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The Quenching Phenomena for Fourth-order Nonlinear

Parabolic Equationos

XU Runzhang, WU Shizhong, CAO Xiuying
(College of Science, Harbin Engineering University, Harbin 150001)

Abstract: In this paper, we investigate the quenching phenomena of initial boundary value problem for
the fourth-order nonlinear parabolic equations in bounded domains. First, we not only obtain quenching
phenomena in finite time but also estimate the quenching time under some assumptions on the
exponents and initial data for a class of equation with the common source term. Then we prove
quenching phenomena in finite time and exactly estimate the quenching time for a class of equation
with the special source term. Our main tools are maximum principle, the comparision principle and
eigenfunction method.
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0 Introduction

In this paper, we consider the quenching phenomena of the following initial boundary value
problem

ou

E—A2u=g(u), (X,t)eQx(O,T)
u=0,Au=0, (X,t)e@Qx(O,T)
(%,0) = (). ceQ

where QRN is an N dimensional domain, ©€Q is the boundary of Q ,
2

N
A:Z% is the Laplace operator on Q, AZUZA(AU), me(—oo,oo), ae(O,oo),

i=1

¢(X) is a nonnegative continuous function on Q with supg@(x)<b, and @#(X)=0 on
xeQ

o0Q.
In [1-3], authors study some fourth-order elliptic equations. 1990, Brown, Russell M and
Shen Zhongwei [4] studied the following initial boundary value problem

u, (t,x) +A%u(t,x)=0
where (t,X)€(0,T)xD and D <R" is a Lipchitz domain, then authors derived the
existence and uniqueness of a solution U . Rchke [5] generalized Brown’s results and proved the

global existence and uniqueness results on an arbitrary domain € in R" by considering
thoroughly the following problem

u +A%=f{D,0<|a|<4}). (1.2)

There are many authors who extend the results of the problem (1.2) in [6, 7]. And in [6],
authors determined the existence and uniqueness of a local solution and extended a local solution
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to a global solution by establishing uniform a priori estimate. In [8], Messound investigated the
attractors for following equation
u +Au+qAu+fu)=g in R®.

Since Kawarada [9] introduced first the concept of quenching for second order nonlinear
parabolic equation, many authors have investigated the quenching phenomena for second order
nonlinear parabolic equation and derived many interesting results. However, few authors consider

the quenching phenomenon for the fourth-order parabolic equation at present. Here we
investigate the quenching phenomena and estimate the quenching time for the fourth-order
parabolic equation by using the maximum principle.

For convenience, we first introduce the following definition of the quenching.

Definition. Let u(X,t) be a classical solution of problem (1.1). We say that u(Xx,t)

quenches in finite time if there exists a real number T € (0, OO) such that

limsupu(x,t)=b.

t->T yen

If we assume that there are constants ¢, >0 and C, € R, we can define four conditions for
g(s): [0,b) > (0,).
(G1) g(s) islocally Lipchitzon [0,b) and g(0)>0,

(G2) Iirp g(s) =+oo,

(G3) g(s)=c,+cC,5, se[0,b),

(G4) c, +(%j >0.

The paper is arranged as follows. In Section 2, we give the main result of my research and
prove it. In Section 3, we prove the quenching condition of fourth-order nonlinear parabolic
equations with special term.

1 Main result
Let Qc R" be a bounded domain. In this paper, ﬂl(Q) and W,(x) denote the first

eigenvalue and the first eigenfunction of the following eigenvalue problem
AY +A¥Y =0, xeQ
Y =0, X € 0Q

For convenience, we choose ¥, (X) so that
¥, (x)>0,xeQ
and
'[Q ¥, (x)dx=1

and sometimes denote 4, (Q) simply by 4.
Then we have
Theorem 2.1. Let Q< R" be a bounded domain and let u(x,t) be the classical solution

of problem (1.1). If g(S) satisfies (G1)-(G4), then u(X,t) must be quenching in a finite time
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T

and for T_, the estimate is
ds <T < 1 In ¢, +(c,+A°)b
" g(s) A G (G +AT)m

where M :sup¢(x)<b,m=JQ¢(X)\I’1(x)dx.

max !

Proof. Let (O,Tmax) be the maximum time interval in which the classical solution u(X,t)
of problem (1.1) exists. By (G1) and the comparison principle one has
CH"2In@+t)<1_(0,t) <C,t " In(L+t)
Since b isasingular point of g(s) and g(S) is maximal, one can conclude that if

T <+0, then

limsupu(x,t)=b

t->T" yeQ

Otherwise, U(X,t) can be extended beyond. This is impossible. Now, to prove Theorem 2.1,
it is sufficient to prove that T __ is finite and
bds< < 1 Ic+(c+/1l)b

Mg(s) MGt A (G A
Through the research of problem (1.1), we will know

jQ W, APudx = ﬂfj.ﬂ W, udx

In fact, as u =0, for (X,t) € GQX(O,T) , we have

.[ W Audx = ¥ 8u|aQ oY, ou
tox o OX OX

oY, au

Q OX ax
oY,

—ax

+I AW, udx

=-4 I 5 ¥, udx

If we take Au =V, then we have
v=0,(x,t)e GQX(O,T)
Hence, we have
j N W, AP udX = -4, I , avdx
= 22| Wudx
To prove Theorem 2.1, multiplying the differential equation in (1.1) by ‘¥,(x) and

integration on €2 with respectto X , we have
d 2
m [ uPdx—27[ uwdx=]_ g(u)¥,dx 2.1)

