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Abstract: We suggest the existence of a fundamental connection between baryonic and

dark matter. This is motivated by both the stability of these two types of matter as well as

the observed similarity of their present-day densities. A unified genesis of baryonic and dark

matter is natural in models in which the baryon number is promoted to a spontaneously

broken local gauge symmetry. This is illustrated in a specific class of SUSY models using

the Affleck-Dine mechanism. The dark matter candidate in these scenarios is charged under

the baryon gauge symmetry and must have a mass around the GeV scale to give the correct

present-day abundance. We discuss constraints from B-factories, LEP, mono-jet searches

at the Tevatron, and dark matter direct detection experiments. A baryonic dark force is

shown to be consistent with all data for mediators as light as the GeV scale.
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1 Introduction

The stability of the proton in the standard model (SM) is the consequence of an acci-

dental symmetry of the renormalizable Lagrangian. Generic UV completions of the SM

are hence expected to induce proton decay. Even if ad hoc symmetries are introduced in

the renormalizable formulation of these theories, the question remains: what prevents the

proton from decaying through higher dimension operators? We interpret the stability of

the proton as one of the few experimental facts that physics beyond the SM should explain.

– 1 –



Global symmetries are commonly viewed as accidental at low energies, as they are

expected to be violated by quantum gravity effects. In order to guarantee the conservation

of a certain global number one should therefore appeal to more fundamental, dynamical

arguments.

A simple way to ensure the stability of the proton is to promote the baryon number to a

local symmetry. In this paper we explore the consequences of gauged baryon number, spon-

taneously broken at the weak scale. Within the framework proposed here, proton stability

is ensured at all orders in perturbation theory, and is not spoiled by non-renormalizable

effects.

The idea of gauging the baryon number has been studied in a number of papers in the

eighties and nineties [1–7], and more recently in [8–15]. The main difference between our

work and those already present in the literature is that here the lepton and baryon sectors

are treated in a totally asymmetric way, as we gauge baryon number to protect the proton

stability, but allow explicit lepton number violation.

This approach is phenomenological in spirit, since there are no observations suggesting

a fundamental relationship between leptons and baryons. For example, the stability of the

electron is ensured in any theory where it is the lightest electrically charged fermion. This

follows from an interplay between electric charge conservation and kinematics without any

need for additional dynamical assumptions. Furthermore, the smallness of the neutrino

masses can be elegantly arranged via the see-saw mechanism, where lepton number is

explicitly violated.

In contrast, there are indications of a connection between the baryonic sector and

dark matter. Such a connection is suggested by two observational facts: (1) both dark

matter and protons are stable on cosmological timescales without any obvious explanation

a priori; and (2) precise cosmological observations reveal that their present-day abundances

are remarkably similar, being only a factor of about 5 apart.

Interestingly, the promotion of baryon number to a local symmetry requires the exis-

tence of a new anomalous global symmetry. We find that under rather general dynamical

conditions this new physics provides a natural dark matter candidate. Moreover, the gen-

esis of visible and dark matter in fact unifies in such a way that their relic abundance

can be similar for comparable masses. Our scenario overlaps with the “asymmetric dark

matter” scenario [16–32], although here the asymmetry is not generated in one sector and

then subsequently transferred to the other. Rather, in our framework both asymmetries

are generated simultaneously [33, 34].

We focus on SUSY realizations, although this is not a necessary ingredient in our

treatment. The main advantages offered by SUSY realizations are that (i) the theory is

technically natural and calculable up to very high scales; and (ii) the genesis of matter can

be elegantly explained by the Affleck-Dine mechanism [35–37].

The main features of our framework are as follows:

• We promote baryon number to a gauge symmetry U(1)B. Anomaly cancellation

implies the existence of new exotic quarks with their own anomalous U(1) global

symmetry.
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• To facilitate the decay of exotic quarks, a SM singlet chiral superfield X is introduced.

The dark matter X has gauge baryon interactions and is stable, since it is the lightest

particle charged under the new anomalous U(1).

• The DM plus the visible sector have a single, linearly realized, nonanomalous ac-

cidental global symmetry U(1)D. Baryogenesis requires a primordial asymmetry in

U(1)D, which necessarily implies the existence of an asymmetry in the dark sector.

• This general setup has supersymmetric flat directions, allowing for the simultaneous

generation of dark and baryonic asymmetries via the Affleck-Dine mechanism.

• The proper DM abundance is achieved via the annihilation mode to quarks mediated

by the new baryonic gauge boson ZB.

• The ZB gauge boson also mediates interactions between dark matter and nuclei.

Though the coupling to nuclei is vectorial, the coupling to DM is model dependent.

The outline of the paper is the following.

In Section 2 we present a class of UV complete models in which the baryon number

is gauged, and discuss the phenomenological viability of these models. Models in which

the dark matter has either a purely vectorial or purely axial coupling to the U(1)B gauge

boson are presented in Section A.

In Section 3 we see that both the visible and dark sectors have comparable primordial

asymmetries, and show that typical perturbative realizations of our scenarios require the

DM candidate to have a mass between sub-GeV to tens of GeV.

In Section 4 we present a general analysis of the bounds arising from B-factories, LEP

and Tevatron, and direct detection experiments. Here we work under the assumption that

the only remnant of the dark sector are the baryon gauge field and a DM particle carrying

charged under the gauged baryon number. If vectorially coupled to the U(1)B gauge boson,

the DM must be around the GeV scale to evade direct detection constraints, whereas axial

couplings lead to novel momentum and velocity suppression such that direct detection

bounds are much weaker. Constraints from mono-jet searches at the Tevatron are strong

when the mediator is produced on-shell.

Our main numerical results are summarized in Fig. 1 for two benchmark examples.

The first panel shows the allowed region for a 1 GeV dark matter particle with a purely

vector coupling to the U(1)B gauge boson. The second panel shows the allowed region for

a 10 GeV dark matter particle having a purely axial coupling to the U(1)B gauge boson.

While our cosmological predictions for the ratio of the dark matter asymmetry to

the baryon asymmetry are sensitive to the UV completion, our collider and direct detec-

tion bounds are independent of the specific realization for the cancellation of the U(1)B
anomalies.
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Figure 1. Constraints on a dark matter candidate. Left: mX = 1 GeV and a purely vector

coupling with qV = 4/3. Right: mX = 10 GeV and a purely axial coupling with qA = 4/3. The

filled areas are excluded by Υ → invisible (left) or Υ → hadrons (right) and the CDF monojet

search. Tevatron projections assuming 10 fb−1 of integrated luminosity are also shown (dashed).

The solid red line indicates the values for (mB , gB) required to get the right DM abundance for

a symmetric DM species (WIMP cross section). Asymmetric DM species must lie above the red

curve.

2 A class of UV complete models

2.1 The q′-sector and the baryon Higgs sector

In this section we will present a class of UV complete models. Clearly these models do not

exhaust all viable realizations of our scenario, as many alternatives are possible.

The SM baryon number U(1)Bq is anomalous under the electroweak SU(2)W ×U(1)Y
gauge group, and in order to promote it to a local symmetry U(1)B one needs to introduce

exotic fermions transforming under a chiral representation of the SM symmetry. A simple

solution is to introduce N new generations of quarks and leptons with the new quarks q′

carrying gauge baryon number B(q′) = − 1
N [5].

We focus on supersymmetric realizations of this program, in which baryon number

violation would otherwise arise at the renormalizable level. We thus add to the MSSM

N extra generations of quarks and leptons superfields. Table 1 summarizes the charge

assignments of the exotic fields, with i = 1, . . . , N . One can readily see that the gauge

anomalies vanish. The right handed neutrinos ν ′c have been introduced to make the new

fields sufficiently heavy to evade current bounds.

We also include a minimal, vectorial baryon Higgs sector composed of two chiral su-

perfields S, S. Here B(S), the U(1)B charge of the baryon Higgs fields S, S, is arbitrary,

and will only be constrained by the requirement of a sufficiently long lifetime for the proton

and the DM, see Sec. 2.3.

In the absence of R-parity the usual lepton number violating operators W 6L = HuL+

LLec + QLdc + ν ′cν
′
c, where summation over the SM and new generations of leptons and

quarks is implied, are present. While the couplings of these operators cannot be too large in

order to evade the bounds from lepton flavor violations, one expects that Majorana masses
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SU(3)C SU(2)W U(1)Y U(1)B

Q′i 3 2 +1
6 − 1

N

u′ci 3̄ 1 −2
3 + 1

N

d′ci 3̄ 1 +1
3 + 1

N

L′i 1 2 −1
2 0

ν ′ci 1 1 0 0

e′ci 1 1 +1 0

S 1 1 0 +B(S)

S 1 1 0 −B(S)

Table 1. Example of field content of the q′-sector and U(1)B Higgs sector. Here the index i runs

from 1 to N , where N is the number of new generations. The scalars S, S are responsible for

breaking the gauge baryon symmetry.

for the SM neutrinos can be generated quite naturally. As long as any of the couplings of

these operators is switched on, the LSP will be unstable. For example, the neutralino and

the gravitino will both decay into leptons, e.g. χ0 → e+ẽ− → e+e−ν and G̃ → γν. These

processes might take place outside the detector, implying a collider phenomenology similar

to the MSSM.

The most general renormalizable superpotential for the system (Table 1) is a sum of

the q- and q′-sector superpotentials, the lepton number violating W 6L, plus the baryon Higgs

sector term WS = mSSS + SSνc, and formally reads

Wq +Wq′ +W 6L +WS . (2.1)

The phenomenology of the new fermion generations share some features with those of

a fourth SM generation. However there are some differences.

As with the fourth generation, here new quarks with masses Mq′ in the few hundred

GeV scale are expected to be consistent with the EW precision measurements provided a

splitting of the weak doublets is present and N is not large [38][39].

With a 4th generation the coupling of the Higgs boson to gluons is enhanced due to

a triangle loop involving these quarks. Recent Higgs boson searches from the LHC appear

to exclude the possibility of a 4th generation [40, 41]. However, as noted in [40], the Higgs

boson may simply be heavier than 200 GeV. This is possible in extensions to the minimal

supersymmetric Standard Model, such as through the addition of singlets [42] 1.

