current detectors [8], that corresponds to a narrow bandwidth,
about 0.025 nm for a line in the visible optical spectrum, so faster detectors would be highly desirable. These
and other issues relating to implementation of the scheme are discussed in more detail in the supplementary
material.

The advantage of our scheme comes when we go beyond existing facilities to extend the baseline of
interferometers well beyond what is currently possible. There is a substantial body of research investigating
how to create entangled states shared by faraway sites [3], and our scheme allows us to apply those techniques
to the problem of creating long-baseline interferometers.

There are two primary sources of noise where a quantum repeater can help us. The first problem is
phase noise, often due to path length variation in the interferometer. Active stabilization of path lengths
can substantially reduce phase noise [10]. Another solution to phase noise is entanglement distillation [11],
a protocol which takes a number of noisy entangled states as input and outputs a smaller number of less-
noisy entangled states. Active stabilization can be applied equally to direct-detection or entangled-state
interferometry, but entanglement distillation is only available for entangled-state interferometry. The second
problem is loss of photons; in the presence of loss, not every entangled state sent is received. One well-known
scheme to solve this problem is due to Duan et al. [12] (DLCZ). In that scheme, two atomic clouds are
entangled in a “heralded” way, meaning we have a measurement that tells us when the entanglement has
succeeded despite the loss during transmission. We continually attempt to generate entanglement between
the atomic clouds, and once we succeed, we can store it until it is needed. We discuss repeater protocols
further in the supplementary material.

Once the basic quantum repeater protocols are perfected, it becomes possible to build a network of
quantum repeaters to create entangled states shared between arbitrarily distant points [5]. Repeater stations
are positioned at a modest distance from each other, so that transmission errors and loss between neighboring
stations are correctable via the repeater protocols described above. We can create entangled pairs shared
between neighboring repeaters, then join together multiple entangled states as in figure 3, using entanglement
swapping [13] to create an entangled pair between any pair of nodes in the network.

It is worthwhile to compare our scheme to other interferometric techniques that can extend the base-
line length of interferometry. Both intensity interferometry [14] and heterodyne interferometry [15] can
achieve much longer baselines than direct-detection interferometry, and they are technically much easier
than entangled-state interferometry. However, neither is sensitive enough to be generally applicable for
interferometry in optical wavelengths except for the brightest sources, whereas entangled-state interferom-
etry could be, if the technical hurdles we have discussed can be overcome. Both schemes are related to
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Figure 3: Concepts to establish shared entanglement: A) shows the simplest scenario, which is to create
the shared entanglement by passing one single photon through a beam splitter, and sending the resulting
entangled modes to the receivers. B) In the envisioned scenario, a series of quantum relays entangles several
entangled photon pairs via a Bell-state measurement (BSM), and extracts high-quality entanglement after
entanglement distillation (ED). This will make it possible to create high quality entangled states shared by
distant receivers, ready to be used for interferometery.
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entangled-state interferometry, and we discuss the connections in the supplementary material.
In this paper, we have primarily considered how distributed quantum entanglement can potentially

improve optical interferometry. For radio frequencies, interferometry can be performed robustly today even
between telescopes spread across the planet. Optical frequencies are much higher, so fewer photons arrive
per second, making interferometry much more difficult. In telescope design, the arriving light is usually
treated classically, but when the number of photons arriving is small, the quantum state of the light may
become important. Thus, the field of quantum information is well-suited to provide advances.

Quantum repeaters have until now been under development primarily for use in quantum communications,
so interferometry offers a very interesting new venue for the application of quantum information techniques.
As we have shown, in the long run, quantum repeaters can completely lift the upper limit on distance
over which it is possible to do interferometry. In order to do so, a number of technical hurdles need to
be overcome, either by improved technology or by theoretical innovations. We need high-rate bandwidth-
matched single-photon sources, and high efficiency photodetectors with very fast time resolution. We also
need robust quantum repeater protocols, including entanglement distillation. One additional requirement
we have is that the light arrives in the telescope in certain modes, and the quantum repeater modes must
adapt to that. Therefore, the repeater protocols need to work at the desired optical frequencies or we need
to implement technologies to shift the frequencies of either the arriving light or the entangled photons.

