The Quenching Phenomena for Fourth－order Nonlinear Parabolic Equationos

XU Runzhang，WU Shizhong，CAO Xiuying
（College of Science，Harbin Engineering University，Harbin 150001）

Abstract

In this paper，we investigate the quenching phenomena of initial boundary value problem for the fourth－order nonlinear parabolic equations in bounded domains．First，we not only obtain quenching phenomena in finite time but also estimate the quenching time under some assumptions on the exponents and initial data for a class of equation with the common source term．Then we prove quenching phenomena in finite time and exactly estimate the quenching time for a class of equation with the special source term．Our main tools are maximum principle，the comparision principle and eigenfunction method．

Keywords：Quenching phenomena；fourth－order parabolic equation；Quenching time

0 Introduction

In this paper，we consider the quenching phenomena of the following initial boundary value problem

$$
\left\{\begin{array}{lr}
\frac{\partial u}{\partial t}-\Delta^{2} u=g(u), & (x, t) \in \Omega \times(0, T) \\
u=0, \Delta u=0, & (x, t) \in \partial \Omega \times(0, T) \\
u(x, 0)=\phi(x), & x \in \Omega
\end{array}\right.
$$

where $\Omega \subset R^{N}$ is an N dimensional domain，$\partial \Omega$ is the boundary of Ω ， $\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x^{2}}$ is the Laplace operator on $\Omega, \Delta^{2} u=\Delta(\Delta u), m \in(-\infty, \infty), \quad \alpha \in(0, \infty)$ ， $\phi(x)$ is a nonnegative continuous function on Ω with $\sup _{x \in \Omega} \phi(x)<b$ ，and $\phi(x) \equiv 0$ on $\partial \Omega$ ．

In［1－3］，authors study some fourth－order elliptic equations．1990，Brown，Russell M and Shen Zhongwei［4］studied the following initial boundary value problem

$$
u_{t}(t, x)+\Delta^{2} u(t, x)=0
$$

where $(t, x) \in(0, T) \times D$ and $D \subset R^{n}$ is a Lipchitz domain，then authors derived the existence and uniqueness of a solution u ．Rchke［5］generalized Brown＇s results and proved the global existence and uniqueness results on an arbitrary domain Ω in R^{N} by considering thoroughly the following problem

$$
\begin{equation*}
u_{t}+\Delta^{2} u=f\left(\left\{D^{\alpha} u, 0 \leq|\alpha| \leq 4\right\}\right) \tag{1.2}
\end{equation*}
$$

There are many authors who extend the results of the problem（1．2）in［6，7］．And in［6］， authors determined the existence and uniqueness of a local solution and extended a local solution

[^0]to a global solution by establishing uniform a priori estimate．In［8］，Messound investigated the attractors for following equation
$$
u_{t}+\Delta^{2} u+q \Delta u+f(u)=g \quad \text { in } \quad R^{3}
$$

Since Kawarada［9］introduced first the concept of quenching for second order nonlinear parabolic equation，many authors have investigated the quenching phenomena for second order nonlinear parabolic equation and derived many interesting results．However，few authors consider
the quenching phenomenon for the fourth－order parabolic equation at present．Here we investigate the quenching phenomena and estimate the quenching time for the fourth－order parabolic equation by using the maximum principle．

For convenience，we first introduce the following definition of the quenching．
Definition．Let $u(x, t)$ be a classical solution of problem（1．1）．We say that $u(x, t)$ quenches in finite time if there exists a real number $T \in(0, \infty)$ such that

$$
\lim _{t \rightarrow T} \sup _{x \in \Omega} u(x, t)=b
$$

If we assume that there are constants $C_{1}>0$ and $c_{2} \in R$ ，we can define four conditions for $g(s):[0, b) \mapsto(0, \infty)$.
（G1）$g(s)$ is locally Lipchitz on $[0, b)$ and $g(0)>0$ ，
（G2） $\lim _{u \rightarrow b^{-}} g(s)=+\infty$ ，
（G3）$g(s) \geq c_{1}+c_{2} s, \quad s \in[0, b)$ ，
（G4）$c_{2}+\left(c_{1} / b\right)>0$.
The paper is arranged as follows．In Section 2，we give the main result of my research and prove it．In Section 3，we prove the quenching condition of fourth－order nonlinear parabolic equations with special term．

