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Abstract

We analyse how the structure of the inner curst is influenced by the pairing correlations. The

inner-crust matter, formed by nuclear clusters immersed in a superfluid neutron gas and ultra-

relativistic electrons, is treated in the Wigner-Seitz approximation. The properties of the Wigner-

Seitz cells, i.e., their neutron to proton ratio and their radius at a given baryonic density, are

obtained from the energy minimization at beta equilibrium. To obtain the binding energy of bary-

onic matter we perform Skyrme-HFB calculations with zero-range density-dependent pairing forces

of various intensities. We find that the Wigner-Seitz cells have much smaller numbers of protons

compared to previous calculations. For the dense cells the binding energy of the configurations

with small proton numbers do not converge to a well-defined minimum value which precludes the

determination of their structure. We show that for these cells there is a significant underestimation

of the binding energy due to the boundary conditions at the border of the cells imposed through

the Wigner-Seitz approximation.
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I. INTRODUCTION

The inner-crust of neutron stars extends from the so-called neutron drip density, ρd ≈
4× 1011 g cm−3, defined as the density where the neutrons start to drip out from the nuclei

of the crust, up to a density of about ρ ≈ 1.4 × 1014 g cm−3 at which there is a transition

towards the uniform core matter. The size and the precise density limits of the inner crust

depend on the star mass and on the equation of state employed in the star models [1, 2].

The inner-crust matter of non-accreting cold neutron stars is most probably formed by a

crystal lattice of nuclear clusters immersed in a sea of low-density superfluid neutrons and

ultra-relativisitic electrons. It is generally considered that in most of its part the inner-

crust is formed of nuclei-like clusters. More complex ”pasta” structures (e.g., rods, plates,

bubbles) are expected to be formed in the transition region between the inner crust and the

core matter, see for instance Refs. [1, 2] and references therein.

The first microscopic calculation of the inner-crust structure, still used as a benchmark in

neutron stars studies (e.g., Refs. [3–5]) was performed by Negele and Vautherin in 1973 [6].

In this work the crystal lattice is divided in spherical cells which are treated in the Wigner-

Seitz (WS) approximation. The nuclear matter from each cell is described in the framework

of Hartree-Fock (HF) approximation based on the Density Matrix Expansion (DME) [7].

This approach was preferred to the Density-Dependent Hartree-Fock theory [8] in order

to reduce computational complication induced by the non-local exchange potential. The

parameters of the DME theory were adjusted to reproduce the experimental binding energies

of atomic nuclei and the theoretical calculation of infinite neutron matter available at that

time. The spin-orbit interaction was taken into account for the protons but neglected for

the neutrons. The HF equations were solved in coordinate representation imposing mixed

Dirichlet-Neuman boundary conditions at the border of the cells. The properties of the WS

cells found in Ref. [6], determined for a limited set of densities, are shown in Table I. The

most remarkable result of this calculation is that the majority of the cells have semi-magic

and magic proton numbers, i.e., Z=40,50. This indicates that in these calculations there

are strong proton shell effects, as in isolated atomic nuclei. However, as seen from Fig. 1 of

Ref. [6] the energies corresponding to the cells configurations based on various Z numbers are

in fact very close to each other. This fact raises several questions: i) what is the sensitivity

of the results on the nuclear interaction, ii) how much the pairing correlations influence the
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cells structure, iii) how reliable is the WS approximation.

The effect of pairing correlations on the structure of WS cells was investigated in Ref. [9]

within the HF+BCS approach. In the most recent version of these calculations the authors

solved the HF+BCS equations with a mixture between the phenomenological functional of

Fayans et al [11], employed in the nuclear cluster region, and a microscopical functional

derived from Bruckner-Hartree-Fock calculations in infinite neutron matter. The latter was

used to describe the neutron gas in the WS cells. In this framework it was found that the

cells have not a magic or semi-magic number of protons, as in Ref. [6]. It was also found

that pairing can change significantly the structure of the cells compared to HF calculations.