Quantum information technology may offer even more significant applications to help improve astronomi-
cal observations. For instance, it may be advantageous to coherently store arriving photons using a quantum
memory and then perform the quantum Fourier transform, rather than measuring, waiting and performing
the classical Fourier transform. The quantum Fourier transform works reasonably well even with a small
number of photons, whereas if we measure first, we need enough photons to get a reliable measurement of
each phase.
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1 Supplementary Material

1.1 Technological Difficulties in the Implementation of an Entangled-State In-
terferometer

The set-up given in figure 2 could be implemented using currently existing technology by replacing the optics
in an existing telescope array. However, the disadvantages involved in doing so outweigh the advantages, so
the only reason to do so would be as a proof of principle. In this section, we shall discuss the barriers to
building an entangled-state interferometer. As we shall see, none of these insurmountable. In practice in the
near term, many of these problems will reduce the sensitivity of an entangled-state interferometer relative to
a direct-detection interferometer. We shall discuss the ways these challenges can be overcome, showing that
in principle, an entangled-state interferometer can have sensitivity nearly equal to that of a direct-detection
interferometer.

Because we must discard the result half of the time (when both photons are on the same side), we
automatically lose half of the light from the source. If one were better able to manipulate quantum states
of light, one could in principle do a full Bell measurement on each side (adding projectors |00〉 ± |11〉 to the
existing projectors |01〉 ± |10〉), letting us use every arriving photon. However, the full Bell measurement
in this case is difficult to perform, so the partial Bell measurement will have to be used in near-term
implementations of the scheme. A better solution is possible when the interferometer involves an array
of many telescopes. Instead of splitting a single photon between two telescopes, let us split it between n
telescopes in a W state:

eiδ1 |100 . . . 0〉+ eiδ2 |010 . . . 0〉+ eiδ3 |001 . . . 0〉+ · · ·+ eiδn |000 . . . 1〉 (4)

The photon arriving at telescope i is subject to a phase delay δi so that modes emitted simultaneously from
the astronomical source can be compared at any pair of telescopes. At each telescope, we put the two photon
modes through a beam splitter as before, and post-select on getting two simultaneous photons at any two
telescopes. In the ideal case, one will be an astronomical photon and one will be an entangled photon. The
only cases we must discard are when both photons arrive at the same site. This happens with probability
1/n, so as the number of telescopes increases, we lose less and less signal from the partial Bell measurement.
Once we post-select on a particular pair of telescopes, we look for correlation or anticorrelation between
the measurements at those two telescopes; the analysis is just the same as if we had originally planned an
interference measurement between just those two telescopes.

The W state technique has some additional advantages and drawbacks relative to using entanglement
between pairs of telescopes. An advantage is that phase errors in the W state are telescope-specific phase
errors which can be cancelled via closure phases, whereas phase errors in a 2-telescope entangled state can be
baseline-specific. One minor drawback is that we don’t control which baseline gets used for this astronomical
photon. That is not important, luckily, since to take full advantage of an array, we would want measurements
on all possible baselines in any case. Each baseline gets the same average number of astronomical photons
as when we use pairwise entanglement, but we keep a fraction 1 − 1/n of them instead of 1/2. A more
important disadvantage is that it is more challenging to combine the W state with quantum repeaters. The
W state scheme is most useful when we lack complete Bell measurements, but then we also cannot reliably
perform teleportation, so the chance of successfully distributing an n-qubit W state over standard quantum
repeaters decreases as 2−n. There are various solutions to this. We could use a non-standard repeater, or
could build the W state up from smaller pieces. In the absence of other imperfections, either of these can
be done with an amount of resources which is polynomial in n.

