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Abstract: In this paper, we investigate the quenching phenomena of initial boundary value problem for 
the fourth-order nonlinear parabolic equations in bounded domains. First, we not only obtain quenching 
phenomena in finite time but also estimate the quenching time under some assumptions on the 
exponents and initial data for a class of equation with the common source term. Then we prove 
quenching phenomena in finite time and exactly estimate the quenching time for a class of equation 10 
with the special source term. Our main tools are maximum principle, the comparision principle and 
eigenfunction method. 
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0 Introduction 15 

In this paper, we consider the quenching phenomena of the following initial boundary value 
problem 
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where NRΩ⊂  is an N  dimensional domain, ∂Ω  is the boundary of Ω , 
2

2
1

N

i x=

∂
Δ =

∂∑  is the Laplace operator on Ω , ( )2u uΔ = Δ Δ , ( ),m∈ −∞ ∞ , ( )0,α ∈ ∞ , 20 

( )xφ  is a nonnegative continuous function on Ω  with sup ( )
x

x bφ
∈Ω

< , and ( ) 0xφ ≡  on 

∂Ω . 
In [1-3], authors study some fourth-order elliptic equations. 1990, Brown, Russell M and 

Shen Zhongwei [4] studied the following initial boundary value problem 
2( , ) ( , ) 0tu t x u t x+ Δ =  25 

where ( , ) (0, )t x T D∈ ×  and nD R⊂  is a Lipchitz domain, then authors derived the 

existence and uniqueness of a solution u . Rchke [5] generalized Brown’s results and proved the 

global existence and uniqueness results on an arbitrary domain Ω  in NR  by considering 
thoroughly the following problem 

                       2 ({ ,0 4})tu u f D uα α+ Δ = ≤ ≤ .                 (1.2) 30 

There are many authors who extend the results of the problem (1.2) in [6, 7]. And in [6], 
authors determined the existence and uniqueness of a local solution and extended a local solution 
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to a global solution by establishing uniform a priori estimate. In [8], Messound investigated the 
attractors for following equation 

2 3( )tu u q u f u g in R+ Δ + Δ + = . 35 

Since Kawarada [9] introduced first the concept of quenching for second order nonlinear 
parabolic equation, many authors have investigated the quenching phenomena for second order 
nonlinear parabolic equation and derived many interesting results. However, few authors consider  

the quenching phenomenon for the fourth-order parabolic equation at present. Here we 
investigate the quenching phenomena and estimate the quenching time for the fourth-order 40 
parabolic equation by using the maximum principle. 

For convenience, we first introduce the following definition of the quenching. 
Definition. Let ( , )u x t  be a classical solution of problem (1.1). We say that ( , )u x t  

quenches in finite time if there exists a real number ( )0T ∈ ∞，  such that 

( )limsup ,
t T x

u x t b
→ ∈Ω

= . 45 

If we assume that there are constants 1 0c >  and 2c R∈ , we can define four conditions for 

( )g s : [ ) ( )0, 0,b ∞a . 

(G1) ( )g s  is locally Lipchitz on [ )0,b  and (0) 0g > , 

(G2) lim ( )
u b

g s
−→

= +∞ , 

(G3) [ )1 2( ) , 0,g s c c s s b≥ + ∈ , 50 

(G4) 1
2 0cc b

⎛ ⎞+ >⎜ ⎟
⎝ ⎠

. 

The paper is arranged as follows. In Section 2, we give the main result of my research and 
prove it. In Section 3, we prove the quenching condition of fourth-order nonlinear parabolic 
equations with special term. 

1 Main result 55 

Let NRΩ⊂  be a bounded domain. In this paper, ( )1λ Ω  and  1( )xΨ  denote the first 

eigenvalue and the first eigenfunction of the following eigenvalue problem 

0,
0,

x
x

λΔΨ + Ψ = ∈Ω⎧
⎨Ψ = ∈∂Ω⎩

 

For convenience, we choose 1( )xΨ  so that 

( )1 0,x xΨ > ∈Ω  60 

and 

( )1 1x dx
Ω
Ψ =∫  

and sometimes denote ( )1λ Ω  simply by 1λ . 

Then we have 

Theorem 2.1. Let NRΩ⊂  be a bounded domain and let ( , )u x t  be the classical solution 65 

of problem (1.1). If ( )g s  satisfies (G1)-(G4), then ( , )u x t  must be quenching in a finite time 
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maxT , and for maxT  the estimate is 
2

1 2 1
max 2 2

2 1 1 2 1

( )1 ln
( ) ( )

b

M

c c bds T
g s c c c m

λ
λ λ

+ +
≤ ≤

+ + +∫  

where ( ) ( ) ( )1sup ,
x

M x b m x x dxφ φ
Ω∈Ω

= < = Ψ∫ . 

