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The Poincaré Conjecture and

the Cosmological Constant

M. D. Maia∗

Instituto de F́ısica, Universidade de Braśılia, DF 70910-900, Brazil.
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Abstract

The concept of deformation of Riemannian geometry is reviewed, with

applications to gravitation and cosmology. Starting with an analysis of

the cosmological constant problem, it is shown that space-times are de-

formable in the sense of local change of shape. These deformations leave

an observable signature in the space-time, characterized by a conserved

tensor, associated with a tangent acceleration, defined by the extrinsic

curvature of the space-time. In the applications to cosmology, we find

that the accelerated expansion of the universe is the observable effect of

the deformation, dispensing with the cosmological constant and its prob-

lems.
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1 The Cosmological Constant Problem

The cosmological constant Λ was introduced and removed by Einstein in 1917,
basically because its presence is not compatible with the Minkowski space-time
as a solution of his gravitational equations. Yet, the cosmological constant
remains as the basic explanation for the observed acceleration of the universe,
within the so called ΛCDM paradigm.

The usual physical interpretation of Λ is that of the vacuum energy density
< ρv > of quantum fields. This follows from the semiclassical equations with Λ
[1]:

Rµν − 1

2
Rgµν − Λgµν = −8πG < ρv > gµν

These equations holds true only under the condition that Λgµν in the left hand
side cancels with the 8πG < ρv > gµν in the right hand side. In this case we
obtain an equation compatible with the Minkowski tangent solution, with the
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Poincaré symmetry and the usual quantum field theory (QFT) required for the
evaluation of the vacuum energy.

As it happens, the theoretical estimates give the value

< ρv >≈ 1076GeV 2/c4

On the other hand, the acceleration of the universe measured by the CMBR in
various precision experiments, indicates that

Λ/8πG ≈ 10−47GeV 2/c4

and there is no known procedure in QFT capable of adjusting these values [2, 3]:
Since the cosmological constant term is the only allowed addition to Ein-

stein’s tensor, following the contracted Bianchi identity, regardless of the ex-
istence and the nature of the energy-momentum tensor, we conclude that the
cosmological constant term in Einstein’s equations is a quantity of geometric
nature which is independent of the right hand side of Einstein’s equations.

That conclusion implies that the difference between Λ and < ρv > is not
only numerical, but mainly conceptual: The presence of Λ does not depend

on the nature of what is placed in the right hand side of Einstein’s equations.

Such conceptual difference is a consequence of the topological difference between
the Minkowski and the de Sitter space-times with their respective groups of
isometries. As we know, it is possible to make a group contraction from the
latter to the former, but at the cost of the limit Λ → 0. However, this limit is
not followed by the continuous change of shape of the respective space-times. As
a sphere cannot be be continuously transformed into a plane without stretching
and tearing off the manifold, the de Sitter group contraction is not followed
by a smooth deformation of the respective geometries. The recent solution
of the Poincaré conjecture on the deformation of Riemannian manifolds and
its generalization provided by Nash’s theorem, offers a possible to topological
solution of the cosmological constant problem.

2 The Poincaré Conjecture

In 1904 Henry Poincaré conjectured that a 3-dimensional (compact and simply
connected) manifold can be continuously deformed into a 3-sphere. Although
it is a very intuitive problem it was formally proved only recently in 2006 by
Grigori Perelman, using the Ricci flow equation derived by Richard Hamilton
in 1982 [4, 7], given by

Rµν = −1

2

∂gµν
∂y

(1)

One simple way to derive this equation is to write the Ricci tensor as

Rµν = (log
√
g),µν − Γρ

µν,ρ + Γσ
µρΓ

ρ
νσ − Γρ

µν(log
√
g),ρ

From which, using geodesic coordinates, we obtain the the Ricci scalar

R = gµνRµν = ∇2(log
√
g) (2)
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On the other hand, replacing u = log
√
g in the Fourier heat equation ∇2u = ∂u

∂t

we find that

∇2(log
√
g) = gµν

1

2

∂gµν
∂t

(3)

Comparing the right hand side of (2) with the left hand side of (3), removing
the trace and replacing t by an arbitrary coordinate y, we obtain the Ricci flow
condition (1), up to a sign and to an arbitrary anti-symmetric tensor.