Because we want a separate entangled state for each photon mode, we will need to be able to produce
entangled pairs at a very high rate. In theory, this can be substantially reduced: Since most of the astro-
nomical photon modes are empty, quantum compression [16] applied to those modes can greatly reduce the
number of qubits that need to be teleported. When a universal set of quantum gates is available, this can
be done with only a small amount of scratch space as photons arrive [17, 18]. Indeed, it may be possible to
reduce the amount of entanglement even further since we don’t require actually sending the state; we only
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want to know the relative phase at telescope L vs. R. However, it doesn’t appear to be possible to do the
compression via only linear optics, so it is an interesting theoretical question whether there is some way of
compressing the states without excessive experimental difficulty.

There is also a significant loss of signal caused by imperfect detector efficiency. A standard direct-detection
interferometer requires a click from only one photodetector, but our scheme requires two photodetectors to
click. Therefore, the overall signal in our scheme is suppressed by an additional factor of the detector
efficiency. In principle, detector efficiencies can be very close to 1, but in practice they are not. Further
development of high-efficiency detectors will therefore help make our scheme more practical.

We have described the experiment assuming there is exactly one photon from the astronomical source
and one photon in our entangled state. In practice, neither may be true. The easiest “entangled” state to
create would use a weak coherent state, such as an attenuated laser, as a photon source. The light from the
astronomical source has undergone very severe attenuation since its emission, so it is also best modeled as a
weak coherent state. Assume that the “entangled state” has average photon number pE and the astronomical
source has average photon number pA. Both pE and pA are substantially less than 1. Splitting up a weak
coherent state gives two weak coherent states, with average photon numbers pE/2 for the entangled state
and pA/2 for the astronomical source.

We post-select on seeing one photon at each telescope, and those events come from three cases. We will
keep only the lowest-order (p2) terms, under the assumption that both pE , pA � 1. In the first case, with
probability pApE/2 we have one lab photon and one astronomical photon, and then we see an interference
pattern in the correlation between which L detector and which R detector clicks. The next case, which occurs
with probability p2E/4, is when there are two lab photons, and then the left and right detector outcomes
are uncorrelated. Finally, in the third case, there are two astronomical photons, and again the L and R
detections are uncorrelated. The Hanbury Brown-Twiss effect [14] comes into play, so the probability of this
case is p2A(1 + ReV)/4. The total probability of getting one photon at L and one photon at R is

P =
pApE

2
+
p2E
4

+
p2A
4

(1 + ReV). (5)

For the p2A and p2E terms, both photons come from the same place, and the left and right detector outcomes
are uncorrelated. Therefore, when the source is a weak coherent state, the probability of seeing a correlation
between the L and R detectors is

1

8

[
p2E + p2A(1 + ReV) + 2pApE + 2pApERe

(
Ve−iδ

)]
. (6)

Normalizing by the total number of events, the visibility term, where our signal resides, is decreased by a
factor

2pApE
p2E + p2A(1 + ReV) + 2pApE

. (7)

One might be puzzled why we see any interference at all, since the purported entangled state is actually
a tensor product of two weak coherent states. The answer is that we are dealing with a post-selected
measurement. Conditioned on seeing one photon on each side, we actually do have an entangled state.

The source strength pA is fixed, but we can vary pE to our liking to get the best result. The visibility
loss is minimized, according to formula (7), when pE ≈ pA. However, choosing that value of pE means
that we rarely see the two-photon events we are interested in. An alternative choice is to let pE be larger
to increase the rate of two-photon events, but we then have to suffer the concomitant loss of normalized
visibility. This is an unappealing tradeoff: using a weak coherent state source, we must choose between
losing most of the light that arrives or reducing our signal-to-noise ratio. A better solution is to use a true
single-photon source, which reliably emits a single photon when asked and never emits two photons at the
same time [8, 9]. Such sources are under development, so this is not an unreasonable requirement. However,
we need a single-photon source which produces a photon indistinguishable from the astronomical photon.
Furthermore, the reset time between emissions of a photon leads to loss of signal, as any astronomical photon
which arrives during the dead time is not measured. In other words, we want the single-photon source to
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produce an entangled photon for every astronomical photon mode we are measuring. That is much more
challenging, and should become a goal of research into single-photon sources.