1 Main result

Let $\Omega \subset R^{N}$ be a bounded domain．In this paper，$\lambda_{1}(\Omega)$ and $\Psi_{1}(x)$ denote the first eigenvalue and the first eigenfunction of the following eigenvalue problem

$$
\left\{\begin{array}{l}
\Delta \Psi+\lambda \Psi=0, x \in \Omega \\
\Psi=0, \quad x \in \partial \Omega
\end{array}\right.
$$

For convenience，we choose $\Psi_{1}(x)$ so that

$$
\Psi_{1}(x)>0, x \in \Omega
$$

and

$$
\int_{\Omega} \Psi_{1}(x) d x=1
$$

and sometimes denote $\lambda_{1}(\Omega)$ simply by λ_{1} ．
Then we have
Theorem 2．1．Let $\Omega \subset R^{N}$ be a bounded domain and let $u(x, t)$ be the classical solution of problem（1．1）．If $g(s)$ satisfies（G1）－（G4），then $u(x, t)$ must be quenching in a finite time
$T_{\max }$ ，and for $T_{\max }$ the estimate is

$$
\int_{M}^{b} \frac{d s}{g(s)} \leq T_{\max } \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) b}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) m}
$$

where $M=\sup _{x \in \Omega} \phi(x)<b, m=\int_{\Omega} \phi(x) \Psi_{1}(x) d x$ ．

Proof．Let $\left(0, T_{\text {max }}\right)$ be the maximum time interval in which the classical solution $u(x, t)$ of problem（1．1）exists．By（G1）and the comparison principle one has

$$
C_{1} t_{1}^{-N / 2} \ln (1+t) \leq I_{m}(0, t) \leq C_{2} t^{-N / 2} \ln (1+t)
$$

Since b is a singular point of $g(s)$ and $g(s)$ is maximal，one can conclude that if $T_{\max }<+\infty$ ，then

$$
\lim _{t \rightarrow T^{-}} \sup _{x \in \Omega} u(x, t)=b
$$

Otherwise，$u(x, t)$ can be extended beyond．This is impossible．Now，to prove Theorem 2．1， it is sufficient to prove that $T_{\text {max }}$ is finite and

$$
\int_{M}^{b} \frac{d s}{g(s)} \leq T_{\max } \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) b}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) m}
$$

Through the research of problem（1．1），we will know

$$
\int_{\Omega} \Psi_{1} \Delta^{2} u d x=\lambda_{1}^{2} \int_{\Omega} \Psi_{1} u d x
$$

In fact，as $u=0$ ，for $(x, t) \in \partial \Omega \times(0, T)$ ，we have

$$
\begin{aligned}
\int_{\Omega} \Psi_{1} \Delta u d x & =\left.\Psi_{1} \frac{\partial u}{\partial x}\right|_{\partial \Omega}-\int_{\Omega} \frac{\partial \Psi_{1}}{\partial x} \frac{\partial u}{\partial x} d x \\
& =-\int_{\Omega} \frac{\partial \Psi_{1}}{\partial x} \frac{\partial u}{\partial x} d x \\
& =-\left.\frac{\partial \Psi_{1}}{\partial x} u\right|_{\partial \Omega}+\int_{\Omega} \Delta \Psi_{1} u d x \\
& =-\lambda_{1} \int_{\Omega} \Psi_{1} u d x
\end{aligned}
$$

If we take $\Delta u=v$ ，then we have

$$
v=0,(x, t) \in \partial \Omega \times(0, T)
$$

Hence，we have

$$
\begin{aligned}
\int_{\Omega} \Psi_{1} \Delta^{2} u d x & =-\lambda_{1} \int_{\Omega} \Psi_{1} v d x \\
& =\lambda_{1}^{2} \int_{\Omega} \Psi_{1} u d x
\end{aligned}
$$

To prove Theorem 2．1，multiplying the differential equation in（1．1）by $\Psi_{1}(x)$ and integration on Ω with respect to x ，we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u \Psi_{1} d x-\lambda_{1}^{2} \int_{\Omega} u \Psi_{1} d x=\int_{\Omega} g(u) \Psi_{1} d x \tag{2.1}
\end{equation*}
$$