1More generally, the enhancement of the Higgs production is not generic in these models for the following

reasons. First, in order to cancel the U(1)B anomalies, the 4th generation only has to be charged under

some SU(3). This SU(3) does not have to be the same as SU(3)C . Secondly, another possibility is that the

4th generation may be vector-like with respect to the Standard Model interactions, but chiral with respect

to the U(1)B in order to cancel the U(1)B anomalies [14]. In this case the 4th generation gets a mass from

both U(1)B symmetry breaking and electroweak symmetry breaking. Then the coupling of the Higgs boson

to gluons depends on the ratio of the part of the quark masses arising from electroweak symmetry breaking

to the total quark masses, and a suppression may be possible.
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Another crucial difference between our q′ sector and a typical 4th generation is that

the gauge symmetry U(1)B forbids mixing between the new quarks and the SM quarks.

This implies the decay modes of these exotic quarks, discussed in the following Section, are

not like a standard 4th generation quark. The 4th generation leptons however, can have

mass mixing with the lighter generations, so they can decay through the weak interactions,

or through the renormalizable lepton-number violating Rp-violating interactions that we

assume are present.

2.2 The dark matter

Given the gauge baryon charge assignments and field content of the Table 1, the q′-quark

generations will not mix with q. This implies that the new generations will carry their own

baryon number U(1)Bq′ , and will hence be stable unless new interactions are introduced.

A simple way to evade cosmological problems associated with new stable, charged

particles, is to introduce a (vectorial) sector of particles X coupling the MSSM and the

new generations of quarks that makes the reactions “q′-sector→ q-sector+X” possible. By

construction the X sector will also carry the U(1)Bq′ number and can include a natural

dark matter candidate.

In general the coupling of the DM to the baryonic gauge boson is chiral,

DµX = ∂µX + igB
(
qV + qAγ

5
)
ZµBX. (2.2)

In Appendix A vector and chiral models are presented, in which the coupling of the DM

after U(1)B symmetry breaking is either purely vector or axial. We will now proceed with

two illustrative vector models defined at the effective level.

First consider the case in which the dark matter chiral superfields X± have the follow-

ing representation under SU(3)C × SU(2)W × U(1)Y × U(1)B:

X± ∼
(

1, 1, 0,±
(

1

3
+

1

N

))
Model I (2.3)

Then the lowest order terms in the superpotential following from the assumed field content

is Wtot = Wq +Wq′ +W 6L +WS +W eff
X , with the last term given by

W eff
X = mXX

+X− +
HuQ

′ucX
+

Λ
+
HdQ

′dcX
+

Λ
+
HuQu

′
cX
−

Λ
+
HdQd

′
cX
−

Λ
(2.4)

+ . . .

The higher dimension operators will serve as “transfer operators” - mixing the primor-

dial dark and visible asymmetries. They also allow the processes q′ → qX, provided the

channels are kinematically open. Flavor changing processes are safe provided v/Λ . 10−2.

Next consider the case in which the DM superfields have the representation:

X± ∼
(

1, 1, 0,±
(

2

3
− 1

N

))
Model II (2.5)

Now the leading interactions with the SM are described by

W eff
X = mXX

−X+ +
ucdcd

′
cX

+

Λ
+ . . . . (2.6)
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Bq Bq′ B

Model I

q +1
3 0 +1

3

q′ 0 − 1
N − 1

N

X +1
3

1
N +1

3 + 1
N

Bq Bq′ B

Model II

q +1
3 0 +1

3

q′ 0 − 1
N − 1

N

X +2
3 − 1

N +2
3 −

1
N

Table 2. Accidental global and U(1)B charge assignments of the quarks, exotic quarks and dark

matter in Models I and II. S is neutral under the accidental global symmetries Bq and Bq′ .

As before, the higher dimension operator will be an effective transfer operator and also

allow for q′ → qqX. Moreover, although the transfer operator ucdcd
′
cX

+ violates flavor, it

does not contribute to meson oscillations at 1 loop. The dominant contribution is in fact to

purely hadronic heavy meson decays. These are expected to be under control for Λ larger

than a few TeV.

A common feature of both of these models is the unusual phenomenology of the lightest

exotic quark. The heavier exotic quark decays to the lightest q′ through charged current

weak interactions, and therefore has the same experimental signatures as of a conventional

4th generation quark. But since the 4th generation of quarks has no mass mixing with

the SM quarks, the lightest q′ decays through the transfer operator, and therefore only to

quarks and missing energy. The experimental signatures for the lightest q′ are therefore

significantly different from standard fourth generation fermions. Here the lightest q′ always

produce missing energy and never a W or any charged leptons.

2.3 Stability of the proton and the dark matter

Before gauging U(1)B, the theories defined in the previous subsections – and specifically

Wtot – have 3 accidental global U(1)’s: the U(1)Bq number under which the ordinary quarks

and the DM are charged; the U(1)Bq′ number under which the new quarks and the DM are

charged; and a nonanomalous symmetry U(1)BS
carried by the singlets S, S under which

S has unit charge. These charge assignments are summarized in Table 2.

The gauge symmetry U(1)B is a linear combination of these U(1)’s:

B = Bq +Bq′ +B(S)BS . (2.7)

The vacuum of S, S violates U(1)B but leaves the global, anomalous symmetries U(1)Bq

and U(1)Bq′ unbroken. This ensures that, at the renormalizable level, the stability of the

proton is guaranteed even after the spontaneous breaking of the baryon gauge number.

Similarly, the lightest state carrying the number U(1)Bq′ , here X, will also be stable at the

renormalizable level.

– 7 –



Let us now discuss the stability of both proton and DM beyond the renormalizable

action, and more generally in any theory with gauged U(1)B. The following is a slight

generalization of the analysis presented in [5] and applies to theory of gauged baryon

number.

We assume that the lightest low energy states in the model are the proton and mesons

of QCD, the leptons, the photon, and the DM. The most general process mediating proton

decay must involve a single proton in the initial state and a number of mesons, leptons and

photons, and DM fields in the final state, and it can be effectively described by a higher

dimensional operator of the form

ΨLαXβSγO, (2.8)

where Ψ ∼ qqq is the proton interpolating field, L, X, and S the lepton, DM, and baryon

Higgs operators, respectively, whereas α, β, γ are (positive or negative) integers. The oper-

ator O contains arbitrary powers and derivatives of the U(1)B singlets (qq), (LL), (XX),

(SS), and terms involving the photon. Note that the power α is not determined by electric

neutrality, since the meson fields as well as the lepton bilinears in the operator O might

carry a nonzero charge. The numbers α, β might instead be constrained by Lorentz invari-

ance. For example, if the DM is fermionic we should require α+ β = odd while if the DM

is bosonic α = odd. However, these constrains are not relevant to our analysis.

The crucial constraint in fact comes from the requirement that the operator (2.8) be

compatible with the baryon gauge symmetry. This in turn implies

1 + βB(X) + γB(S) = 0, (implies proton decay) (2.9)

with B(S) and B(X) the U(1)B gauge charges of the S field and the DM respectively. If

no integers β, γ = 0,±1,±2, . . . exist such that the relation (2.9) is satisfied, perturbative

proton stability in the model is ensured even beyond the renormalizable level. Nonpertur-

bative effects might involve nonlocal operators, and are entirely negligible at the scales of

interest.

Stability of the DM can be proved beyond the renormalizable level in a similar way,

by examining operators of the form

XΨδSεLνO′. (2.10)

DM stability is guaranteed in a model in which no integers δ, ε = 0,±1,±2, . . . exist such

that the constraint

B(X) + δ + εB(S) = 0 (implies DM decay) (2.11)

is satisfied.

In general, these requirements can be satisfied for generic U(1)B charges. We now

describe sufficient conditions for stability. When mX > mp (β = 0) proton stability is

ensured for integer values of B(S) with absolute value greater than unity, whereas DM

stability is guaranteed for fractional B(X). The conditions on the charges are different

when mp > mX (δ = 0). Here DM stability is ensured for integer values of B(S)/B(X) with

absolute value grater than unity. Proton stability is then guaranteed with the additional

requirement of integer B(X) with absolute value greater than unity.
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3 A unified genesis of dark matter and baryons

A direct consequence of having the Higgs sector be vectorial is the existence of an accidental

nonanomalous U(1)D with the generator

D = Bq +Bq′ . (3.1)

This symmetry is the only global symmetry of these model, and a primordial asymmetry

ηD
2 in this quantity is required by baryogenesis. In such a framework, comparable pri-

mordial asymmetries for U(1)Bq and the number U(1)Bq′ will be simultaneously generated,

as we will now show. A common genesis of DM and baryons can therefore be viewed

as a natural consequence of this construction. Similar considerations have recently been

considered in [33, 34].

Before continuing, it is worth noting that in models without low-scale lepton number

violation one anticipates the existence of more global symmetries involving baryon, lepton,

and dark numbers, and hence more primordial asymmetries. In that case, the asymmetries

of the dark and baryonic matter are not trivially related, as in general both the present-

day DM and the ordinary baryon numbers receive contributions from a primordial lepton

asymmetry. In the models considered here there is no such ambiguity: the baryon asym-

metry is not related to a primordial lepton asymmetry, but rather the baryon and dark

matter asymmetries are related to a primordial asymmetry in the non-anomalous U(1)D
symmetry.

3.1 Asymmetry generation via Affleck-Dine

An especially simple possibility for the simultaneous generation of the dark and visible

asymmetries in the early universe is Affleck-Dine baryogenesis [35–37]. Recall that in su-

persymmetry, there are typically directions φ in scalar field space along which the potential

is identically zero in the supersymmetric limit. If the flat direction acquires a negative mass

squared during inflation from SUSY breaking, then it will have a large vacuum expectation

value in the early universe due to the balance between this soft mass and higher dimen-

sional terms either in the superpotential and/or SUSY breaking A− terms in the scalar

potential. Since some of these “flat directions” will carry a non-zero charge under any

global symmetries, such as D, a non-zero and large asymmetry is generically generated

once the Affleck-Dine (AD) condensate φ begins to oscillate freely about its vacuum min-

imum (typically when H ∼ msoft), provided the A−terms in the scalar potential violate

the global symmetry and have a CP violating phase that is not identical to the one in the

inflaton. Below H ∼ msoft the higher dimension operators that break the global symmetry

become irrelevant, and the resulting primordial asymmetry in D remains conserved. In

this way a large asymmetry in a conserved global number can be generated [36, 37].