As it happens with Einstein’s equations, the Ricci flow is not native to
Riemannian geometry, but it represents an additional postulate describing the
variation of the metric along a given direction, not necessarily time-like.

The merit of the Hamilton/Perelman’s results lies in the interpretation of
Fourier’s heat flow in terms of the continuous deformation of the geometry
which can be exemplified as follows: Consider the example of a closed surface S
being orthogonally crossed by a number of flow lines per unit of area, originating
from the heat flux in a heating body. Then, draw another surface, for example a
spherical surface, S0 inside S, such that the number of flux lines per unit of area
orthogonally crossing it, is the same as that for S. Next, freeze these flux lines,
and use them as guides to smoothly deform S, always keeping it orthogonal to
the flux lines, without breaking the surface or even without making wrinkles,
until reaching S0. Under such conditions we say that the surface S has been
smoothly deformed into S0, in accordance with (1).

It is a simple matter to see that the Ricci flow is not compatible with general
relativity: Writing Einstein’s equations as

Rµν = 8πG(Tµν − 1

2
Tgµν)

and comparing with (1), we obtain

∂gµν
∂y

= −16πG(Tµν −
1

2
Tgµν)

with the inevitable conclusion that the Ricci flow forces the Einstein gravitation
to propagate linearly on any direction y of space-time, which does not make sense
in general relativity, even considering only its linear approximation. Either we
use the hyperbolic Einstein’s equations or the Parabolic Ricci flow equation (1).
The so called Ricci-flow cosmology would be an entirely new proposition [8],

In the following we briefly review a more general and older concept of defor-
mation in Riemannian geometry which is compatible with general relativity and
with the present cosmology, where instead of the surface S we have a solution
of Einstein’s equations.

3 The Nash Geometric Flow

Perelman’s demonstration of the Poincaré conjecture suggests the necessity of
a mechanism capable of modifying the shape of a manifold, that could be uni-
versally applied to all Riemannian geometries, without imposing a constraint to
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the metric, independently of its dimension and metric signature, Such general
deformation process was derived by John Nash in 1956 and it is given by

kµν = −1

2

∂gµν
∂y

(4)

where kµν denotes the extrinsic curvature of the embedded Riemannian geom-
etry.

The expression (4) was proposed by James York, restricted to 3-dimensional
space-like surfaces evolving in a space-time, as a way to establish the initial
value conditions in the ADM formulation of general relativity. As we know,
the ADM proposition did not work for its intended purposes, namely to define
a canonical formulation of general relativity and its eventual use to quantize
gravitation, because its incompatibility with the diffeomorphism invariance of
general relativity, which leads to a constrained Hamiltonian. Even using Dirac’s
procedure for constrained systems it did not work because the Poisson bracket
structure is not covariant with the group of diffeomorphisms.

The diffeomorphism invariance of general relativity is a statement about
which observers are allowed in the theory, namely all. As such, the diffeomor-
phism invariance has to do with the observable-observer relation and therefore it
is a four-dimensional characteristic. This means that in an embedded space-time
the diffeomorphism invariance must remain confined to the four-dimensional
space-time where the observers and their gauge fields are defined. In other
words, there is no physical reason to assume that it would extend to the extra
dimensions. Hence, in an embedded space-time the diffeomorphism invariance
holds in the four-dimensional subspace only.

For some authors, the embedding of the space-time into another manifold is
considered to be just as a mathematical property, without physical significance
[12]. This is not true as we shall see. Indeed the embedding of Riemannian
manifolds has its origins in the solution of local shape problem. That is, in
the inability of the Riemann curvature tensor to specify the local shape of the
manifold [13]. In the following, we will show that an isometric embedding of
the space-time produces an observable effect. In particular for a space-time it
can be detected as a physical observable.