Another substantial challenge is that the entangled photon and astronomical photon must be nearly indis-
tinguishable to produce good interference at the beam-splitters. Ideally, the spatial mode of the astronomical
photon is known (essentially a plane wave truncated to the size and shape of the telescope aperture), and the
frequency mode is controlled by a spectral filter placed in the telescope. In practice, the spatial mode will
be distorted by atmospheric effects, but this is also a problem for direct-detection interferometers, and can
be dealt with using the same methods (e.g., adaptive optics or single-mode fibers) [1, 2]. The main challenge
is matching the temporal mode correctly. The photons will be distinguishable if they arrive separated by a
time greater than their coherence time. Usually, the astronomical source being observed is very hot, so the
light emitted has a large bandwidth and correspondingly low coherence time. The spectral filter narrows the
bandwidth and therefore increases the coherence time, according to the uncertainty principle. Our choice of
what bandwidth to allow therefore sets the requirement for time resolution.

In particular, if the detectors in use have a time resolution greater than the coherence time, many
supposedly simultaneous two-photon coincidences will actually be between distinguishable pairs of photons,
which will reduce the interference fringe visibility [19]. Currently, the lowest timing resolution achieved is
τc = 35 ps (FWHM) with thin Silicon Avalanche Photo Diodes [8], with a high detection efficiency of above
50% in the green (λ = 550 nm). Consequently, in order to achieve a high two-photon interference contrast the
bandwidths of both the incoming and the entangled photons ∆λ must be matched and narrowed to a value

on the order of ∆λ = λ2

2πτc
≈ 0.025 nm (FWHM), truly challenging but not impossible. Furthermore, it is

in principle possible to split out the spectrum into several wavelength channels which can each be measured
separately in order to enhance the sensitivity of the system. Relative to a single broad bandwidth channel,
many narrow channels have other advantages: For instance, they give us additional information about the
frequency dependence of the source and loosen the restriction on field of view caused by baseline smearing,
which can be substantial at very large baselines [1].

The ultimate limit on the sensitivity of the receivers will be determined by the noise dark counts in
the photon detectors (ca. 100 counts per second), which must be less than the number of original photons
received. In addition, the number of astronomical photons received must be significant to perform a visibility
measurement within the characteristic time of the atmospheric phase fluctuations, which is on the order of
10 ms [1]. Assuming a 1 m receiver aperture, this threshold should roughly be surpassed when observing
objects of an apparent magnitude of 7.5. This is comparable to the sensitivity of today’s CHARA interfer-
ometer array [20], which also uses 1 m telescopes. Of course other imperfections in the system will hurt our
sensitivity further, but the point of the quantum repeater protocols, discussed below, is that losses and noise
due to the transmission of the photons can be largely eliminated, so it is reasonable to expect that we can
attain a sensitivity close to the ideal. With the ongoing advancement of photon detector technology, we can
imagine that timing resolutions of < 5 ps and dark counts of perhaps 10 cps are feasible, which would allow
the bandwidth of the photons to be widened and the limiting sensitivity of the system improved to about
magnitude 12.

1.2 Quantum Repeaters and Their Application to Entangled-State Interferom-
etry

There are two primary sources of noise where a quantum repeater can help us. The first problem is phase
noise, often due to path length variation in the interferometer. Active stabilization of path lengths can
substantially reduce phase noise [10]. Another solution to phase noise is entanglement distillation [11], a
protocol which takes a number of noisy entangled states as input and outputs a smaller number of less-
noisy entangled states. Entanglement distillation and active stabilization are complementary procedures, as
active stabilization is most effective against slowly changing sources of phase noise, whereas entanglement
distillation works best to eliminate noise sources that are uncorrelated between the transmitted entangled
states. Active stabilization can be applied equally to direct-detection or entangled-state interferometry, but
entanglement distillation is only available for entangled-state interferometry.
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For instance, Sangouard et al. [21] (SSCG) presented a distillation protocol specialized for single-photon
entangled states of the sort we use above. One starts with two entangled photons. At the L end of the state,
the two modes are sent through an unbalanced beam splitter, and similarly at the R end. One output of
each beam splitter is monitored with a photodetector, and if exactly one of the two detectors sees a photon,
the output of the other two ports is kept as the new more reliable entangled state. If both detectors see
a photon, there are no photons left, and the state must be discarded; if neither detector sees a photon,
the state has become a two-photon state, and should also be discarded. The optimal beam splitters to use
depend on the level of noise in the transmission channel, but using one 15/85 beam splitter and one 85/15
beam splitter is close to optimal for all noise rates.