Eventually the AD condensate will evaporate due to collisions with the plasma gener-

ated from reheating [35] and transfer the asymmetry to baryons. For this to occur several

2Throughout the paper the asymmetries ηs = (Ys − Ys̄) are conventionally defined as the difference

between the yield of particles Ys and antiparticles Ys̄ of the species s.
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factors must be considered. First, the evaporation process should conserve the global num-

ber, otherwise the asymmetry gets washed out. Next, the condensate should not evaporate

before a large asymmetry has built-up. Too rapid of an evaporation can happen from the

scattering of the AD condensate off of the dilute plasma generated when the inflaton first

begins to decay. This leads to a constraint that depends on the dimension of the operator

that violates the global symmetry, the reheat temperature TR and the mass scale M sup-

pressing the higher dimension operator. For n > 4 this constraint is easily satisfied, while

n = 4 marginally allowed [36, 37]. 3

The last consideration is whether the AD field has evaporated before the era of elec-

troweak symmetry breaking. While one typically expects the decay of the AD condensate

long before the era of electroweak symmetry breaking [43], the same is not true for the

Q-balls [44] that may form from the fragmentation of the condensate [45]. Although in

gauge-mediated models large Q-balls are stable, and thus a dark matter candidate in their

own right [45, 46], here we assume for simplicity that they are unstable. However the fact

that their decay proceeds only through the surface, leads to long lifetimes [47] that may

decay after EW symmetry breaking [48, 49]. Thus we will also examine the possibility that

the asymmetry is deposited to the plasma below the EW scale.

Next we show that both models I and II introduced in Sec. 2.2 have flat directions

that violate the U(1)D. To that end, note that from the very definition of U(1)B and

U(1)D - see (2.7) and (3.1) - it follows that all possible gauge invariant operators will be

automatically U(1)D invariant unless nontrivial powers of the Higgs field S are present.

In other words, any flat direction φ relevant for the Affleck-Dine mechanism must involve

nontrivial powers of S and therefore must violate U(1)BS
and U(1)D. We will assume

these operators which involve S are suppressed by a scale M large compared to the scale

Λ appearing in models I and II.

Since up to this point the U(1)B charge of S are arbitrary, the spirit here is to assign

it a gauge charge so the candidate flat direction is U(1)B gauge invariant. In doing this

one also has to check the flat direction is not lifted by the superpotential interactions (A.3)

for model I, or (A.7) for model II.

Once a gauge charge for S has been chosen, one can then check whether the conditions

(2.9), (2.11) for proton and dark matter decay are ever satisfied. As was shown in Sec. 2.3

the conditions for absolute stability of both particles depends on the relative hierarchy of

the proton and DM masses. In what follows, we focus on the case mX > mp.

There are a number of possible classical flat directions; we will parameterize the holo-

morphic and gauge-invariant flat direction4 as φn. We assume SUSY breaking generates

CP violating and U(1)D breaking A terms ∝ φn/Mn−3 in the potential, and also generates

a negative mass squared during inflation. We also assume the superpotential has a term

W ∝ φn/Mn−3 which stabilizes the flat direction.

Model I: One can have the following n = 5 flat direction, φ5 = u′cd
′
cdcXS (where we

assign B(S) = −3).

3n is defined below.
4We follow the notation of [36, 37].
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Model II: In this model the analogous flat direction is φ5 = u′cd
′
cdcXS, but where we

assign B(S) = −2.

In both of these models the dark matter and the proton are stable since the charges

satisfy the conditions in Sec. 2.3 for mX > mp. In the second example neutron oscillations

can occur via the dimension-10 operator ΨΨ〈S〉.

3.2 Primordial asymmetries

As the universe cools, the U(1)D-violating operators (suppressed by M) decouple around

H ∼ msoft and the asymmetry ηD freezes in. Below this scale the theory has a non-

anomalous U(1)D symmetry.

Eventually the AD condensate evaporates and the asymmetry ηD is transferred to the

plasma. We define the temperature at which this occurs to be Tφ. Whether this occurs

above or below the scale T ∗ = O(100 GeV) at which the EW sphalerons shut-off is model-

dependent. By definition below T ∗ the sphalerons are inefficient, yet U(1)D preserving

operators of the form qαq′βXγO′′′ − such as occurs in (2.4) and (2.6) − are generally still

in chemical equilibrium. Then eventually the exotic quarks q′ freeze-out and decay. When

they freeze-out their abundance is Boltzmann suppressed, which implies that when they

decay they transfer very little asymmetry to the DM particles.

If the operators qαq′βXγO′′′ also preserve the U(1)Bq and U(1)Bq′ global symmetries,

which is precisely realized in Models I and II, then below T ∗ these charges become separately

good quantum numbers. In this case the determination of the asymmetries simplifies. Since

this scenario is realized in models I and II we will proceed under this assumption, though it

isn’t necessary. At the end of this Section we will comment on how the analysis is different

if this assumption is invalidated.

Continuing under the assumption that U(1)Bq and U(1)Bq′ are global symmetries for

T < T ∗, then at present times the transfer is complete and

ηBq′ = Bq′(X)ηX (3.2)

Similarly, the U(1)Bq asymmetry at late times reads

ηBq = ηBvis +Bq(X)ηX (3.3)

with ηBvis referring to the pure SM contribution to the baryon asymmetry. We thus see

that the ratio between the SM baryon asymmetry and the DM asymmetry today is finally

ηBvis

ηX
=
ηBq

ηBq′
Bq′(X)−Bq(X). (3.4)

There is another way to understand why the second term is present. Since the dark matter

is charged under the generalized baryon asymmetry Bq, its contribution must be subtracted

out to obtain the amount of baryon charge left in the conventional baryons.

The crucial step in determining the present-day abundances is the determination of

ηBq/ηBq′ . Let us distinguish between two possible scenarios.

If the asymmetry ηD is communicated to the thermal bath at a temperature Tφ < T ∗

the present-day asymmetries ηBq,q′ are entirely determined by the charge assignments of
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the flat direction/D-ball. For example, given a flat direction with U(1)Bq charge Bq(φ) and

an U(1)Bq′ charge Bq′(φ) one finds

ηBq

ηBq′
=
Bq(φ)

Bq′(φ)
for Tφ < T∗. (3.5)

As an example, the flat direction φ5 = u′cd
′
cdcXS introduced earlier for model II has, for

N = 1, ηBq/ηBq′ = −1
3 . Assuming that the transfer operator in (2.6) is still active at these

temperatures, and plugging this result in (3.4) we find ηBvis/ηX = −1
3 .

If instead Tφ > T ∗, the two asymmetries ηBq and ηBq′ vary as a function of the

temperature until the scale T ∗, while the asymmetry ηD remains conserved. The present-

day baryon asymmetries in this case are determined by equilibrium thermodynamics at the

critical temperature T ∗, and the relation (3.5) will typically not be correct. Moreover the

precise relation will also depend on a monotonically decreasing function f(mi/T ) which

accounts for the Boltzmann suppression in the density of a species of mass mi.

In general the present-day abundance depends on whether the sphalerons decouple

above or below the electroweak symmetry breaking phase transition TEW . In Appendix B

we perform a chemical potential analysis and show that for Tφ > T ∗ and T ∗ < TEW the

visible to baryonic asymmetry ratios are

ηBvis

ηX
= −

9(−1 + fq′)N(21 + 5fq′N))

99 + (33 + 618fq′)N + fq′(17 + 135fq′)N2)
(model I) (3.6)

ηBvis

ηX
= −

9N(21 + fq′(45 + 2(3 + 5fq′)N)

99 +N(−66 + fq′(618 + (−7 + 135fq′)N))
(model II) (3.7)

where we have abbreviated fq′ ≡ f(Mq′/T
∗) and set fX = 1. These results are shown in

Figure 2 for N = 1 and 0 < Mq′/T
∗ < 10.

If on the other hand the sphalerons decouple above the EW phase transition then we

show in Appendix B that one just sets fq′ = 1 in (3.6) and (3.7).

The most striking feature in Figure 2 is the sensitivity of the present-day ratio to fq′ .

In particular, the present-day ratio for Model I vanishes for fq′ = 1, which can occur if

the sphalerons decouple above the electroweak phase transition, or simply if Mq′ � T ∗.

Unfortunately the sphaleron scale T ∗ is not known with precision. Common lore says that

mW . T ∗ . O(few)× 100 GeV. Meanwhile, perturbativity in the Yukawa sector forces us

to estimate a zero-temperature upper bound of order Mq′ . 300−400 GeV. A conservative

measure of how large Mq′/T
∗ can be is thus Mq′/T

∗ = 400 GeV
mW

≈ 5, though in Figure 2

the plots are extended beyond this estimate.

In models where there is no U(1)Bq and U(1)Bq′ accidental symmetries below M ,

and only U(1)D, then the analysis proceeds in two steps. First one solves for ηD at the

temperature T = T ∗. Below that scale the sphalerons are inefficient by definition, yet

baryon number violating operators connecting the quarks, exotic quarks and dark matter

may still be in thermal equilibrium down to lower temperatures. If so, one re-does the

analysis down to the temperature at which these interactions decouple and then evaluates

the asymmetries, using the results of the analysis at T = T ∗ as a boundary condition.
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Figure 2. The ratio (3.6) (model I) and (3.7) (model II) between the primordial asymmetries of

ordinary baryons and DM for N = 1 as a function of a comman mass Mq′/T
∗ for the q′-sector

fields.

3.3 A light dark matter candidate

Below a model-dependent temperature the quantities ηBq′ and ηBq are separately conserved.