These findings show that in order to determine the most probable structure of the inner

crust one needs more investigations based on various effective interactions and many-body

approximations.

In this study we analyse the effect of pairing on inner crust structure in the Hartree-Fock-

Bogoliubov approach (HFB). This approach offers better grounds than HF+BCS approxi-

mation for treating pairing correlations in non-uniform nuclear matter with both bound and

unbound neutrons. To investigate the dependence of the inner crust structure on pairing,

the HFB calculations are performed with three different density-dependent pairing forces

adjusted to reproduce various pairing scenarios in nuclear matter.

In principle, the symmetries of the inner crust lattice should be taken properly into ac-

count when inner crust structure is determined. Since imposing the exact lattice symmetries

in microscopic self-consistent models is a very difficult task (for approximative solutions to

this problem see [13] and the references therein) we solve the HFB equations in the WS

approximation, as commonly done in inner crust studies [6, 9]. This approximation induces,

through the boundary conditions at the border of the cells, an artificial shell structure in

the energy spectra of nonlocalized neutrons [10]. The errors caused by the spurious shells,

which affect mainly the high density cells, are estimated by using the method proposed in

Ref.[16].

The paper is organized as follows: in Section II we describe how the cells energy is

calculated in the HFB and WS approximations, in Section III we present the equations for

beta equilibrium and in Section IV we discuss the results of the calculations.
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II. THE ENERGY OF WIGNER-SEITZ CELLS

As in Ref. [6], the lattice structure of the inner crust is described as a set of indepen-

dent cells of spherical symmetry treated in the WS approximation. For baryonic densities

below ρ ≈ 1.41014g/cm3, each cell has in its center a nuclear cluster (bound protons and

neutrons) surrounded by low-density and delocalized neutrons and immersed in a uniform

gas of ultra-relativistic electrons which assure the charge neutrality. At a given baryonic

density the structure of the cell, i.e., the N/Z ratio and the cell radius is determined from

the minimization over N and Z of the total energy under the condition of beta equilibrium.

The energy of the cell, relevant for determining the cell structure, has contributions from

the nuclear and the Coulomb interactions. Its expression is written in the following form

E = EM + EN + Te + EL. (1)

The first term is the mass difference EM = Z(mp+me)+(N −A)mn where N and Z are the

number of neutrons and protons in the cell and A=N+Z. EN is the binding energy of the

nucleons, which includes the contribution of proton-proton Coulomb interaction inside the

nuclear cluster. Te is the kinetic energy of the electrons while EL is the lattice energy which

takes into account the electron-electron and electron-proton interactions. The contribution

to the total energy coming from the interaction between the WS cells [12] it is not considered

since it is very small compared to the other terms of Eq.(1). Notice also that the gravitational

energy is not taken into account in the energy minimization because its variation at the

nuclear scale is negligible.

A. The nuclear binding energy in the HFB approach

In the present study the nuclear binding energy of the WS cells is calculated in the

framework of HFB approach. For the particle-hole channel we use a Skyrme-type interaction

of the standard form [14], i.e.,

VSkyrme(ri, rj) = t0(1 + x0Pσ)δ(rij)

+
1

2
t1(1 + x1Pσ)

1

h̄2

[

p2ij δ(rij) + δ(rij) p
2
ij

]

+ t2(1 + x2Pσ)
1

h̄2pij.δ(rij) pij
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+
1

6
t3(1 + x3Pσ)ρ(r)

γ δ(rij)

+
i

h̄2W0(σi + σj) · pij × δ(rij) pij , (2)

where rij = ri − rj, r = (ri + rj)/2, pij = −ih̄(∇i −∇j)/2 is the relative momentum, and Pσ

is the two-body spin-exchange operator. The parameters of the force we have used in this

study correspond to the Skyrme force SLy4 [14]. This force is often employed to describe

both atomic nuclei and neutron stars properties.