The original derivation of (4), given in part A of Nash’s paper was unduly
complicated by the use of smoothing operators [10]. To show it in a simpler
form, we may start with the case of only one extra dimension. The case of
many extra dimensions was considered in [14] leading to the same conclusion.

The concepts of flux and flow lines introduced by Fourier can be formally
defined as the trajectories of a one-parameter groups of diffeomorphisms on a
Riemannian sub manifold S, embedded into another VD, defined as follows:
Given a point p ∈ S and the unit normal vector η at p, we obtain a curve
(called the orbit of p) with parameter y, α(y) = hy : S → VD, orthogonal to S,
with velocity vector α′(y) = η. The diffeomorphism property means that these
orbits can be generated by infinitesimal increments of the parameter y, so that
subsequent points are defined by a composition law given by hy(p) o h′

y(p) =
hy+y′(p). The group property follows from the definitions h−1(p) = h−y(p) and
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h0(p) = p. Given a geometrical object Ω defined in S, it propagates along these
orbits by the Lie transport [17]

Ω′ = Ω + y£ηΩ

4 Embedded Space-Times

Denoting the metric of the five-dimensional embedding space V5 by GAB, A,B =
1..5, the isometric embedding of a Riemannian geometry S a map X : S → V5,
such that

XA
,µX

B
,νGAB = gµν , X

A
,µη

BGAB = 0, ηAηBGAB = 1 (5)

The four-dimensionality of space-time is a consequence of the dual properties
of gauge fields, which consists of our main observational tools. By definition,
the embedding of a space-time maintains that dimensionality, but it adds a
topological information by the extrinsic curvature. This is a measure of the
variation of the normal vector η when its foot is displaced in a tangent direction
to S, projected into S:

ηA,µ = −kµ
ρXA

,ρ (6)

To understand the meaning of this extrinsic curvature, we may picture the orbits
of points in S with tangent vector η as plane curves in V5, whose acceleration η′

is orthogonal to η (following the Frenet equation). Therefore, it follows from (5)
that η′ is a vector tangent to S. From the above expression it follows that the
extrinsic curvature represents an acceleration in S, giving a mechanical meaning
to Nash’s deformation.

The vectors {X,µ} define a tangent basis to S, so that {XA
µ , ηAa } define a

Gaussian frame of V5. To obtain (4) consider the Lie transport of that Gaussian
frame along the orbits, giving a new set of vector fields

X ′A= XA + y£η̄X
A = XA

,µ + y ηA,µ, η′A = ηA + y £ηη = ηA (7)

Nash’s local embedding theorem consists in showing that X ′A define a new de-

formed manifold S′ provided they satisfy similar isometric embedding equations

X ′A
,µX

′B
,νGAB = g′µν , XA

,µη
BGAB = 0, ηAηBGAB = 1

where g′µν is the deformed metric. Replacing X ′A
,µ given by (7) in these equa-

tions we obtain in a straightforward way that

g′µν = gµν − 2ykµν + y2gρσkµρkνσ

k′µν = kµν − 2ygρσkµρkνσ

Deriving the first equation with respect to y, and comparing with the second
equation we obtain Nash’s geometric flow (4). Notice that in each deformation
obtained by (4), the extrinsic curvature is independent of the metric, satisfying
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the Gauss-Codazzi equations for the embedded manifold. Thus, for any partic-
ular deformation the variable y is contained in the expression of the extrinsic
curvature.

The isometric condition (5) means that the geometry of the embedded space
is induced by the geometry of the embedding space (so that we have only one
metric geometry). Therefore, to obtain the same gravitational field definition,
the metric of the embedding space must be defined by the same Einstein-Hilbert
variational principle, leading to the the higher dimensional Einstein’s equations
(in arbitrary coordinates)

5RAB − 1

2
5RGAB = G∗TAB, A,B...1..5 (8)

where G∗ is the appropriate gravitational constant (including the solid angle)
for a 5-dimensional space [18].