Proof. Let ( )max0,T  be the maximum time interval in which the classical solution ( , )u x t  70 

of problem (1.1) exists. By (G1) and the comparison principle one has 
/2 /2

1 1 2ln(1 ) (0, ) ln(1 )N N
mC t t I t C t t− −+ ≤ ≤ +  

Since b  is a singular point of ( )g s  and ( )g s  is maximal, one can conclude that if 

maxT < +∞ , then 

lim sup ( , )
t T x

u x t b
−→ ∈Ω

=  75 

Otherwise, ( , )u x t  can be extended beyond. This is impossible. Now, to prove Theorem 2.1, 

it is sufficient to prove that maxT  is finite and 
2

1 2 1
max 2 2

2 1 1 2 1

( )1 ln
( ) ( )

b

M

c c bds T
g s c c c m

λ
λ λ

+ +
≤ ≤

+ + +∫  

Through the research of problem (1.1), we will know 
2 2

1 1 1udx udxλ
Ω Ω
Ψ Δ = Ψ∫ ∫  80 

In fact, as ( ) ( )0 , 0,u for x t T= ∈∂Ω×， , we have 

1
1 1
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1
1

1 1
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If we take u vΔ = , then we have  

( )0, ( , ) 0,v x t T= ∈∂Ω×  

Hence, we have 85 
2

1 1 1

2
1 1

udx vdx

udx

λ

λ

Ω Ω

Ω

Ψ Δ = − Ψ

= Ψ

∫ ∫
∫

  

To prove Theorem 2.1, multiplying the differential equation in (1.1) by 1( )xΨ  and 

integration on Ω  with respect to x  , we have 

                2
1 1 1 1( )d u dx u dx g u dx

dt
λ

Ω Ω Ω
Ψ − Ψ = Ψ∫ ∫ ∫              (2.1) 

Since ( , )u x t  is the classical solution of problem (1.1), one has 90 
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( )max0 ( , ) 0,u x t b x t T< < ∈Ω ∈， ，  

Hence, by (G3) one has  

                     ( )1 2 max( ) ( , ) 0,g u c c u x t T≥ + ∈Ω×，                 (2.2) 

Substituting (2.2) into (2.1), one can obtain that 

                  2
1 1 1 1 2 1

d u dx u dx c c u dx
dt

λ
Ω Ω Ω

Ψ − Ψ ≥ + Ψ∫ ∫ ∫             (2.3) 95 

Set 1( )y t u dx
Ω

= Ψ∫ , and (2.3) can be read as 

                           ( ) ( )2
1 2 1 max0,dy c c y t T

dt
λ≥ + + ∈，                (2.4) 

Since 

1 max0 ( ) , (0, )y t u dx b t T
Ω

< = Ψ < ∈∫  

from the condition 2 10 ( / )c c b< + , i.e., 1 2 0c c b+ > , one has 100 

                         2
1 2 1 max( ) 0 (0, )c c y t Tλ+ + > ∈，                    (2.5) 

Taking into account (2.4) and (2.5), one has 

2
1 2 1( )

dy dt
c c yλ

≥
+ +

 

and this implies that 

                          
2

1 2 1
2 2

2 1 1 2 1

( ) ( )1 ln
( ) (0)

c c y tt
c c c y

λ
λ λ

+ +
≤

+ + +
                   (2.6) 105 

Let maxt T→ . From (2.6) it follows that 

                      
2

1 2 1 max
max 2 2

2 1 1 2 1

( ) ( )1 ln
( ) (0)

c c y TT
c c c y

λ
λ λ

+ +
≤

+ + +
                   (2.7) 

    Due to 

max max 10 ( ) ( , )y T u x T dx b
Ω

< = Ψ ≤∫  

from (2.7), one can obtain that 110 

                         
2

1 2 1
max 2 2

2 1 1 2 1

( )1 ln
( )

c c bT
c c c m

λ
λ λ

+ +
≤

+ + +
                     (2.8) 

where 1(0) ( ) ( )m y x x dxφ
Ω

= = Ψ∫ . 

It is obvious that 
2

1 2 1
2 2

2 1 1 2 1

( )10 ln
( )

c c b
c c c m

λ
λ λ

+ +
< < +∞

+ + +
 

thus ( , )u x t  quenches in finite time. 115 

To obtain a lower bound of maxT , let us consider the initial value problem 

                               
( ) ( )

(0)

d t g
dt

M

η η

η

⎧ =⎪
⎨
⎪ =⎩

                         (2.9) 
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where sup ( )=
x

M x bϕ
∈Ω

< . 

    Scince ( ) 0g s > , by (2.9) one has 

                                    
( )

( )
T

M

ds t
g s

η
=∫                        (2.10) 120 

Let t∗  be the time for which 
*

lim ( )
t t

t bη
→

= , and from (2.10) we have 

( )
b

M

dst
g s

∗ = ∫  

Obviously, ( )tη  is a superfunction concerning ( , )u x t , and thus 

                              max ( )
b

M

dsT t
g s

∗≥ = ∫                        (2.12) 

so Theorem 2.1 is proved. 125 

2 The quenching condition of fourth-order nonlinear parabolic    
equations with special team First-order headline 

Consider the initial boundary value problem 

                  

( ) ( ) ( )

( )
( )

2 1
, , 0,

1
,0 0,
, 0,

m

N

N

xu u x t R T
t u
u x x R
u x t x

α⎧ +∂⎪ −Δ = ∈ ×
∂ −⎪

⎪ = ∈⎨
⎪ → →∞⎪
⎪⎩

         (3.1) 

where 0m ≥ , 0α > , 
2

2
1

N

i x=

∂
Δ =

∂∑ , ( )2u uΔ = Δ Δ . 130 

    If ( , ) 0u x t →  as x →∞ , then 0uΔ →  as x →∞  and 0u
t

∂
→

∂
 as x →∞ . 