Since $u(x, t)$ is the classical solution of problem（1．1），one has

$$
0<u(x, t)<b, \quad x \in \Omega, \quad t \in\left(0, T_{\max }\right)
$$

Hence，by（G3）one has

$$
\begin{equation*}
g(u) \geq c_{1}+c_{2} u, \quad(x, t) \in \Omega \times\left(0, T_{\max }\right) \tag{2.2}
\end{equation*}
$$

Substituting（2．2）into（2．1），one can obtain that

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u \Psi_{1} d x-\lambda_{1}^{2} \int_{\Omega} u \Psi_{1} d x \geq c_{1}+c_{2} \int_{\Omega} u \Psi_{1} d x \tag{2.3}
\end{equation*}
$$

Set $y(t)=\int_{\Omega} u \Psi_{1} d x$ ，and（2．3）can be read as

$$
\begin{equation*}
\frac{d y}{d t} \geq c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y, t \in\left(0, T_{\max }\right) \tag{2.4}
\end{equation*}
$$

Since

$$
0<y(t)=\int_{\Omega} u \Psi_{1} d x<b, t \in\left(0, T_{\max }\right)
$$

from the condition $0<c_{2}+\left(c_{1} / b\right)$ ，i．e．，$c_{1}+c_{2} b>0$ ，one has

$$
\begin{equation*}
c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y>0, \quad t \in\left(0, T_{\max }\right) \tag{2.5}
\end{equation*}
$$

Taking into account（2．4）and（2．5），one has

$$
\frac{d y}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y} \geq d t
$$

and this implies that

$$
\begin{equation*}
t \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y(t)}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y(0)} \tag{2.6}
\end{equation*}
$$

Let $t \rightarrow T_{\max }$ ．From（2．6）it follows that

$$
\begin{equation*}
T_{\max } \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y\left(T_{\max }\right)}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) y(0)} \tag{2.7}
\end{equation*}
$$

Due to

$$
0<y\left(T_{\max }\right)=\int_{\Omega} u\left(x, T_{\max }\right) \Psi_{1} d x \leq b
$$

from（2．7），one can obtain that

$$
\begin{equation*}
T_{\max } \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) b}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) m} \tag{2.8}
\end{equation*}
$$

where $m=y(0)=\int_{\Omega} \phi(x) \Psi_{1}(x) d x$ ．
It is obvious that

$$
0<\frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) b}{c_{1}+\left(c_{2}+\lambda_{1}^{2}\right) m}<+\infty
$$

thus $u(x, t)$ quenches in finite time．
To obtain a lower bound of $T_{\max }$ ，let us consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{d \eta(t)}{d t}=g(\eta) \tag{2.9}\\
\eta(0)=M
\end{array}\right.
$$

where $M=\sup _{x \in \Omega} \varphi(x)<b$ ．
Scince $g(s)>0$ ，by（2．9）one has

$$
\begin{equation*}
\int_{M}^{\eta(T)} \frac{d s}{g(s)}=t \tag{2.10}
\end{equation*}
$$

Let t^{*} be the time for which $\lim _{t \rightarrow t^{*}} \eta(t)=b$ ，and from（2．10）we have

$$
t^{*}=\int_{M}^{b} \frac{d s}{g(s)}
$$

Obviously，$\eta(t)$ is a superfunction concerning $u(x, t)$ ，and thus

$$
\begin{equation*}
T_{\max } \geq t^{*}=\int_{M}^{b} \frac{d s}{g(s)} \tag{2.12}
\end{equation*}
$$

so Theorem 2.1 is proved．

2 The quenching condition of fourth－order nonlinear parabolic equations with special team First－order headline

Consider the initial boundary value problem

$$
\left\{\begin{array}{lr}
\frac{\partial u}{\partial t}-\Delta^{2} u=\frac{\alpha(1+|x|)^{m}}{1-u}, & (x, t) \in R^{N} \times(0, T) \tag{3.1}\\
u(x, 0)=0, & x \in R^{N} \\
u(x, t) \rightarrow 0, & |x| \rightarrow \infty
\end{array}\right.
$$

where $m \geq 0, \alpha>0, \Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x^{2}}, \Delta^{2} u=\Delta(\Delta u)$ ．
If $u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$ ，then $\Delta u \rightarrow 0$ as $|x| \rightarrow \infty$ and $\frac{\partial u}{\partial t} \rightarrow 0$ as $|x| \rightarrow \infty$ ．
In fact，we have

$$
\frac{\partial u}{\partial t}=\lim _{\Delta t \rightarrow 0} \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}
$$