The pairing correlations are described with a zero range density dependent interaction of

the following type:

VPair(ri, rj) = V0 gPair[ρn(r), ρp(r)] δ(rij) , (3)

where gPair[ρn, ρp] is a functional of neutron and proton densities. In the calculations we

use two different functionals for gPair[ρn(r), ρp(r)]. The first one, called below isoscalar (IS)

pairing force, depends only on the total particle density, ρ(r) = ρn(r)+ ρp(r). Its expression

is given by

gPair[ρn(r), ρp(r)] = 1− η

(

ρ(r)

ρ0

)α

, (4)

where ρ0 is the saturation density of the nuclear matter. This effective pairing interaction

is extensively used in nuclear structure calculations and it was also employed for describing

pairing correlations in the inner crust of neutron stars [5, 17–19]. The parameters are chosen

to reproduce in infinite neutron matter two possible pairing scenarios [15], corresponding

to a maximum gap of about 3 MeV (strong pairing scenario, hereafter named ISS) and,

respectively, to a maximum gap around 1 MeV (weak pairing scenario, called below ISW).

These two scenarios are simulated by two values of the pairing strength, i.e., V0={-570,-
430} MeV fm−3. The other parameters are taken the same for the strong and the weak

pairing, i.e., α=0.45, η=0.7 and ρ0=0.16 fm−3. The energy cut-off in the pairing tensor

(8), necessary to cure the divergence associated to the zero range of the pairing force, was

introduced through the factor e−Ei/100 acting for Ei > 20 MeV, where Ei are the HFB

quasiparticle energies.

The second pairing functional, referred below as isovector-isoscalar (IVS) pairing, depends

explicitly on neutron and proton densities and has the following form [20]

gPair[ρn(r), ρp(r)] = 1− ηs(1− I(r))

(

ρ(r)

ρ0

)αs

− ηnI(r)

(

ρ(r)

ρ0

)αn

, (5)
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where I(r) = ρn(r) − ρp(r). As shown in Ref. [20], this pairing functional describes well

the two-neutron separation energies and the odd-even mass differences in semi-magic nuclei.

In the present calculations for this pairing functional we have used the parameters V0=

-703.86 MeV fm−3, ηs=0.7115, αs=0.3865, ηn=0.9727, αn=0.3906, with the same cut-off

prescription as for the IS pairing forces.

The pairing gaps in symmetric matter and neutron matter predicted by the three pairing

forces introduced above are represented in Fig. 1 for a wide range of sub-nuclear densities.

It can be seen that the IVS force gives a maximum gap closer to the strong isoscalar force.

For the zero range interactions introduced above and for spherically symmetric systems

the radial HFB equations are given by







h(r)− µ ∆(r)

∆(r) −h(r) + µ













Ui(r)

Vi(r)





 = Ei







Ui(r)

Vi(r)





 , (6)

where Ui, Vi are the upper and lower components of the radial HFB wave functions, µ is the

chemical potential while h(r) and ∆(r) are the mean field Hamiltonian and pairing field,

respectively. They depend on particle density ρ(r), abnormal pairing tensor κ(r), kinetic

energy density τ(r) and spin density J(r) defined by:

ρ(r) =
1

4π

∑

i

(2ji + 1)V ∗

i (r)Vi(r) (7)

κ(r) =
1

4π

∑

i

(2ji + 1)U∗

i (r)Vi(r) (8)

J(r) =
1

4π

∑

i

(2ji + 1)[ji(ji + 1)− li(li + 1)− 3

4
] V 2

i (9)

τ(r) =
1

4π

∑

i

(2ji + 1)[(
dVi

dr
− Vi

r
)2 +

li(li + 1)

r2
V 2
i ] (10)

The general expressions of the mean field in terms of the densities are given in Ref. [21].