Since U(X,t) is the classical solution of problem (1.1), one has
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0<U(X,t)<b7 XEQ} tE(OleaX)

Hence, by (G3) one has

g(u)=c +c,u, (x,t)eQx(0,T,)

Substituting (2.2) into (2.1), one can obtain that

d 2
ajﬂu%dx—ﬂl IQukl’ldx2c1+c2.[Qu\P1dx

Set y(t) = .[Qu‘{’ldx , and (2.3) can be read as

%2c1+(c2+ﬂf)y, te(0, T )

Since
0< y(t) =jQu\P1dx<b,te o, T

max)
from the condition 0<c, +(c,/b),ie., ¢ +c,b>0, onehas

¢, +(,+42)y>0, te(0,T )
Taking into account (2.4) and (2.5), one has
Yy
¢ +(C+A)Y
and this implies that
2
te b jp GG A0
CG+A4 G+ (C+4)y(0)
Let t > T, . From (2.6) it follows that

Pl et (C AT

g+ A o+ (6 +A47)Y(0)
Due to

0<y(T.)= IQu(x,Tmax)\I'ldx <b
from (2.7), one can obtain that

2
T < 12|nc1+(c2+ﬂ;)b
G+4 G+ (C+A)M

where m = y(0) = j PO ().

It is obvious that

1 ¢, +(c,+A°)b
0< ~In—= (¢, ﬂ;)
C+A  G+(C+A4)m
thus u(x,t) quenches in finite time.

To obtain a lower bound of T

drp(t)
rTa a(n)
n(0)=M

-4-

< 400

let us consider the initial value problem

(22)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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where M =sup@(Xx) <b.

XxeQ

Scince g(S) >0, by (2.9) one has
M ds
j T2 ot (2.10)
M g(s)
Let t* be the time for which lim#(t) =b, and from (2.10) we have
t—t
. b ds
M g(s)
Obviously, 7(t) is a superfunction concerning u(X,t), and thus
. b ds

T >t =[ —
Mg(s)

max

(2.12)
so Theorem 2.1 is proved.

2 The quenching condition of fourth-order nonlinear parabolic
equations with special team First-order headline

Consider the initial boundary value problem

1 m
TP L) T
ot 1-u
u(x,0)=0, xeR" (3.1)
u(x,t)—0, |X| =0
N 62
where m>0, >0, A=zy, Azu:A(Au).
i=1

If u(x,t) >0 as |x] >, then Au—0 as |x|—>o and %—)0 as |x| > .

In fact, we have
ou lim u(x,t+At)—u(xt)
ot At—0 At

If aa—tl # 0, then there must be a real number & >0 so that

u
> & . Then we have

|u(x, t+At) —u(x,t)|> eAt > 0

Hence, we have U(X,t) = 0. This is impossible.

ou
Sowe have AU —0 and E—)O as || > .
Now | state my main result.
Theorem 3.1. Let u(X,t) be the classical solution of problem (3.1), then u(X,t) must be

quenching in a finite time T__ andfor T_, the estimate is

2
0<T,, <t _In2%*A
a+ A a

-5-
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Proof. If m>0, we have

a(1+x)" o
1-u  1-u

g(u)=

then we have
limg(u) >
u—1

So we know g(u) satisfies (G2).

If we known h(u)=lL, C,=a, C,=a, b=1, then we have
—u
a a 2a
h(0)=——,h'(0) = h'(n)=———>0, O,u
0= 25 WO = o W) = = 55> 0 < (0)

By Taylor’s expansion theorem, there is a number ¢ € (0, u) such that
() = () + MO+ ()u? >+ auu <[0,1)

l m
Since g(u) = a(]:tq) > lfu , We have

guwza+a=2a>0
Then we know g(u) satisfies

(G3) g(u)=c,+cu , uel0,b)

(G4) c, +(%j >0.

So g(u) satisfies (G1)-(G4).
By Theorem 2.1, we know if U(X,t) is the classical solution of problem (3.1), then
u(x,t) quenches in finite time.

Through the definition of quenching, we know if u(X,t) quenches, then u(x,t) >1=0,
then we have |X| < +o0 . So we can get a large enough number L >0 sothat u(x,t) quenches
as |x|<L<+o.

Then we have
~ o (1+]x))" L a(l+L)"

1-u 1-u

then

1-u < 1 S1—u
a@+L)" gl) «a

then we known

jl 1-s mdsﬁjl ds gjll_sds (3.2)
o q(1+1L) °0g(s) ‘0 «

Through calculation, we have
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1
(1—s)ds
Il ds > '[0 = ! >0
°g(s) a@+L)" 2a@+L)"
and

jl(l s)ds
+_ds <20 <i

.[09(3)_ a 2

Hence, by Theorem 2.1, we have

T < 12|ncl+c2+212
C2+ﬂl Cl
__ 1 2a+ i
a+ a
< 400

and
T [
°g(s)
1
2 -
2c(1+L)"
>0
So Theorem 2.1 is proved.
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