If $\frac{\partial u}{\partial t} \neq 0$ ，then there must be a real number $\varepsilon>0$ so that $\left|\frac{\partial u}{\partial t}\right|>\varepsilon$ ．Then we have

$$
|u(x, t+\Delta t)-u(x, t)|>\varepsilon \Delta t>0
$$

Hence，we have $u(x, t) \neq 0$ ．This is impossible．
So we have $\Delta u \rightarrow 0$ and $\frac{\partial u}{\partial t} \rightarrow 0$ as $|x| \rightarrow \infty$ ．
Now I state my main result．
Theorem 3．1．Let $u(x, t)$ be the classical solution of problem（3．1），then $u(x, t)$ must be quenching in a finite time $T_{\max }$ and for $T_{\max }$ the estimate is

$$
0<T_{\max } \leq \frac{1}{\alpha+\lambda_{1}^{2}} \ln \frac{2 \alpha+\lambda_{1}^{2}}{\alpha}
$$

Proof．If $m \geq 0$ ，we have

$$
g(u)=\frac{\alpha(1+|x|)^{m}}{1-u} \geq \frac{\alpha}{1-u}
$$

then we have

$$
\lim _{u \rightarrow 1^{-}} g(u) \rightarrow \infty
$$

So we know $g(u)$ satisfies（G2）．
If we known $h(u)=\frac{\alpha}{1-u}, c_{1}=\alpha, c_{2}=\alpha, b=1$ ，then we have

$$
h(0)=\frac{\alpha}{1-0}, h^{\prime}(0)=\frac{\alpha}{(1-0)^{2}}, h^{\prime \prime}(\eta)=\frac{2 \alpha}{(1-\eta)^{3}}>0, \eta \in(0, u)
$$

By Taylor＇s expansion theorem，there is a number $\varepsilon \in(0, u)$ such that

$$
h(u)=h(0)+h^{\prime}(0) u+\frac{1}{2} h^{\prime \prime}(\varepsilon) u^{2}>\alpha+\alpha u, u \in[0,1)
$$

Since $g(u)=\frac{\alpha(1+|x|)^{m}}{1-u} \geq \frac{\alpha}{1-u}$ ，we have

$$
g(u) \geq \alpha+\alpha=2 \alpha>0
$$

Then we know $g(u)$ satisfies
（G3）$g(u) \geq c_{1}+c_{2} u, \quad u \in[0, b)$
（G4）$c_{2}+\left(c_{1} / b\right)>0$ ．
So $g(u)$ satisfies（G1）－（G4）．
By Theorem 2．1，we know if $u(x, t)$ is the classical solution of problem（3．1），then $u(x, t)$ quenches in finite time．

Through the definition of quenching，we know if $u(x, t)$ quenches，then $u(x, t) \rightarrow 1 \neq 0$ ， then we have $|x|<+\infty$ ．So we can get a large enough number $L>0$ so that $u(x, t)$ quenches as $|x|<L<+\infty$ ．

Then we have

$$
\frac{\alpha}{1-u} \leq g(u)=\frac{\alpha(1+|x|)^{m}}{1-u} \leq \frac{\alpha(1+L)^{m}}{1-u}
$$

then

$$
\frac{1-u}{\alpha(1+L)^{m}} \leq \frac{1}{g(u)} \leq \frac{1-u}{\alpha}
$$

then we known

$$
\begin{equation*}
\int_{0}^{1} \frac{1-s}{\alpha(1+L)^{m}} d s \leq \int_{0}^{1} \frac{d s}{g(s)} \leq \int_{0}^{11-s} \frac{1-s}{\alpha} d s \tag{3.2}
\end{equation*}
$$