The pairing field has a simple form, i.e.,

∆(r) =
1

2
gPair[ρn(r), ρp(r)] κ(r). (11)

The HFB equations are solved in coordinate space and imposing the following boundary

conditions at the border of the WS cells [6]: i) even parity wave functions vanish at r = RWS;
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ii) first derivatives of odd-parity wave functions vanish at r = RWS. With these mixed

boundary conditions at the cell border the continuous quasiparticle spectrum of the unbound

neutrons is discretized.

Compared to the usual HFB calculations done for nuclei, in a WS cell the mean field of

the protons has an additional contribution coming from the interaction of the protons with

the electrons. Thus, the total proton mean field in the cell is given by

up(r) = upp
nucl(r) + upp

Coul(r) + upe
Coul(r), (12)

where upp
nucl(r) is the nuclear part of the mean field, given by the Skyrme interaction, while

upp
Coul and upe

Coul are the mean fields corresponding to the Coulomb proton-proton and proton-

electron interactions. The proton-proton Coulomb mean field has the standard form

upp
Coul(r) = e2

∫

d3r′ ρp(r
′)

1

|r − r′| − e2
(

3

π
ρp(r)

)1/3

, (13)

where the first and the second terms correspond, respectively, to the direct and the ex-

change part of proton-proton Coulomb interaction. The latter is evaluated in the Slater

approximation.

The mean field corresponding to the proton-electron interaction is given by

upe
Coul(r) = −e2

∫

d3r′ ρe(r
′)

1

|r − r′| . (14)

Assuming that the electrons are uniformly distributed inside the cell, with the density ρe =

3Z/(4πR3
WS), one gets

upe
Coul(r) = −2πe2ρe

(

R2
WS − 1

3
r2
)

=
Ze2

2RWS

(

(

r

RWS

)2

− 3

)

(15)

It can be seen that inside the WS cell the contribution of the proton-electron interaction to

the mean field is quadratic in the radial coordinate.

B. The electron and the lattice energies

In the inner-crust the electrons are ultra-relativistic. Their kinetic energy is given by the

expression [22]

Te = Zmec
2

{

3

8x3

[

x
(

1 + 2x2
)√

1 + x2 − ln
(

x+
√
1 + x2

)]

− 1
}

, (16)
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where x is the relativistic parameter defined as x = h̄kFe/(mec
2). In the ultra-relativistic

regime x ≫ 1.

The lattice energy is generated by the electron-proton and electron-electron Coulomb

interactions. The first one is given by

Epe
Coul = −

∫

d3rd3r′ ρp(r)
e2

|r − r′|ρe(r
′) = −3

2

ZNee
2

RWS

+ 2π
e2Ne

R3
WS

∫

dr ρp(r)r
4 , (17)

where the last two terms on the right hand side are obtained assuming that the electron

density ρe is constant in the cell.

The electron-electron Coulomb energy is given by

Eee
Coul =

1

2

∫

d3rd3r′ ρe(r)
e2

|r − r′|ρe(r
′)− 3

4

(

3

π

)1/3

e2
∫

d3r ρ4/3e (r) (18)

where the second term is the contribution of the exchange term evaluated in the Slater

approximation. For a constant electron density one gets

Eee
Coul =

3

5

N2
e e

2

RWS

(

1− 5

4

(

3

2π

)2/3 1

N
2/3
e

)

. (19)

The Coulomb energy corresponding to the proton-proton interaction is calculated within

the mean field approach in a standard way, including the contribution of the exchange term

evaluated in the Slater approximation.

III. BETA EQUILIBRIUM CONDITION

Beta equilibrium condition is satisfied if δµ = 0 where

δµ = mec
2 + µe +mpc

2 + µp −mnc
2 − µn . (20)

The chemical potential of the electrons can be written as

µe =
√

(h̄cke)2 + (mec2)2 −mec
2 + µee

I + µep
I , (21)

where µee
I and µep

I are the contributions coming from the electron-electron and electron-

proton interaction. They are given by:

µee
I =

dEee
Coul

dNe

(22)

µep
I =

dEep
Coul

dNe
(23)
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The chemical potentials of the neutrons and protons are extracted from the HFB calcu-

lations. The contribution of the proton-electron interaction to the chemical potential of the

protons is included through the proton-electon mean field (14).