However, the relative contributions of the chiral fermions and the DM changes with time.

At some characteristic scale T . Mq′ the heavy quarks will freeze-out and then decay via

the operators (2.4) and (2.6). After freeze-out their contribution to the U(1)Bq′ asymmetry

is exponentially suppressed, leaving the totality of ηBq′ to the DM particle. As we saw in

the previous Section, then at late times the U(1)Bq′ asymmetry is just given by

ηBq′ → Bq′(X)ηX (at late times). (3.8)

Similarly,

ηBq → ηBvis +Bq(X)ηX (at late times), (3.9)

with ηBvis being the primordial asymmetry carried by the ordinary SM quarks.

The present-day baryon and DM abundances are finally explained if

mX

mn

(
Y+ + Y−
Y+ − Y−

)
=

∣∣∣∣ηBvis

ηX

∣∣∣∣ ΩX

ΩB
, (3.10)

with mn the nucleon mass, ηBvis/ηX given by eq. (3.4), Y± ≡ n±/s being the present-day

number densities of DM particles and antiparticles normalized to the entropy density s,

while ΩB,ΩX are the baryonic and DM density in the universe. The ratio of antiparticles

to particles depends exponentially on the product ηX〈σannv〉, such that Y− � Y+ when the

annihilation cross section is slightly above the value required for a symmetric species [28,

50, 51].

For either vector or axial couplings, the dominant annihilation mode for a fermionic

DM X is through an s-channel ZB exchange into SM quarks. Hence we find that the
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annihilation cross section times the relative particle velocity at freeze-out is:

〈σannv〉 =
∑
f

Nc

2π
m2
X

(
g2
B

3m2
B

)2

(
2 +

m2
f

m2
X

)(
q2
V + 2T

mX
q2
A

)
(

1− 4m2
X

m2
B

)2
+

Γ2
B

m2
B

√
1−

m2
f

m2
X

. (3.11)

where the sum extends over all kinematically allowed 2-SM quarks states. Note that the

vector and axial couplings give rise to s- and p-wave annihilation respectively. We do not

consider the two gauge boson final state that is open when mX > mB.

Without loss of generality we can assume 0 ≤ Y − ≤ Y +, which yields

mX ≤
∣∣∣∣ηBvis

ηX

∣∣∣∣ ΩX

ΩB
mn. (3.12)

Whether the flat direction evaporates above or below the sphaleron scale, the DM mass

in this class of models is required to be at the GeV scale. For example, assuming that

Tφ > T ∗, model I (2.4) requires mX . 10 GeV, while model II (2.6) requires mX . 30

GeV, both for N = 1, as can be inferred from Fig. 2. If instead Tφ < T ∗ our prototype flat

direction φ5 = u′cd
′
cdcXS implies mX . 2 GeV. The masses of X and ZB can be naturally

related to the weak scale in a theory in which the DM is chiral under U(1)B. In this case

the DM will generally have both axial and vector couplings to the ZB.

We will see in Section 3.4 that the direct detection signals are very large when the

dominant interactions for the DM are mediated by a vectorially coupled U(1)B force. If

the annihilation mode is dominated by the ZB exchange, then the only allowed region of

the parameter space is for DM masses below 1 − 2 GeV for nonzero vectorial couplings.

Purely axial couplings of dark matter to the ZB lead to suppressed scattering rates such

that direct detection experiments are not constraining.

3.4 Direct detection

In the following we make the minimal assumption that the physics relevant for annihilation

and direct detection are both mediated by the baryonic gauge boson ZB. This assumption

leads to a lower bound on the elastic scattering cross section of nuclei relevant for direct

detection experiments. Of course if the ZB exchange does not dominate the annihilation

process the bounds become much less restrictive.

The event rate of DM-nucleus scattering is

dR

dER
=
NTρ�
mX

∫
|~v|>vmin

d3v vf(~v,~v⊕)
dσ

dER
, (3.13)

where vmin =
√
mNER/

√
2µN , mN is the target nucleus mass, NT is the number of target

nuclei in the detector, ρ� is the local DM density, v⊕ ' 220km/s is the velocity of the

earth, and µN is the DM-nucleus reduced mass. We assume that the DM in the galaxy

can be taken as an equilibrated system such that the velocity distribution has a one-to-one

relationship with the density distribution. Thus following [52] we take

fk(v) ∝
[
exp

(
v2
esc − v2

kv2
0

)
− 1

]k
, (3.14)
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where 1.5 < k < 3.5 is a shape parameter related to the outer density profile.

We first consider the case when only the vector coupling is present (qA = 0). Here the

matrix element is velocity independent at leading order and the differential cross section is

dσ

dER
=
mNA

2

2πv2

(
qV g

2
B

m2
B

)2

F 2(ER), (3.15)

where F (ER) = 3j1(qr0)/(qr0)e−(qs)2fm2/2 is the Helm form factor with r2
0 = (1.44A2/3 −

5) fm2.

In the case of nonzero vector couplings the bounds from direct detection are significant

and generally require low DM mass. As a representative example we consider a 1 GeV DM

mass with a single nucleon scattering cross section

σXn =
µ2
n

π

(
qV

g2
B

m2
B

)2

, (3.16)

≈ 4× 10−37cm2
( gB

0.045

)4
(

4 GeV

mB

)4 ( µn
0.5

)2
q2
V

where µn = mXmn/(mX +mn) is the reduced mass of the nucleon/DM system.

The light DM regime is interesting in that direct detection experiments have yet to

significantly constrain it. Since direct detection experiments detect recoil events above

an energy threshold Ethr, there is a corresponding target-dependent velocity threshold

vthr =
√
mNEthr/2µ2

n. Whenever vthr exceeds the maximum annual velocity v⊕ + vesc,

no recoil events are possible and, correspondingly, no meaningful bound on the DM elastic

scattering cross section can be inferred.

The strongest bounds on light DM (sub O(3 GeV)) are from the CRESST-I experiment,

which had a very low energy threshold Ethr = 0.6 keV and a relatively light target. In the

second line of Eq.(3.16) we have assumed values consistent with the CRESST-I data [53]

for a 1 GeV DM candidate. For DM masses less than about 1 GeV, one finds that with

CRESST-I parameters there exists no bound, since the required threshold velocity exceeds

the escape velocity. If we include astrophysical uncertainties related to possible deviations

from a Maxwellian distribution in the high DM velocity tail relevant for these cases [54][52],

we can fairly say that for DM masses in the region mX . 1 − 2 GeV there is no relevant

bound from direct detection experiments. This point is especially relevant for the class

of models we propose, since as we showed in Section 3, in order to obtain the correct

present-day abundance the DM mass must be at or below the GeV scale.

For heavier DM and vector couplings the resulting nucleon-DM cross section is typically

very large. For example, for a weak scale DM mass the relation (3.16) is compatible

with the current direct detection bounds only if annihilation occurs nearly on-resonance

(mX ∼ mB/2); see for example [8].

If on the other hand only the axial coupling is present (qV = 0), the spin-independent

rate has a velocity and momentum suppression,

dσ

dER
=
mNA

2

8πv2

(
qAg

2
B

m2
B

)2 [
4v2 − q2

m2
Nm

2
X

(
m2
N + 2mNmX −m2

X

)]
F 2(ER), (3.17)
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where the momentum transfer is q2 = 2mNER. Then the direct detection bounds are

currently not constraining. This is because the axial coupling contribution to the rate is

suppressed by the dark matter velocity and target recoil momentum. The velocity and

momentum dependence in the axial case lead to a suppression in the overall rate compared

to the vector case, varying from around 10−6 for light DM to 10−5 for TeV scale DM, with

the weakest suppression (10−5) occurring for k = 1.5.

We determined the total rate for the axial scenario, obtained by integrating (3.17)

over all velocities and recoil energies, for DM masses between 1 GeV and 1 TeV, and

following [52], for k in the range 1.5 to 3.5. While we did not perform an exhaustive scan

of the parameter space, for the points we checked the rate was never above the bounds

quoted by XENON100 [55], CDMS [56] and CRESST-I [53]. For example, currently the

strongest experimental bound is σ < 2 × 10−45 cm2 from XENON100 [55] and occurs

at mDM ∼ 50 GeV. With parameters (gB,mB) = (0.025, 150 GeV) and mX = 50 GeV,

chosen such that the correct present-day abundance of DM was obtained, we find for k = 1.5

the total rate to be a factor of 2 below the XENON100 bound. On the other hand, for

(gB,mB) = (0.1, 30 GeV) and mX = 10 GeV, the rate is at least a factor of 20 below the

bound from XENON100. The predicted rate is lower for larger k and larger DM masses.

4 Baryonic dark forces and collider experiments

We now turn to the collider phenomenology of our models.