Through calculation，we have

$$
\int_{0}^{1} \frac{d s}{g(s)} \geq \frac{\int_{0}^{1}(1-s) d s}{\alpha(1+L)^{m}}=\frac{1}{2 \alpha(1+L)^{m}}>0
$$

and

$$
\int_{0}^{1} \frac{d s}{g(s)} \leq \frac{\int_{0}^{1}(1-s) d s}{\alpha} \leq \frac{1}{2 \alpha}
$$

Hence，by Theorem 2．1，we have

$$
\begin{aligned}
T_{\max } & \leq \frac{1}{c_{2}+\lambda_{1}^{2}} \ln \frac{c_{1}+c_{2}+\lambda_{1}^{2}}{c_{1}} \\
& =\frac{1}{\alpha+\lambda_{1}^{2}} \ln \frac{2 \alpha+\lambda_{1}^{2}}{\alpha} \\
& <+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
T_{\max } & \geq \int_{0}^{1} \frac{d s}{g(s)} \\
& \geq \frac{1}{2 \alpha(1+L)^{m}} \\
& >0
\end{aligned}
$$

So Theorem 2.1 is proved．

References

［1］DUN N G．Maximum principles for solutions of some fourth order elliptic equations［J］．Journal of Mathematical Analysis and Applications，1972，37（1）：655－658．
［2］VINOD B G，PHILIP W S．On a subharmonic functional in fourth order nonlinear elliptic problems［J］．Journal of Mathematical Analysis and Applications，1981，83（1）：20－25．
［3］LIu L Y，WU S Q．Maximum principles for solutions of fourth order parabolic partial differential equation［J］． Journal of Shanxi University（Natural Science Edition），2000，23（2）：98－101．
［4］BROWN R M，SHEN Z W．The initial－Dirichlet problem for a fourth－order parabolic equation in Lipschitz cylinders［J］．Indiana Univ．Math，1990，39（4）：1313－1353．
［5］FAN E，ZHENG S M．Global existence of solutions to a fully nonlinear fourth－order parabolic equation in exterior domains［J］．Nonlinear Anal，1991，17（11）：1027－1038．
［6］FAN E Q．Global classical solution to initial－boundary value problems for a class of fourth－order nonlinear parabolic equations［J］．Journal of Inner Mongolia University（Acta Scientiarum Naturalium Universitatis Nei Mongol），1993，24（4）：372－378．
［7］LIU C C，DU Y S．Existence of radial solutions for a fourth－order parabolic equation［J］．Math．Anal．，2008， 591）：44－56．
［8］YU H．Null controllability for a fourth－order parabolic equation［J］．Sci．China Ser，2009，52（11）：2127－2132．
［9］HIDEO K．On solutions of initial－boundary problem for $u_{-} t=u _x x+1 /(1-u)[J]$ ．Publications of the Research Institute for Mathematical Sciences，1975，10（3）：729－736．

四阶非线性抛物方程的淬火现象

徐润章，吴士中，曹秀英

摘要：在这篇文章里，我们研究了四阶非线性扡物方程在有界域上的初边值问题的淬火现象。首先，通过对具有一般源项的四阶非线性抛物方程中的某些指数和初值添加约束条件，我们不仅得到了方程的解在有限时间内淬火而且对方程的解的淬火时间进行了估计。之后我们又证明了具有特殊源项的四阶非线性抛物方程的解在有限时间内淬火，并且更精确的估计了解的淬火时间。我们的主要研究方法是极值原理，比较原理和特征函数法。
关键词：淬火现象；四阶抛物方程；淬火时间
中图分类号：O175．29

[^0]: Foundations：This work was supported by National Natural Science Foundation of China（10871055，10926149）； Ph．D．Programs Foundation of Ministry of Education of China（20102304120022）；Natural Science Foundation of Heilongjiang Province（A201014）；Foundational Science Foundation of Harbin Engineering University， Fundamental Research Funds for the Central Universities（HEUCF20111101）．
 Brief author introduction：XU Runzhang，（1982－），male，Professor，Nonlinear evolution equation and Nonlinear dynamic system．E－mail：xunrunzh＠yahoo．com．cn