As seen in Eq. (12), the proton mean field includes also the contribution of the proton-

electron interaction

The beta equilibrium condition can be satisfied exactly when the chemical potential of the

neutrons, determined by the nonlocalized neutrons, is a continuous variable. In the calcula-

tions done here the neutron spectrum is discretized due to the boundary conditions imposed

at the border of the cells (it is worth mentioning that this discretization has nothing to do

with the discrete structure of the neutron spectrum generated by the symmetry of the crys-

tal lattice). Consequently the beta equilibrium condition is satisfied only approximatively.

In practice, we consider that the beta equilibrium condition is found when by changing the

N/Z ratio the value of δµ is changing the sign. Then, from the two N/Z configurations for

which δµ is changing the sign we keep the one which has the smaller binding energy. It is

worth stressing that the beta equilibrium condition depends, through the discretization of

the neutron spectrum, on the type of boundary conditions imposed at the border of the cells.

How the type of boundary conditions could influence the structure of the cells is discussed

in Ref [10].

IV. RESULTS: THE STRUCTURE OF THE WIGNER-SEITZ CELLS

Within the framework presented in the previous sections we have determined the prop-

erties of the WS cells, i.e. the N/Z ratio and the radius of the cells. The calculations have

been done for the set of baryonic densities shown in Table I. To find the structure of the cell

at a given density we have considered all the configurations with the even number of protons

between 12 and 60. For each number of protons we modified the radius of the cell with a

step of 0.2 fm, keeping the same total density, until the number of neutrons included in

the cell satisfies with the best accuracy the beta equilibrium condition. The most probable

configuration at a given density is finally taken as the one with the lowest binding energy.

First we have determined the structure of the WS cells in the HF approximation, i.e.,

neglecting the contribution of pairing correlations. The results are given in Table II. Com-

pared to previous calculations [6, 9] we find that the cells have a smaller number of protons.
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Table II shows also that the number of protons are not anymore equal to a magic or a

semi-magic number as in Ref.[6] (see Table I).

To understand better the results of Table II, in Fig. 2 we show the evolution of the binding

energies per nucleon, calculated at beta equilibrium and at constant density, with respect

to the proton number Z. The most probable configuration corresponds to the number of

protons for which the binding energy has the lowest value. From Fig. 2 it can be seen

that in the cells 1 and 2 there is a continuous decrease of the binding energy for the lowest

values of Z. Thus, for these cells the HF calculations cannot predict a well-defined cell

structure. From Fig. 2 it can be also seen that even for the cells in which one can identify

a configuration with the lowest binding energy, the difference between this energy and the

energy of other local minima is very small, of the order of 10 keV. The weak dependence

of the binding energy on Z observed in Fig. 2 is caused by the almost exact compensation

between the nuclear energy and the electron kinetic energy. This can be clearly seen in Fig. 3

where are shown, for the cells 2 and 6, the contributions to the total energy coming from the

nuclear energy (dashed line) and the kinetic energy of the electrons (dashed-dotted line). It

can be noticed that the local minima of nuclear binding energy at Z = 20 and Z = 28 are

washed out by the kinetic energy of the electrons. The competition between the nuclear and

Coulomb interaction, specific to the so-called frustrated systems, it is the reason why the

structure of the WS cells it is not necessarily determined by the nuclear interaction and the

associated nuclear shell effects.

A necessary condition for the validity of the WS approximation is the appearance in

the neutron density of a well-defined plateau before the edge of the cell. From Fig. 4 (left

pannel) it can be observed that this condition is hardly fulfilled for the cell 1, reasonably

well for the cell 2 and better for the other cells.

We shall now discuss the effect of pairing correlations on the structure of the WS cells.