When the repeater succeeds, it outputs an entangled state with a higher fidelity to the desired state than
the original entangled states produced by the channel. If the fidelity is still not high enough, we can repeat
the protocol using two entangled states, each of which is itself the output of the first-round repeater protocol.
If that is still not good enough, we can continue for more rounds until the entanglement reaches the desired
fidelity.

The SSCG protocol is not very efficient, since a majority of the entangled states are lost even if there is
little noise, but it does have the advantage of being straightforward to implement. Indeed, it has already
been demonstrated experimentally [22]. One important advantage of the SSCG protocol is that it does not
require any shared local oscillator between the two ends in order to perform the protocol — the photons used
in the protocol act as a phase reference for each other. Since it is difficult to reliably share a local oscillator
over a long distance, that is a big advantage.

The second problem is loss of photons; in the presence of loss, not every entangled state sent is received.
One well-known scheme to solve this problem is due to Duan et al. [12] (DLCZ). In that scheme, two
atomic clouds are entangled in a “heralded” way, meaning we have a measurement that tells us when
the entanglement has succeeded despite the loss during transmission. We continually attempt to generate
entanglement between the atomic clouds, and once we succeed, we can store it until it is needed. The
information is stored in collective excitations of the atomic cloud, which can couple strongly to light. This
makes it possible to emit the stored entangled state as an entangled photon of the kind we want to use in our
interferometer scheme. The DLCZ scheme has also been implemented experimentally [23]. Unfortunately
for our purposes, the atomic clouds used in the DLCZ scheme only interact with light within a narrow
bandwidth. This is a big drawback, and we would want schemes that work for larger bandwidth; that should
be a goal for future development. We also need a very rapid repeater protocol, able to output one reliable
entangled state into each optical mode, as discussed above. Current repeater protocols are too slow, so this
is another task for future research.

Even more advanced protocols are possible. Ideally one would be able to store the astronomical photon
as a qubit in a quantum computer. Entanglement would also be generated, distilled, and stored in the
quantum computer using any of a variety of protocols, some of which have much better performance than
the technologically easier repeater protocols cited above. In addition, performing the interference in a
quantum computer would let us do a complete Bell measurement, avoiding the 50% signal loss due to the
limitations of linear optics for two telescopes, and would let us compress the astronomical signal state to
more efficiently use entangled states. We are not aware of any proposed protocol that could store received
light in a quantum computer with high efficiency and fidelity; a workable one would be very interesting.

There is one particular point that requires caution here. Many of these more advanced techniques will
require local oscillators, and as we have mentioned, it is difficult to arrange that the oscillators in distant
locations will agree. Active stabilization of phases could allow this, but even without that technology, all is
not lost. While it is difficult to have local oscillators at both ends which have the same phase and frequency,
it is much easier to have separate local oscillators which share the same frequency but not the same phase.
For instance, we can have two lasers tuned to the same atomic line. In this case, the repeater protocol will
generally insert an additional phase into each state equal to the relative phase between the local oscillators.
This phase is unknown, but is stable over time, to the extent that the local oscillators are stable. With an
appropriate geometry of the repeater network, the unknown phase is a local phase shift at each telescope in
the array, and can be eliminated by calculating the closure phases.
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For the purposes of our discussion, we have focused our analysis on a particular protocol and some small
variations of it. However, the field of quantum information offers a much broader spectrum of techniques
aimed at transmitting quantum states through a noisy channel. For instance, quantum teleportation can
be performed using a two-mode squeezed state by treating the field quadratures as continuous variables to
be teleported [24, 25, 26]. This kind of teleportation offers a full Bell measurement, unlike teleportation
based on a single-qubit entangled state. However, quantum repeaters for continuous-variable protocols are
much more technically involved [27], so overall the protocol we presented seems better at this time. Another
possible variation would be to use direct-detection interferometry, but to encode the quantum states into a
quantum error-correcting code [28] to deal with errors and loss in transmission. The procedure is probably
more challenging, however, since quantum error-correcting codes generally require more resources and better
quantum gates than repeater protocols.