We assume that the lightest non-SM fields are the dark matter X and the baryonic

gauge boson ZB. Under these assumptions the field X has a mass mX parametrically

lighter than the mass scale Mq′ characterizing the q′-sector and our framework can be

effectively described in a model-independent way by the following low energy Lagrangian:

L = LSM +XγµDµX −mXXX (4.1)

− 1

4

(
ZµνB ZµνB − 2cZswZ

µν
B Zµν + 2cγcwZ

µν
B Aµν

)
+
m2
B

2
ZµBZ

µ
B + . . .

where the dots refer to nonrenormalizable operators suppressed by powers of Mq′ or Λ,

while ZµνB , Zµν , and Aµν are the field strength of the baryon gauge field ZB, the Z0 boson,

and the photon, respectively. The Lagrangian LSM refers to the standard model (SM) in

which the baryon number has been gauged. The SM quarks have a vectorial coupling to

the ZB boson with charge 1
3 whereas the field X is assumed to carry both a vectorial and

axial charge:

DµX = ∂µX + igB
(
qV + qAγ

5
)
ZµBX. (4.2)

For mB > 2mX the width of the new gauge boson is approximately

ΓB =

[
NfNc

9
+ q2

V

(
1 + 2

m2
X

m2
B

)
λ1/2 + q2

Aλ
3/2

]
g2
B

12π
mB, (4.3)

where λ = 1 − 4m2
X/m

2
B, Nc = 3 is the number of colors and Nf is the number of SM

flavors lighter than mB/2 (which we assumed to be massless for simplicity), and gB is the

gauge coupling.
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Because the new force is leptophobic, the mixing coefficients cγ , cZ will play a major

role in the discussion of the LEP bounds on this scenario. In the models considered here

no large log corrections to these quantities are generated since Tr(BY ) = 0 – with B and

Y the baryon and hypercharge charges while Tr sums over all representations – and one

finds cγ = cZ = 0 above Mq′ [5]. Then the mixing coefficients cγ,Z are only generated by

SM quark loops below the scale Mq′ and one obtains [5]

µ
dcγ
dµ

= − gBe

18π2cw
[2Nu −Nd] , (4.4)

µ
dcZ
dµ

= − gBe

32π2s2
wcw

[
3(Nd −Nu) + 4s2

w (2Nu −Nd)
]
,

with cγ,Z(Mq′) = 0. Here Nu,d is the number of up/down quark flavors active below

the scale µ. For example, Nu = Nd = 3 for Mq′ > µ > mt and Nu = 2, Nd = 3 for

mb < µ < mt. Hence, for Mq′ = 300 GeV we find

cZ(mZ) ≈ +2× 10−2 gB,

cγ(mΥ) ≈ +9× 10−3 gB. (4.5)

In the following we will analyze the experimental constraints on the above scenario (4.1).

We will assume that the running of the coupling gB is negligible, which is a very good ap-

proximation. In the class of models we presented the coupling gB in fact stays perturbative

up to remarkably high scales.

4.1 Collider constraints

Collider experiments severely constrain beyond the standard model physics. In particular,

very stringent bounds apply to new force carriers coupled to the light leptons. Far less

stringent bounds apply to leptophobic forces (for early references see [57]).

As we showed in Section 3, the DM in the class of models we propose is typically light,

with a mass mX = O(1 GeV) to O(10’s GeV). We will therefore be interested in this

regime when discussing the bounds on the model (4.1).

Previous studies of the baryonic force mediated by ZB were presented in [4–7], and

more recently in [58]. We follow [4, 5] and [7] and update the experimental measurements

where available.

A dramatic consequence of gauging baryon number is the introduction of a dijet reso-

nance in pp/p→ ZB → jets. Remarkably, for mB . O(100 GeV) this signature poorly con-

strains the model, with [4, 5] finding gB = O(1) allowed by Tevatron analyses. Older UA2

data is slightly more constraining in this mass range [59]. Using MadGraph/MadEvent [60]

we simulated pp → ZB → jj, with a branching ratio of 1, at
√
s = 540 GeV in the mass

range 130 GeV ≤ mB ≤ 160 GeV. We find that at leading order the cross section is below

the UA2 bound provided gB . 0.5. We expect the bound to be weaker for masses below

130 GeV since the background rises faster than the signal.

The new ingredient present in our analysis compared to these previous references [4–

7, 58] is the existence of a coupling between the baryonic force and the DM, typically
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signaled by “missing energy”. This fact turns out to be crucial for the B-factory and

Tevatron bounds, but not relevant for LEP physics. Because of this new interaction the

constraints become much stronger than those for a model in which the ZB only couples to

quarks.

Tevatron constraints on dark matter are obtained from searches for events having a

high pT jet and missing energy [31, 61–63]. Compared to [61–63], here we analyse the

implications of these null searches in the context of a specific model. This allows us to be

precise about the dependence of the width on the underyling model parameters, and in

particular the gauge coupling, which turns out to be important when the mediator can be

produced on-shell.

The results of the current and previous sections are summarized in Fig. 1. Here all the

relevant constraints are shown for a DM fermion of mass mX = 1 GeV, for the case of a

vector coupling, and of mass mX = 10 GeV for the case of a purely axial coupling.

We see that for the purely vector coupling case the parameter space consistent with

the present-day DM abundance lies in the regime gB < 0.1 and small mediator mass regime

mB . 6 GeV. This conclusion would only be slightly affected by an improvement of the

Tevatron mono-jet bounds, with the result of pushing the mediator to even smaller masses

mB . 4 GeV. In general for a 1 GeV DM mass the strongest constraints come from collider

searches.

In the case of a purely axial coupling and mX > 5 GeV the bounds from the invisible

width of the Upsilon do not apply, but modifications to the hadronic width of the Upsilon

are relevant (and independent of the dark matter properties). We see that compared to

the vector case, here the parameter space consistent with the present-day DM abundance

is larger, with both a larger gB coupling and mediator mass mB . 30 GeV allowed. An

improvement of the Tevatron mono-jet bound will probably require the gauge boson mass

to be mB . 2mX .

We now turn to discussing these collider constraints in more detail.

4.1.1 B-factories

Constraints from B-factories fall into two signature classes, depending on whether or not

the dark matter is kinematically accessible.

In the first, the dark matter is lighter than ∼ 5 GeV. Here these experiments are

especially suited to detect light dark matter production [64–66]. Remarkably strong bounds

for the theory (4.1) follow from the physics of the Υ(1S) meson. Its invisible width has

been severely bounded by a recent measurement of the BaBar collaboration [67],

BR(Υ(1S)→ “invisible”) < 3× 10−4 (4.6)

at the 90% confidence level. For mB not too close to mΥ ' 9.5 GeV and mX < mΥ/2 ' 4.7

GeV we therefore require

BR(Υ(1S)→ “invisible”)

BR(Υ(1S)→ µ+µ−)
=

[
g2
B

e2

m2
Υ

m2
B −m2

Υ

]2 (
q2
V + q2

A

)
< 1.2× 10−2. (4.7)
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In estimating the branching ratio we have made the conservative approximation of ignoring

the dark matter mass. This constraint is shown in Fig. 3.

The next set of constraints in this class comes from bounds on e+e− → γµ+µ− [68, 69]

and e+e− → γ+“nothing” [70–73], provided by the BaBar and CLEO collaborations. The

former process bounds the ZB-photon mixing to be c2
wc

2
γ(mΥ) . 10−5 [74, 75] when the ZB

can be produced on-shell and decays to muons with essentially 100% branching fraction.

In our scenario the rate is further suppressed by BR(ZB → µ+µ−) ∝ c2
wc

2
γ , simply because

the dominant decay of the ZB is to quarks (or dark matter if allowed). The constraint is

then c4
wc

4
γ(mΥ) . 10−5, or using (4.5), gB . O(1) which is weaker than other constraints.

If the ZB is off-shell then the constraint becomes even weaker.

The rate for e+e− → γ+“nothing” from dark matter production is easily related to

e+e− → γµ+µ−. Since the experimental bounds on these two processes are comparable, we

expect the constraint from e+e− → γ+ “nothing” to be c2
wc

2
γ(mΥ)BR(ZB → XX) . 10−5

when the ZB is produced on-shell. Setting the branching ratio to one, this constraint

translates into a bound of gB . 0.4. When mB & 10 GeV the ZB is off-shell and this bound

is weakened by a factor ∼ mB/ΓB. Using (4.5) and (4.3) we find that this constraint implies

gB . O(1). In both cases these two bounds are always weaker than the bounds arising

from the invisible and hadronic widths of the upsilon (4.7), as can be seen by inspecting

Fig. 3.

If the dark matter is not kinematically accessible then other constraints become im-

portant.

The strongest constraint when the dark matter is heavier than ∼ 5 GeV is obtained

from the contribution of the ZB to the hadronic width of the Υ [4, 5]

∆RΥ =
4

3

[
g2
B

e2

m2
Υ

m2
B −m2

Υ

+

(
g2
B

e2

m2
Υ

m2
B −m2

Υ

)2
]
, (4.8)

where RΥ ≡ Γ(Υ → hadrons)/Γ(Υ → µ+µ−). Here the dominant constraint comes from

corrections to the decay into two jets [7]. The bound BR(Υ→ jj) < 0.053 at 95% CL [76],

is shown for reference in Fig. 3.

Additional constraints arise from lighter quarkonia, but they turn out to be relevant

only very close to threshold. We will ignore these bounds in the following (for an analysis

of these constraints see [7]), and always assume that mB is not close to any of the known

C-odd mesons.

The ZB boson is also expected to alter many of the processes used to extract mea-

surements of the strong coupling. In updating the analysis of [4–7] we verified that these

corrections are negligible for a coupling gB of weak strength.

4.1.2 LEP bounds

The DM particle X and the gauge boson ZB couple to leptons only through the loop-

induced mixing introduced in (4.1). The LEP experiment is thus expected to constrain the

magnitude of cZ and cγ , and in turn of gB. The constraints obtained here are independent

of the properties of the dark matter.
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Figure 3. The white area represents the allowed region in the parameter space (mB , gB). These

areas are excluded by the experimental bounds on the invisible and hadronic (dashed) widths of

the Υ(1S) meson and the hadronic width of the Z0 boson. The bounds from the invisible Υ width

have been plotted for q2V,A = 1, while the bound from the hadronic Z0 width is independent of qV,A.

The coupling is bounded by gB . 0.5 in the low mass regime mB < mZ . The region in the figure

near mB ∼ mZ is not accurate since here the mixing between ZB and Z is large, which is beyond

the validity of our small mixing approximation.

In agreement with [4, 5], we find the measured Z0 hadronic width provides the domi-

nant constraint. Focusing on the correction Z0 → ZB → qq we have for |cZ(mZ)| � 1 and

|mB −mZ | � ΓZ,B

∆Γhad
Γhad

' 1.193
gB√
4π

cZ(mZ)
m2
Z

m2
Z −m2

B

+O(c2) < ±1.1× 10−3. (4.9)

There are additional corrections O(g2
B) from loop contributions to the quark-Z0 vertex and

from the on-shell production Z0 → qq̄ZB (for mB < mZ), see [5]. In agreement with [5] we

found that the assumption that (4.9) constitutes the dominant correction is a conservative

approximation. Taking cZ(mZ) = 0.02gB from eq. (4.5) and assuming a 2-sigma deviation

we plot the bound (4.9) on the plane (mB, gB) in Figure 3.