To study the influence of pairing correlations we have performed HFB calculations with

the three pairing interactions introduced in Section 3A. How the pairing correlations are

distributed in the cells is illustrated in Fig.4 (right pannel) which shows the pairing fields

of neutrons and protons for the force ISS. As expected, the pairing field profile has a non-

uniform distribution which could be traced back to the density dependence of the pairing

force [17]. The proton pairing field stays localized inside the nuclear cluster since a drip out

of protons is not observed in our calculations. It can be noticed that for the cells 5 and 10,
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with the proton numbers Z = 20 and Z = 28 (see Table III), the proton fields are zero.

This indicates that in the nuclear clusters corresponding to these cells the proton numbers

Z = 20, 28 behave as magic numbers, as in atomic nuclei.

The dependence of pairing energy on Z is illustrated in Fig. 3 (right pannel) for the cells

number 2 and 6. One observes that in average the absolute value of the pairing energy is

decreasing with Z, which shows that the dominant contribution to pairing comes from the

nonlocalized neutrons (notice that for a cell the HFB calculations with various Z are done

for a fixed total density).

The structure of the WS cells obtained in the HFB approach is given in Table III while

in Fig. 5 it is shown the dependence of the binding energies, at beta equilibrium, on protons

number. From Fig. 5 we observe that in the cell 1 the binding energy does not converge to a

minimum before Z=12. For the cells 2-4 a minimum can be found for the ISW and/or IVS

forces but this minimum is very close to the value of binding energy at Z=12. Therefore the

structure of the cells 2-4 is ambiguous. The situation is different in the cells 5-10 where the

binding energies converge to absolute minima located before Z=12. Thus for these cells the

structure can be well-defined by the present HFB calculations.

Comparing Table III and Table II it can be observed that for the cells 6-9 the numbers of

protons in the HF and HFB calculations differ by about 2 units. The largest difference, of

10 units, appears for the cell 5. However, as seen in Fig. 5, the HF minimum at Z=30 is in

fact very close to the local minimum at Z=22. A similar situation can be noticed in cell 10

for the HF minima at Z=24 and Z=28. In conclusion, these calculations indicate that the

pairing does not change much the structure of the low density cells 5-10. This could be also

observed from the fact that in these cells the intensity of pairing force has only marginal

effects on the proton and neutron numbers.

Let us now discuss more in detail what happens in the high density region for the config-

urations with small Z and small cells radii. When the radius of the cell becomes too small

the boundary conditions imposed at the cell border through the WS approximation generate

an artificial large distance between the energy levels of the nonlocalized neutrons. Conse-

quently, the binding energy of the neutron gas is significantly underestimated. An estimation

of how large could be the errors in the binding energy induced by the WS approximation
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can be obtained from the quantity

f(ρn, RWS) ≡ Binf.(ρn)−BWS−inf.(ρn, RWS) , (24)

where the first term is the binding energy per neutron for infinite neutron matter of density

ρn and the second term is the binding energy of neutron matter with the same density

calculated inside the cell of radius RWS and employing the same boundary conditions as in

HF or HFB calculations. In Ref. [16] it was proposed for the finte size energy correction,

Eq. 26, the following parametrisation

f(ρng
, RWS) = 89.05(ρng

/ρ0)
0.1425R−2

WS , (25)

where ρng
is the average density of neutrons in the gas region extracted from a calculation

in which the cell contains both the nuclear cluster and the nonlocalized neutrons while ρ0 is

the nuclear matter saturation density.

How the energy corrections described by Eq.(25) influences the HF (HFB) results can

be seen in Tables III (Tables-IV) and Fig. 2 (Fig. 5). As expected, the influence of the

corrections is more important for the cells 1-5, in which the neutron gas has a higher density,

and for those configurations corresponding to small cell radii. For the cell 1 the binding

energy after the correction is still decreasing for the smallest Z values, which means that the

structure of this cell remains uncertain. The structure of the cells 2-4 can be now determined

for all pairing forces. However, as seen in Fig. 5, for these cells the absolute minima are

still very close to the binding energies at Z=12 which shows that the structure of these cells

remains ambiguous even after the energy correction.