    In fact, we have 

0

( , ) ( , )lim
t

u u x t t u x t
t tΔ →

∂ + Δ −
=

∂ Δ
 

    If 0u
t

∂
≠

∂
, then there must be a real number 0ε >  so that 

u
t

ε∂
>

∂
. Then we have 

( , ) ( , ) 0u x t t u x t tε+ Δ − > Δ >  135 

Hence, we have ( , ) 0u x t ≠ . This is impossible. 

So we have 0uΔ →  and 0u
t

∂
→

∂
 as x →∞ . 

Now I state my main result. 
Theorem 3.1. Let ( , )u x t  be the classical solution of problem (3.1), then ( , )u x t  must be 

quenching in a finite time maxT  and for maxT  the estimate is 140 
2

1
max 2

1

210 lnT α λ
α λ α

+
< ≤

+
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Proof. If 0m ≥ , we have  

( )1
( )

1 1

m
x

g u
u u

α α+
= ≥

− −
 

then we have  

1
lim ( )
u

g u
−→

→∞  145 

So we know ( )g u  satisfies (G2). 

    If we known ( )
1

h u
u

α
=

−
, 1c α= , 2c α= , 1b = , then we have  

( )2 3

2(0) , (0) , ( ) 0, 0,
1 0 (1 0) (1 )

h h h uα α αη η
η

′ ′′= = = > ∈
− − −

 

By Taylor’s expansion theorem, there is a number ( )0 uε ∈ ，  such that  

[ )21( ) (0) (0) ( ) , 0,1
2

h u h h u h u u uε α α′ ′′= + + > + ∈  150 

Since 
( )1

( )
1 1

m
x

g u
u u

α α+
= ≥

− −
, we have  

( ) 2 0g u α α α≥ + = >  

Then we know ( )g u  satisfies 

(G3) [ )1 2( ) , 0,g u c c u u b≥ + ∈  

(G4) 1
2 0cc b

⎛ ⎞+ >⎜ ⎟
⎝ ⎠

. 155 

So ( )g u  satisfies (G1)-(G4). 

By Theorem 2.1, we know if ( , )u x t  is the classical solution of problem (3.1), then 

( , )u x t  quenches in finite time. 

Through the definition of quenching, we know if ( , )u x t  quenches, then ( , ) 1 0u x t → ≠ , 

then we have x < +∞ . So we can get a large enough number 0L >  so that ( , )u x t quenches 160 

as x L< < +∞ . 

Then we have 

( ) ( ) ( )1 1
1 1 1

m mx L
g u

u u u
α αα + +

≤ = ≤
− − −

 

then  
1 1 1
(1 ) ( )m

u u
L g uα α

− −
≤ ≤

+
 165 

then we known  

                       
1 1 1

0 0 0

1 1
(1 ) ( )m

s ds sds ds
L g sα α

− −
≤ ≤

+∫ ∫ ∫                  (3.2) 

Through calculation, we have 
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1

1 0

0

(1 ) 1 0
( ) (1 ) 2 (1 )m m

s dsds
g s L Lα α

−
≥ = >

+ +
∫

∫  

and  170 
1

1 0

0

(1 ) 1
( ) 2

s dsds
g s α α

−
≤ ≤
∫

∫  

Hence, by Theorem 2.1, we have 
2

1 2 1
max 2

2 1 1
2

1
2

1

1 ln

21 ln

c cT
c c

λ
λ

α λ
α λ α

+ +
≤

+

+
=

+
< +∞

 

and  
1

max 0 ( )
1

2 (1 )
0

m

dsT
g s

Lα

≥

≥
+

>

∫

 175 

So Theorem 2.1 is proved. 
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四阶非线性抛物方程的淬火现象 
徐润章，吴士中，曹秀英 

（哈尔滨工程大学理学院，哈尔滨 150001） 205 
摘要：在这篇文章里，我们研究了四阶非线性抛物方程在有界域上的初边值问题的淬火现象。

首先，通过对具有一般源项的四阶非线性抛物方程中的某些指数和初值添加约束条件，我们

不仅得到了方程的解在有限时间内淬火而且对方程的解的淬火时间进行了估计。之后我们又

证明了具有特殊源项的四阶非线性抛物方程的解在有限时间内淬火，并且更精确的估计了解

的淬火时间。我们的主要研究方法是极值原理，比较原理和特征函数法。 210 
关键词：淬火现象；四阶抛物方程；淬火时间 
中图分类号：O175.29 

 