We have also looked at the induced correction to the Z0 mass, to the forward-backward

asymmetry, and to the measurement of αs(MZ) extracted from Z0 decay, and find the

derived constraints to be weaker. The exotic contributions to the invisible Z0 width are

proportional to c2
Z and are also very small.

4.1.3 Mono-jet searches at the Tevatron

Hadron collider experiments also provide stringent bounds on the model (4.1). The most

distinctive signals involve missing energy in the final state plus a single jet, while di-jet

processes pp̄ → Z∗B → jj are expected to be overwhelmed by the QCD background for
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light ZB. We will thus focus on the following process

pp̄→ XXj. (4.10)

The CDF collaboration has searched for new physics contributions to the process (4.10).

In [77] the collaboration reported the detection of 8449 events with an integrated luminos-

ity of 1 fb−1, after the cuts discussed in [77] are implemented. The SM background is

expected to be 8663 ± 332, with the errors dominated by systematics. Since the signal

does not interfere with the SM background, it is straightforward to place a bound on the

underlying parameters for (4.10) if we naively assume the quoted errors are Gaussian. At

the 90% C.L. one finds that after all cuts the signal should predict less than 330 events for

1 fb−1 of data.

To proceed we first generated events for the process (4.10) using MadGraph/MadEvent

[60] with a default generator cut of pT (j) > 50 GeV 5 and no parton-jet matching. We then

passed these events to Pythia [78] with initial and final state radiation, parton showering

and hadronization turned on. Hadrons were then clustered into jets with FastJet 2.4.2 [79],

using the anti-kt clustering algorithm with the clustering R parameter set to 0.6. Events

were then analyzed using Pythia, applying the CDF cuts [77]: the missing energy in the

event must be larger than 80 GeV; the leading jet is required to have pT > 80 GeV; a

second jet must have pT <30 GeV; and any additional jets must have pT < 20 GeV.

The main reason for passing events to Pythia in this way was to model the production

of additional jets, through ISR, FSR and hadronization, that might lead to events being

rejected by the CDF cuts. The CDF analysis effectively vetoes the production of any

additional hard jets, leading to a weaker bound than would otherwise be obtained without

the veto. We confirmed this effect by selecting a few points and reapplied the analysis,

alternatively switching ISR and/or FSR off. We found that switching these processes off

has the effect of shifting the pT spectrum of the highest pT jet to higher values, resulting

in approximately 40% to 60% more events passing the CDF cuts. Most of this effect is due

to ISR.

In practice a parameter point (mB,mX , gB) was considered at the boundary of being

excluded by the CDF search if between 300 and 350 signal events passed all cuts. Accepting

events in this larger range only introduces anO(5−15%) error on the bound on the coupling,

which is smaller than other errors involved. For a given DM mass, this constraint translates

into a exclusion region in the (mB, gB) plane shown in Fig. 4 for either purely vector or

axial coupling of the DM to the gauge boson. For definiteness we set either qV = 1, or

qA = 1.

These plots have a number of features which we now describe. First, each curve has

a prominent “transition region” that occurs at mB ≈ 2mX . Physically, this kinematic

threshold divides the exclusion plots into two regions. For gauge boson masses mB <

2mX the gauge boson is produced off-shell, and numerically we find the ZB width to be

unimportant in this region. For larger masses mB > 2mX the gauge boson is produced

on-shell. In this region it is important to include the width into the amplitude consistently,

5We varied the generator-level cut to confirm the number of events passing all cuts remained the same.
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since the production cross-section for the process (4.10) is highly-sensitive to it, especially

to its dependence on the gauge coupling gB. On-shell production has a larger phase space

compared to the off-shell production, and the constraints in this region are correspondingly

stronger, as evident by comparing the bounds at small and large masses.

For mB < 2mX the ZB boson can only be produced off-shell and the production

cross-section therefore scales as

σevent = foff(mB,mX)g4
B (off − shell) . (4.11)

In this limit our results are in agreement with [61] and [62]. The bounds imposed by the

CDF experiment are typically less constraining than those from the invisible width of the Υ

and the hadronic width of the Z0, as well as than those from direct detection experiments.

For mB > 2mX the ZB boson can be produced on-shell and the process (4.10) effec-

tively becomes a two-body reaction. In this case the cross section is entirely dominated by

the pole and

σevent = fon(mB)g2
B (on− shell) . (4.12)

As shown in Figure 4, the bound on gB are now very stringent, and typically dominate

over the other constraints. We note that the bounds shown in Fig. 4 are stronger than

those reported in [61]. The reason is that in [61] the width of the ZB boson was assumed to

be independent of gB, and therefore the quadratic dependence on the coupling gB shown

in (4.12) is never tested.

In Figure 5 we show the Tevatron bounds for on-shell ZB production, including the

projected bounds obtained by assuming an integrated luminosity of ∼ 10fb−1. The bound

on the signal production cross-section (after all cuts) increases by a factor ∼
√
N , with

N = 10. To obtain the projections for 10 fb−1 of data shown in the figure we simply

rescaled the current bounds of Fig. 4 by a factor N 1/4 in the on-shell production regime

mB > 2mX .

Our bounds apply to generic models with Z ′ bosons coupled to DM. This is especially

relevant given the renewed interest in Z ′ models in light of the recently reported W+dijet

excess by CDF [80]. Such a Z ′ must couple dominantly to quarks rather than to leptons,

and the connection to gauging baryon number naturally suggest itself [12]. Arguing that

the same Z ′ may be responsible for the DM-nucleon elastic scattering cross section 10−40

cm−2 necessary to account for the DAMA signal, the authors [12] find that the necessary

gauge coupling constant gB is O(0.3). Rescaling the results shown in Fig 4 to account

for the different branching fraction and spin of the dark matter in this model, we find a

coupling of 0.3 to be close to our bound. Future monojet + missing energy analyses using

the larger Tevatron data set could exclude such coupling values.

5 Conclusions

In this paper we have gauged baryon number to provide a unified framework that ensures

proton and dark matter stability and relates the present-day abundances of these two types

of matter.
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Figure 4. In the left panel we show the region in (gB ,mB) space that is excluded by the Tevatron

for the process pp̄ → XX̄ + j for a purely vector coupling of the dark matter to the gauge boson.

The right panel shows the same exclusion but for a purely axial coupling of the dark matter to the

gauge boson. The excluded region is shown for three different DM masses mX = 1, 5, and 10 GeV,

and assuming that the DM charge is qV,A = 1. Once the gauge boson ZB can be produced on shell

the mass of the DM is irrelevant, as can be seen by the merging of three lines for mB & 2mX . When

the DM is produced off-shell the bounds are in general weakened. This weakening of the bounds is

amplified as the DM mass increases.
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Figure 5. Excluded area from monojet + ME events at the Tevatron assuming that the decay

ZB → XX is allowed. Here BR(ZB → XX) = 1 for simplicity. For BR < 1 the bound on gB gets

weakened by a factor 1/
√
BR.

In order for the ordinary baryon number to be embedded into a gauge symmetry

U(1)B one needs to postulate the existence of a chiral, q′-sector beyond the SM. A viable,

perturbative formulation of this scenario also requires a dark matter particle X such that

processes “q′ → SM + X” are allowed, implying that experimental signatures of the q′

particles are different from a conventional 4th generation of fermions.

The DM in these models is generally charged under the gauge baryon number U(1)B,
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and therefore its dominant interactions with the visible sector are with the SM quarks.

We discussed the collider constraints and direct detection bounds on the new leptophobic

force under the assumption that the coupling of the dark matter to the new gauge boson is

either purely vectorial or purely axial. We found that for a vector coupling our models are

consistent with current data provided both the DM and the U(1)B force carrier have masses

at the GeV scale. For purely axial couplings the direct detection bounds are weakened

considerably allowing for larger dark matter masses, while the collider constraints are

essentially unchanged.

A characterizing feature of our program is that the genesis of baryons and DM in the

early Universe is unified. The DM is asymmetric and its primordial asymmetry is generally

comparable to the baryon asymmetry, motivating further study of GeV scale DM.
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A Examples of UV completions

A.1 Model I

As a minimal X sector we introduce a light SM singlet X± - the dark matter - in a vectorial

representation of the gauge group U(1)B and 2 heavy fields X±1 and X±2 . These have the

following representations under SU(3)C × SU(2)W × U(1)Y × U(1)B:

X± ∼
(

1, 1, 0,±
(

1

3
+

1

N

))
, (A.1)

and

X±1 ∼
(

1, 2,±1

2
,±
(

1

3
+

1

N

))
X±2 ∼

(
1, 2,∓1

2
,±
(

1

3
+

1

N

))
. (A.2)

Then, the most general, renormalizable superpotential following from the assumed field

content is Wtot = Wq +Wq′ +W 6L +WS +WX , with the last term given by

WX = mXX
+X− + ΛX+

1 X
−
1 + ΛX+

2 X
−
2 (A.3)

+ HuX
+X−1 +HdX

−X+
1 +Q′ucX

+
1 +Qd′cX

−
1

+ HuX
−X+

2 +HdX
+X−2 +Q′dcX

+
2 +Qu′cX

−
2 .

Upon integrating out the heavy fields X±1 and X±2 one gets Eq. (2.4)

W eff
X = mXX

+X− +
HuQ

′ucX
+

Λ
+
HdQ

′dcX
+

Λ
+
HuQu

′
cX
−

Λ
+
HdQd

′
cX
−

Λ
(A.4)

+ . . .

– 24 –



In this specific realization, after EW symmetry breaking the DM candidate X will

mix with the neutral components of the fields X±1 , X
±
2 and will hence acquire a cou-

pling O(gvu,d/Λ) with the Z0. This mixing is however negligible in a realistic model with

vu,d/Λ� 1.

Note that this field content is such that Tr(BY ) = 0, consistent with the assumptions

of Section 4.