V. SUMMARY AND CONCLUSIONS

In this paper we have examined the influence of pairing correlations on the structure of

inner crust of neutron stars. The study was done for the region of the inner crust which

is supposed to be formed by a lattice of spherical clusters. The lattice was treated as a

set of independent cells described in the Wigner-Seitz approximation. To determine the

structure of a cell we have used the nuclear binding energy given by the HFB approach. For

the HFB calculations we have considered a particle-hole interaction of Skyrme type (SLy4)

while as particle-particle interaction we have used three zero range density-dependent pairing
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forces of various intensities. The calculations show that the pairing correlations have a weak

influence on the structure of WS cells.

For the cells with high density and small radii the binding energies do not converge

to a minimum when the proton number has small values. We believe that the reason for

that is the failure of the WS approximation when the cell radius is too small. For a small

radius of the cell the average distance between the energy levels of the nonlocalised neutrons

becomes artificially large which cause an underestimation of the binding energy. To correct

this drawback we have used an empirical expression based on the comparison between the

binding energy of neutrons calculated in infinite matter geometry and in a spherical cell [16].

We found that the corrections to the binding energies are significant for the high density

cells with small proton numbers. This show that the WS approximation is not accurately

enough for predicting the structure of the high density region of the inner crust.
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Ncell ρ N Z RWS

[g cm−3] [fm]

1 7.9 1013 1460 40 20

2 3.4 1013 1750 50 28

3 1.5 1013 1300 50 33

4 9.6 1012 1050 50 36

5 6.2 1012 900 50 39

6 2.6 1012 460 40 42

7 1.5 1012 280 40 44

8 1.0 1012 210 40 46

9 6.6 1011 160 40 49

10 4.6 1011 140 40 54

TABLE I: The structure of the Wigner-Seitz cells determined in Ref.[6]. ρ is the baryon density,

N and Z are the numbers of neutrons and protons while RWS is the radius of the cell. Compared

to Ref. [6] here it is not shown the cell with the highest density located at the interface with the

pasta phase.
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Ncell ρ N Z RWS E/A EN/A Te/A µn µp

[g cm−3] [fm] [MeV] [MeV] [MeV] [MeV] [MeV]

3 1.5 1013 318 16 20.8 3.021 1.409 1.622 4.591 −38.03

4 9.6 1012 322 18 24.2 2.313 0.724 1.600 4.169 −35.94

5 6.2 1012 528 30 33.0 1.716 0.310 1.409 2.996 −31.22

6 2.6 1012 252 22 34.6 0.735 −1.047 1.805 1.886 −27.49

7 1.5 1012 158 22 36.6 0.139 −2.413 2.590 1.025 −26.90

8 1.0 1012 120 24 38.6 −0.252 −3.649 3.447 0.773 −26.27

9 6.6 1011 80 24 39.8 −0.722 −5.294 4.643 0.294 −26.07

10 4.6 1011 58 24 41.4 −1.260 −6.812 5.648 −0.312 −26.06

TABLE II: The structure of Wigner-Seitz cells obtained in the HF approximation with the force

SLy4. E/A, EN/A and Te/A are, respectively, the total energy, the nuclear energy and the

electron kinetic energy per baryon while µn and µp are the neutron chemical potential and the

proton chemical potential. The other quantities are the same as in Table I. The structure of the

cells 1-2 it is not shown because it is not well-defined by the present HF calculations.