To obtain the four-dimensional equations we only have to write the above
equations in the Gaussian frame {XA

,µ, η
A} of the embedding space.1 We obtain

two sets of equations:

Rµν − 1

2
Rgµν −Qµν = −8πGTµν (9)

k ρ
µ;ρ − h,µ = 0, µ, ν = 1..4 (10)

where we have denoted the tensor quantity

Qµν = kρµkρν − hkµν − 1

2
(K2 − h2)gµν (11)

It follows directly from this definition that

Qµν
;ν = 0 (12)

so that in principle Qµν corresponds to an observable in the space-time, in the
sense of Noether’s theorem.

It should also be noted that the definition of the embedding geometry by the
higher dimensional equations (8) provides a more general embedding than the
common practice of specifying a particular 5-dimensional embedding space, such
as a flat space, or a de Sitter/anti-de Sitter spaces, or a Ricci-flat embedding
space. Since the metric of the embedded space-time is induced by that of the em-
bedding space, these particular choices, imply in a constrained embedding. For
example, when the 5-dimensional embedding space is flat, the Gauss-Codazzi
embedding equations do not have a solution for specific metrics [19, 20]. In
the case of Ricci-flat 5-dimensional embedding space, we obtain from (8) that
the Ricci tensor of the space-time is not zero but it must be conserved [21, 22].
Finally in the Randall-Sundrum brane-world models the extrinsic curvature is
not dynamical, but rather given by the four-dimensional confined sources.

1Notice that this projection can be made in any four-dimensional space-times regardless

of specifying the value of y.
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On the other hand, in the geometric deformation of Nash with the Einstein-
Hilbert principle, the four-dimensional gravitational equations is defined by the
same four-dimensional Einstein’s tensor plus the additional tensor Qµν in place
of the cosmological constant.

Since Qµν is conserved, it must correspond to an observable quantity. In-
deed, the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) universe is
described by the classical Friedman’s equation

ȧ2 + k ≈ −8πG

3
ρa2

However, for the FLRW universe embedded in a five-dimensional space defined
by (8), Friedman’s equations becomes

ȧ2 + k ≈ −8πG

3
ρa2 +

b2

a2

where we have denoted a(t) = g11 and b(t) = k11. The term b2/a2 corresponds
to the deformation tensor Qµν .

In a previous publication we have compared the effect of b2/a2 with the
effect of a hypothetic phenomenological fluid, the x-fluid idealized by Turner and
White to simulate the gravitational effect of dark energy [15]. In a subsequent
publication we have generalized that result in two ways: First, instead of a
phenomenological fluid the extrinsic curvature was regarded as an independent
spin-2 field, second, by using a model independent statistical analysis based on
the luminosity-distance measurements. In both cases we have found that the
deformation term b2/a2 is sufficient to describe the acceleration of the universe.
More importantly, we have found that the cosmological constant does not play
any significant role on this deformation [16].

One interesting question concerns the end of the acceleration. When the
extrinsic curvature is proportional to the metric we find a peculiar situation:
Admitting that kµν = α0gµν , the space-time contains only umbilical points and
it behave as a constant curvature space. In such cases the Nash deformation
ceases and (11) gives

Qµν = 3α2
0gµν (13)

Replacing these conditions in (10) it becomes an identity while in (9) we obtain
Einstein’s equations with a cosmological constant term, representing the end
limit of the deformation process.

We conclude that the inclusion of a cosmological constant has led us to a se-
quence of conceptual and observational difficulties. In particular its comparison
with the vacuum energy density in quantum field theory cannot be sustained,
mainly because the cosmological constant would exist independently of the exis-
tence and nature of the energy-momentum tensor. By comparing such problem
with the Poincaré conjecture we conclude that the problem could be solved if
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we include in Einstein’s gravitational theory a smooth deformation mechanism
capable of modifying space-time topology. Such mechanism exists and it is given
by the geometric deformation introduced by Nash in 1956, based on the founda-
tions of Riemannian geometry. It is entirely compatible with general relativity,
but it adds a new observable quantity constructed with the extrinsic curvature
of the space-time. When this is implemented in the FLRW cosmology, we find
that this conserved quantity corresponds to the observed acceleration of the
universe. We also find that such acceleration ends in a constant curvature de
Sitter phase.
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