A.2 Model II

As in the previous model here we introduce two light SM singlet chiral multiplets in a

vectorial representation of the gauge group U(1)B, and SU(3)c colored heavy chiral fields

Y and Y . These fields have the following representations under SU(3)C × SU(2)W ×
U(1)Y × U(1)B:

X ∼
(

1, 1, 0,
2

3
− 1

N

)
X ∼

(
1, 1, 0,−2

3
+

1

N

)
, (A.5)

and

Y ∼
(

3, 1,
1

3
,
1

3
− 1

N

)
Y ∼

(
3, 1,−1

3
,−1

3
+

1

N

)
. (A.6)

Compared to the previous model, here the U(1)B gauge charge of the dark matter is

different. Then the most general, renormalizable superpotential following from the assumed

field content is Wtot = Wq +Wq′ +W 6L +WS +WX , with the last term given by

WX = mXXX + ΛY Y + ucd
′
cY + dcXY . (A.7)

Upon integrating out the heavy fields one gets Eq. (2.6)

W eff
X = mXXX +

ucdcd
′
cX

Λ
+ . . . (A.8)

In this model Tr(BY ) = 0 provided new fields are added. For example one can add

Y ′ ∼
(
3, 1,−1

3 ,
1
3 −

1
N

)
and Y ′ ∼

(
3, 1, 1

3 ,−
1
3 + 1

N

)
.

A.3 Chiral models

In this section we discuss models where the dark matter candidate has a purely axial

coupling to the massive gauge boson ZB.

The idea is to have two chiral fermions, say ψ and ψ′, with identical U(1)B charge.

Further assume there is another chiral field φ, with charge such that the Yukawa coupling

W = φψψ′ (A.9)

is gauge invariant. Then when φ acquires a vev, ψ and ψ′ form a massive Dirac particle.

Since ψ and ψ′ have identical U(1)B charge, the coupling of the Dirac fermion to the

massive gauge boson is purely axial 6.

6We are using 2-component notation in which all fields in the superpotential have the same chirality.

In the “left-handed” and “right-handed” 4-component notation ψL ∼ ψ and ψR ∼ ψ
′

have opposite U(1)B
charge.

– 25 –



U(1)B Z2

Φ4 +4 1

Φ(−1;i) −1 1

ψ(2;k) 2 −1

ψ′(2;k) 2 +1

Φ(−3;j) −3 1

Z−4 −4 −1

Z4 4 1

Y 0 −1

Table 3. Model A: gauge U(1)B and exotic Z2 charges of the dark matter sector. The subscripts

on the fields indicate their U(1)B charges. i, j = 1, .., 4 and k = 1, .., 3. All particles are neutral

under the SM.

There are two challenges to making this model more realistic. First, U(1)B gauge

invariance also allows

W = φψψ + φψ′ψ′. (A.10)

If either of these terms are present, then after symmetry breaking ψ and ψ′ will generally

form Majorana particles. If these mass terms are comparable in size to the Dirac term,

then the dark asymmetry will not be preserved in the early universe.

One way to forbid the Yukawa couplings that lead to Majorana mass terms is impose

a global or local symmetry, such that only (A.9) is allowed.

The other challenge is to obtain an anomaly-free theory, while keeping the dark matter

chiral. This can always be achieved by the introduction of more particles.

We now discuss a “proof-of-principle” model that implements these ideas. This model

features a Z2 symmetry to forbid (A.10), is anomaly-free, generates purely axial couplings

for DM, and gives mass to all the fermions after the U(1)B symmetry breaking. In general

the predictions for the asymmetries are model-dependent.

As in the models presented in the main body, a 4th generation of SM fermions is

introduced to cancel the mixed U(1)B-SM anomalies. Here we only discuss the particles

neutral under the SM charges. The field content and charge assignments are shown in

Table 3. The cancelation of the U(1)B anomaly can be seen by noting that these fields can

be arranged as

1+4 + 4−1 + 6+2 + 4−3 (A.11)

which is the decomposition of the (anomaly-free) 5 + 10 of SU(5) under its SU(4)×U(1)

subgroup. The only vector particles are Z−4 and Z4 introduced to allow Yukawa couplings

for the charge 2 chiral fields. There is also a single Y introduced to assist in giving mass

to all the fermions.

We next make a few comments about scales. We assume that SUSY breaking occurs

first in the visible sector, and then is communicated to the dark matter sector, possibly
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by U(1)B gauge interactions and/or higher dimension operators (such as the transfer op-

erators), leading to U(1)B symmetry breaking and SUSY mass splittings in these fields at

the GeV to tens of GeV scale. We also assume that the mass scales appearing in the dark

matter superpotential are of this size.

In this model we decompose the 6+2 into three generations of ψ(2;k) and ψ′(2;k), where

ψ and ψ′ have opposite Z2 charges. These fields play the role of the ψ and ψ′ in the toy

model. The role of φ is played by Z−4. To cancel anomalies we also introduce a vector-

partner, Z4. After U(1)B symmetry breaking the ψ and ψ′ fields will marry to become a

Dirac particle.

The most general renormalizable superpotential allowed by these symmetries is

W = λij(Φ4 + Z4)Φ(−3;i)Φ(−1;j) + λ′ijkψ
′
(2;k)Φ(−1;i)Φ(−1;j)

+λ′′′klZ−4ψ(2;k)ψ
′
(2;l) + Y Z−4(Φ4 + Z4) + µY 2 (A.12)

where k, l = 1, .., 3 and i, j = 1, ..., 4.

We assume that SUSY breaking leads to U(1)B breaking vevs for Z−4, Z4,Φ4 and Y ,

but not any of the other fields (otherwise ψ and ψ′ will not in general form Dirac particles).

With this assumption all of the fermions become massive: ψ and ψ′ form 3 generations of

Dirac particles, with purely axial and universal couplings to ZB; the Φ(−3;i) and Φ(−1;j)

mix to form 4 Dirac particles with both universal vector and axial couplings to ZB; and

Y , Z−4 and Z4 mix to form 3 Majorana particles, with non-universal couplings to ZB. We

will refer to the massive Dirac eigenstates as ψa, ψ
′
b, a, b = 1, 2, 3, and Φ(−3;m), Φ(−1;m),

m = 1, ..., 4, or ψa and Φm for short.

These vevs leave four accidental symmetries.

There are three generalized ψ particle numbers, one for each ψa, in which ψa has charge

+1 and ψ′a has charge −1. In addition, the Φ(−3;m)’s and Φ(−1;m)’s have opposite charge

equal to half of the ψa. The lightest particle of each generalized ψa number will be stable.

There is also an unbroken R−parity for which ψ(2;i) and ψ′(2;i) are even, and Φ(−3;i)

and Φ(−1;i) are odd. The lightest Rp odd particle is stable. If we make the simplifying

assumption that all the scalars are heavier than the fermions, then the lightest Rp odd

particle will either be the U(1)B gaugino or the lightest (fermionic) Φm.

This model therefore has from one to five dark matter candidates, depending on the

relative masses of the U(1)B gaugino, the ψa’s, and the lightest Φm. The lightest Φm is

always stable since it has ψa number 1/2 and there are no other lighter particles with

fractional ψa number for it to decay into. From the conservation of the individual ψa, the

lightest ψa can in principle only decay to 2 Φm’s and a third ψa-neutral fermion (needed

to conserve spin). A sufficient condition for the lightest ψa to be stable if it is lighter than

twice the mass of the lightest Φm. Depending on the kinematics, these circumstances can

add up to 3 more stable particles. Finally, if the gaugino is the lightest Rp odd particle

then it too is stable.

Since the dark matter sector is more involved, the role of X in the transfer operators

(2.4) or (2.6) can in principle be filled by any of the fields in the dark sector, subject only

to the requirement that the transfer operator is U(1)B and Z2 invariant.
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Up to this point we have not discussed the relative normalization between the U(1)B
charges of the dark matter sector and those of the visible and exotic quarks. In fact,

this normalization is model-independent. This is because the dark matter sector alone

is automatically U(1)B anomaly-free. We are therefore free to choose the normalization

appropriately such that the transfer operators (2.4) or (2.6) are U(1)B gauge invariant.

Next, the transfer operators should be Z2 invariant. To do that we extend the Z2 to

act on the exotic quarks such that they are odd under the Z2: Q′ → −Q′, uc′ → −uc′,
dc′ → −dc′. The exotic leptons and SM particles, including the Higgses, are assumed to be

even.

Under these conditions only ψ(2;k) or Z−4 have the appropriate quantum numbers

to couple linearly to the visible and exotic quarks. Then with an appropriate universal

rescaling of the dark matter sector U(1)B charges, transfer operators of the form (2.4) or

(2.6) are allowed with X = ψ(2;k) or, with a different rescaling, X = Z−4.

We now focus on the scenario in which the lightest ψa is light enough to be stable.

Then this particle is a dark matter candidate with a purely axial coupling to ZB. The

predictions for the dark matter asymmetries are dependent however on the rest of the

spectrum, and on the identity of the particle X appearing in the transfer operator.

There is one circumstance however, in which our chemical potential analysis appearing

in Section B carries through exactly. Namely, if in the transfer operator X = ψ(2;k) and

if in addition there is a modest mass gap between the lightest ψa and the rest of the dark

matter spectrum. Then the present-day abundances and asymmetries of the heavier stable

particles will be Boltzmann suppressed compared to the lightest ψa.

B Chemical potential analysis

Let us focus on the case where the AD condensate evaporates before the sphalerons decou-

ple, namely Tφ > T ∗.

As already emphasized, the precise value of the present-day asymmetries in this case

is set by thermodynamical relations at the sphaleron scale T ∗. Once the ratio ηBq/ηBq′ is

calculated at the sphaleron scale T ∗ one can obtain the present-day asymmetries for the

DM and the ordinary SM baryons using eq. (3.4).

Since we expect T ∗ = O(100 GeV), the N exotic generations (with U(1)B charge

−1/N) and the top are assumed not decoupled in the following analysis. For simplicity,

we will only consider the contribution of the chiral fields, as the vectorial representations,

as well as all SUSY partners, are all taken to be heavy enough so that their contribution

to the following chemical potential analysis is negligible. An exception is the DM particle

X which in these models must have a mass below O(100 GeV) if it is to have the correct

present-day cosmological abundance.