Ncell N Z RWS [fm] E/A [MeV] µn [MeV] µp [MeV]

ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW

2 476 18 18.0 4.607 6.915 −46.95

3 368 378 16 16 21.8 20.0 2.995 2.734 4.864 4.395 −37.76

4 330 460 18 22 24.4 27.2 2.302 2.059 3.820 3.431 −35.71

5 320 336 344 20 20 20 28.0 28.4 28.6 1.685 1.604 1.473 2.974 2.828 2.629 −32.57

6 300 242 238 24 22 22 36.6 34.2 34.0 0.725 0.691 0.636 1.631 1.678 1.546 −32.45

7 202 170 174 26 24 24 39.6 37.6 37.8 0.131 0.121 0.078 1.152 1.052 0.988 −25.98

8 120 118 120 24 24 24 38.6 38.4 38.6 −0.262 −0.268 −0.300 0.607 0.696 0.654 −28.56

9 92 90 94 26 26 26 41.4 41.4 41.6 −0.739 −0.748 −0.776 0.402 0.384 0.403 −25.51

10 84 72 64 28 28 26 46.0 44.2 42.6 −1.282 −1.283 −1.310 0.238 0.167 0.092 −23.29

TABLE III: The structure of Wigner-Seitz cells obtained in the HFB approximation. The results

corresponds to the isoscalar weak (ISW), isoscalar strong (ISS) and isovector-isoscalar (IVS) pairing

forces. The displayed quantities are the same as in Table II. In the table are shown only the

structures of the cells which could be well-defined by the HFB calculations.
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Ncell N Z RWS E/A EN/A Te/A µn µp

[fm] [MeV] [MeV] [MeV] [MeV] [MeV]

2 474 20 18.0 4.850 2.935 1.713 6.046 −47.49

3 980 40 30.2 3.121 1.806 1.241 4.651 −37.01

4 726 30 31.6 2.387 1.246 1.088 3.953 −31.67

5 538 30 33.2 1.762 0.344 1.376 3.080 −31.17

6 252 22 34.6 0.771 −1.047 1.805 1.886 −27.49

7 158 22 36.6 0.167 −2.413 2.590 1.025 −26.90

8 120 24 38.6 −0.228 −3.649 3.447 0.773 −26.27

9 80 24 39.8 −0.702 −5.294 4.643 0.294 −26.07

10 58 24 41.4 −1.257 −6.812 5.648 −0.312 −26.06

TABLE IV: The structure of the Wigner-Seitz cells obtained in the HF approximation including

the finite size corrections (see text for details). The displayed quantities are the same as in Table

II.

Ncell N Z RWS [fm] E/A [MeV] µn [MeV] µp [MeV]

ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW ISS IVS ISW

2 656 676 656 22 22 22 20.0 20.2 20.0 4.804 4.582 4.603 6.958 6.785 6.785 −45.60

3 718 454 734 28 20 28 27.2 23.4 27.4 3.095 2.932 2.833 4.933 4.492 4.472 −35.93

4 712 460 594 30 22 28 31.4 27.2 29.6 2.370 2.256 2.122 3.714 3.607 3.446 −37.67

5 320 336 344 20 20 20 28.0 28.4 28.6 1.749 1.666 1.534 2.974 2.828 2.629 −32.57

6 300 242 238 24 22 22 36.6 34.2 34.0 0.758 0.729 0.674 1.631 1.678 1.546 −32.45

7 202 170 174 26 24 24 39.6 37.6 37.8 0.156 0.148 0.106 1.152 1.052 0.988 −25.98

8 120 118 120 24 24 24 38.6 38.4 38.6 -0.238 -0.244 -0.276 0.607 0.696 0.654 −28.56

9 92 90 94 26 26 26 41.4 41.2 41.6 -0.721 -0.730 -0.758 0.402 0.384 0.403 −25.51

10 84 72 64 28 28 26 46.0 44.2 42.6 -1.268 -1.283 -1.310 0.238 0.167 0.092 −23.29

TABLE V: The structure of Wigner-Seitz cells obtained in the HFB approximation including the

finite size corrections. The displayed quantities are the same as in Table III.
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strong) and IVS (isovector-isoscalar) in symmetric nuclear matter and in neutron matter.
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