Once the basic quantum repeater protocols are perfected, it becomes possible to build a network of
quantum repeaters to create entangled states shared between arbitrarily distant points [5]. Repeater stations
are positioned at some modest distance from each other, so that transmission errors and loss between
neighboring stations are correctable via the repeater protocols described above. We can create entangled
pairs shared between neighboring repeaters, then join together multiple entangled states using entanglement
swapping [13] to create an entangled pair between any pair of nodes in the network.

One alternative that might be easier would be to use just a single repeater node located on a satellite,
which would communicate directly to every telescope in the array. Such an arrangement has been previously
investigated to cryptographically link faraway sites via quantum key distribution. The drawback is that
many photons are lost on the way to the ground. Typical transmission success for a satellite-ground link
of optical photons is 0.01 [29]. Even if the original source were a true single-photon source, by the time it
reaches the ground, we have something very close to a coherent state. To make this work, we would thus
need to use the DLCZ protocol or some other method of correcting for loss. Stabilizing the satellite so that
the path length to the ground remains under control during an atmospheric fluctuation time is an additional
daunting technical challenge, but perhaps not an insurmountable one.

1.3 Comparison With Heterodyne and Intensity Interferometry

It is instructive to compare our quantum repeater-based interferometer with some other kinds of interfer-
ometry. In intensity interferometry, also known as the Hanbury Brown Twiss effect [14], two photons from
different locations in the source arrive at different telescopes. The interference occurs between the cases
where we switch which photon goes to which telescope. Mathematically, our quantum repeater protocol is
very similar to intensity interferometry, except that one of the photons is coming not from the astronomical
source but is instead under our control. That has various advantages: In intensity interferometry, we need
two photons to arrive at almost the same time from a source that is not very bright; using a quantum
repeater, we can in principle use a single-photon source that always outputs a photon when we need one.
Therefore, in principle our quantum repeater can be nearly as sensitive as a direct detection experiment,
whereas intensity interferometry is necessarily much less sensitive. Also, since the entangled state is under
our control and comes from a different direction, we can delay it and use beam splitters to measure its phase
relative to that from the source, allowing a complete measurement of the complex visibility, whereas intensity
interferometry usually loses some information. Of course, intensity interferometry has some big advantages
too, namely that it is technically much less demanding than a quantum repeater protocol.

In heterodyne interferometry, light coming in to each telescope in the array is mixed via beam splitter
with a laser, and photodetectors measure the relative phase between the photon from the source and the
laser [15]. In order to make full use of this information, the lasers at different locations should be phase-
locked. The usual way to assure this is to start with just one laser and split it up, sending the beam to
different locations. The resulting set up looks very much like our quantum repeater set up. There are two
differences: the classical processing done is different, and in heterodyne interferometry, the laser connecting
different telescopes is strong, whereas our entangled state is very weak, involving at most one photon.

These differences have important consequences. First, the bandwidth for heterodyne interferometry is
determined by the speed of the electronics, and may be even narrower than we need for our entangled-state
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interferometry protocol. Secondly, in heterodyne interferometry, there is no entanglement between the two
telescopes, whereas our protocol relies on it. Heterodyne interferometry is ultimately limited by quantum
noise in the separate measurements at L and R, which can swamp the signal we are trying to see when the
source is very faint. That problem does not afflict our quantum repeater protocol, since the entanglement
between the telescopes lets us compare correlations in the measurement outcomes. The quantum noise is not
gone — it appears in the fact that the measurement on each side (L or R) is, by itself, completely random.
The use of an entangled state means that the noise on the L and R sides is correlated, so it cancels out when
we look at the correlation/anti-correlation between the measurements.
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