As it is not known whether the sphaleron scale T ∗ is above or below the EW phase

transition scale TEW , we will analyze both cases T ∗ < TEW and T ∗ ≥ TEW in turn. The

former case is expected if the EW transition is smooth, whereas the latter if the transition

is strongly first order. We will see that the ratio between the dark matter ηX and baryon

ηBq asymmetries does not depend on the precise relation between the scales T ∗, TEW if
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the q′ masses are in the few hundred GeV range. Under this latter hypothesis we thus

expect the ratio (3.4) to be the same in models with a first order or second order EW

phase transition.

In the following subsection we will calculate the ratio of Bvis asymmetry to X asym-

metry for model I (2.4) and model II (2.6). Our analysis can be generalized to arbitrary

U(1)D-invariant interactions mediating q′ decay.

B.1 Low-temperature sphaleron decoupling

We first assume that the sphalerons decouple below the EW phase transition. We closely

follow the formalism of [81] and set the chemical potential of the physical, CP-even Higgs

to zero

µ0 = 0 (for T ∗ < TEW ) . (B.1)

It then follows that the chemical potentials of the left and right fermions of the same flavor

equal to each other. Similarly, we equate the chemical potentials of the transverse and

longitudinal components of the W± boson to µW . As long as the transfer operators of

model I (A.4) or model II (A.8) are in chemical equilibrium we have

µd′ = µd − µX , µd′ = µW + µu′ , µe′ = µe, (model I)

µd′ = −µu − µd + µX , µd′ = µW + µu′ , µe′ = µe, (model II) (B.2)

where µu,d,u′,d′X are the chemical potentials of the up- down-type quarks and exotic quarks,

as well as of the DM, while µe,e′ those of the charged leptons. R-parity, lepton-flavor

violating effects are assumed to be in equilibrium so that the chemical potentials of the

various generations coincide and so that those of the neutrinos vanish.

We aim to solve a system of 6 unknown µu, µd, µν , µe, µW , µX with 5 constraints. The

first constraint comes from the vanishing of the total electric charge in the Universe; the

second and third constraints relate the up and down elements of the weak doublets as well

as µW and comes from the W± exchange; the fourth involves left-handed fermions only and

comes from the sphaleron process associated with the Bq and Bq′ anomalies; and finally

the fifth constraint reads µν = 0 and follows from the assumption that lepton violating

operators responsible for the generation of Majorana masses for the SM neutrinos are in

chemical equilibrium.

Working at leading order in the chemical potentials as in [81], the 5 constraints respec-

tively read:

ηQ ∝ 3 · 3 · 2

3
(2µu)− 3 · 3 · 1

3
(2µd)− 3(2µe)− 3 · 2µW (B.3)

+

[
N · 3 · 2

3
(2µu′)−N · 3 ·

1

3
(2µd′)−N(2µe′)

]
f(Mq′/T

∗)

≡ 0

µW = µd − µu = µe − µν
3[µu + 2µd + µν ] = −N [µu′ + 2µd′ + µν′ ]

µν = µν′ = 0.

– 29 –



In the above expression the function f(Mq′/T
∗) accounts for the mass dependence of

the q′ contribution, which is taken for simplicity to be the same between the up-type and

down-type (which is preferred by the electroweak precision constraints) and for any (exotic)

flavor. This function is given by

f(x) =
3

2π2

∫ ∞
0

dy
y2

cosh2
(

1
2

√
x2 + y2

) ≤ 1, (B.4)

and it is normalized so that f(0) = 1. At temperatures above the electroweak phase

transition x = 0 since the exotic quarks obtain all of their mass from electroweak symmetry

breaking.

Note that in the charge asymmetries bosons count twice as much as fermions [81],

but fermions can have both left and right components (see round brackets in the above

expressions).

After the AD condensate has evaporated the primordial asymmetry for U(1)D is com-

pletely carried by the fundamental particles and is given by 7

ηD ∝ 3 · 3 · 1

3
(2µu) + 3 · 3 · 1

3
(2µd) (B.6)

−
[
N · 3 · 1

N
(2µu′) +N · 3 · 1

N
(2µd′)

]
fq′ +B(X)(2µXfX)

6= 0,

where for brevity fq′ ≡ f(Mq′/T
∗) and fX ≡ f(mX/T

∗). From Table 2, B(X) = 1/3+1/N

(model I) or B(X) = 2/3 − 1/N (model II). One can show that the non-vanishing of ηD
requires the chemical potentials µq,q′,X to all be nonzero.

Evaluating the U(1)Bq,q′ asymmetries at T = T ∗ gives

ηBq ∝ 3 · 3 · 1

3
(2µu) + 3 · 3 · 1

3
(2µd) +Bq(X)(2µXfX), (B.7)

ηBq′ ∝
[
−N · 3 · 1

N
(2µu′)−N · 3 ·

1

N
(2µd′)

]
fq′ +Bq′(X)(2µXfX) (B.8)

Next we insert into (B.7) and (B.8) the explicit solution of (B.3) (making use of (B.2)),

to obtain an expression for ηBq/ηBq′ . Then since these asymmetries are conserved below

the sphaleron scale T ∗, we evaluate them at the present-day era using (3.2) and (3.3). We

then find the present-day ratio (3.4) to be

ηBvis

ηX
= −

9(−1 + fq′)N(21 + 5fq′N))

99 + (33 + 618fq′)N + fq′(17 + 135fq′)N2)
(model I) (B.9)

7ηD is intimately connected with the asymmetry ηS carried by the Higgs fields S, S. Indeed, from (2.7

and 3.1) one has

ηB = ηD +B(S)ηS . (B.5)

If the U(1)B gauge symmetry is unbroken, then ηB = 0 and consequently ηD = −B(S)ηS 6= 0. However,

after U(1)B symmetry breaking the reactions s0 ←→ ZBZB quickly lead to µS = 0 and no asymmetry is

carried by the S ≡ s0 + isI field. Then the s0 field decays to jets. The baryon Higgs sector therefore does

not contribute to either of the ηBq,q′ asymmetries.
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ηBvis

ηX
= −

9N(21 + fq′(45 + 2(3 + 5fq′)N)

99 +N(−66 + fq′(618 + (−7 + 135fq′)N))
(model II) (B.10)

where we have set fX = 1.

B.2 High-temperature sphaleron decoupling

In the case the sphalerons decouple above or at the EW phase transition we again follow [81]

and impose, instead of (B.1), the vanishing of the chemical potential of the W±:

µW = 0 (for T ∗ ≥ TEW ) (B.11)

= µdL − µuL
= µνL − µeL.

Similar relations hold for the q′ fields.

Now there is no distinction between the up and down elements of the weak doublet,

but we should make a distinction between left and right components of the chiral fields, as

well as between the “up-type” (µHu) and “down-type” (µHd
) Higgs bosons. The B−term

however enforces µHu = −µHd
≡ µ0, so the two Higgs boson chemical potentials are

opposite.

The Yukawa couplings then imply

µ0 = µuR − µuL = µdL − µdR = µeL − µeR, (B.12)

and similarly for the q′ fields. Yukawa couplings between the 4th and first three generations

leptons imply

µ0 = µeL − µe′R = µe′L − µeR, (B.13)

which when combined with the previous Yukawa interactions implies

µe′L,e′R = µeL,eR

In addition, the interactions HuL
′ν ′c and SSν ′c (or ν ′cν

′
c) give

µν′R = µ0 + µν′L (B.14)

µν′R = 0 (B.15)

As before, the relevant constraints come from electric change neutrality, the sphaleron

process, and the Rp lepton violating processes LQDc and LLEc:

ηQ ∝ 3 · 3 · 2

3
(µuL + µuR)− 3 · 3 · 1

3
(µdL + µdR) (B.16)

− 3(µeL + µeR) + 2µ0

+ N · 3 · 2

3
(µu′L + µu′R)−N · 3 · 1

3
(µd′L + µd′R)

− N(µe′L + µe′R)

≡ 0

3[3µuL + µνL] = −N [3µu′L + µν′L]

µνL + µ0 = 0
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plus the condition (B.11), Higgs exchange eqs. (B.12) and (B.13), and the relations (B.14)

and (B.14). Note that here f = 1 for all the exotic fermions since they only acquire a

mass from electroweak symmetry breaking. The last equation in (B.16) follows from the

equilibrium conditions of the Rp lepton-violating operators.

The explicit solution to these equations is:

µu = µd, µu′ = µd′ = − 3

N
µu, µν = µe = µν′ = µe′ = 0, µ0 = 0. (B.17)

This implies that left and right components have the same chemical potential. As before,

we can evaluate the asymmetries at T = T ∗ and then match at temperatures below the

decoupling temperature of the transfer operator. It then follows that the ratio between the

primordial asymmetries is for model I,

ηBvis

ηX
=

[
12 + 2(1 + 3

N )Bq(X)

12( 3
N ) + 2(1 + 3

N )Bq′(X)

]
Bq′(X)−Bq(X) = 0

since for the transfer operator of model I, Bq′(X) = 3
NBq(X). While for model II,

ηBvis

ηX
=

[
12 + 2(2− 3

N )Bq(X)

12( 3
N ) + 2(2− 3

N )Bq′(X)

]
Bq′(X)−Bq(X) ≈ −1.

The last step is a good approximation for any N .

Interestingly this same solution (B.17) is obtained from the low temperature sphaleron

decoupling assumption with fq′ = 1. In other words, if the sphalerons decouple above the

electroweak phase transition, i.e., T ∗ > TEW , the present-day asymmetries are obtained

from eqs. (B.9) and (B.10) by setting fq′ = 1.

The result (B.17) states that the lepton number is washed out by the equilibrium

processes, while the baryon number is not because it is embedded into the nonanoma-

lous symmetry U(1)D. The washing out of the lepton number follows as the combined

effect of perturbative and nonperturbative lepton violation, the latter processes due to the

sphalerons. If one of these two ingredients are not in play, the chemical potentials of the

leptons are nontrivial in general.
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