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quenches in finite time under some assumptions on the exponents and the initial data. Our main tools 
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0 Introduction 
In this context, we investigate the quenching phenomena of the following Cauchy problem  
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where ( ),m n∈ −∞ +∞，  are real number and α  is a positive parameter. 

For convenience, we first introduce the following definition of the quenching. 

Definition. We say that the solution  ( ),u x t  of problem (1.1) quenches in finite time if 

there exists a real number 0 T< < ∞  such that 

 
1
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= . 20 

The quenching problem has 36－year history. In 1975, Kawarada first introduced the concept 
of quenching when considering a famous initial boundary problem for the parabolic equation 

( )1 / 1t xxu u u= + −  and derived many interesting results (see [1-6] and references therein). In 

[5], Acker and Walter have considerably sharpened and generalized Kawardada's results. Levine[6] 
thoroughly considered the following problem which greatly generalized the results of [1] and [5] 25 
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            (1.2) 

then gave the criteria for the quenching, nonquenching and beyond quenching of the solution. 
There are many authors who extended the results of (1.2) in [7-11]. In [7], Levine determined 
quenching sets and derived quenching rate estimates. Furthermore, papers [12-14] presented 
recent progress in the analysis of quenching phenomena on bounded domain. It’s clear that all 30 
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results in the papers above were obtained in bounded domain. 
Compared to the case of bounded domain, it seems that very few results concerning the 

quenching phenomena were obtained on unbounded domain (see [15, 16]). In [17], Dai Quiyi 
investigated the quenching phenomena of problem (1.1) when 1n =  and obtained some results 
that the solution quenches in finite time. In addition, it is shown in [1, 10, 17] that the absorbing 35 

term 1(1 )u −−  plays an essential role in quenching phenomena. For the case that the absorbing 

term is (1 ) nu −− , will the solution quench in finite time? The problem above is still open up to 

now. We will restrict our attention to more complex problem and the case where (1 ) nu −− . For the 

problem, we can obtain the following results  
Theorem 1. If 0m = , 0n > , then the solution of problem (1.1) always quenches in finite 40 

time for any 0α > . 
Theorem 2. Assume that 3N ≥ , n R∈ . Then we have 
(i)If 2m < − , then the solution of problem (1.1) exists globally for α  small enough and 

quenches in finite time for α  large enough. 
(ii)If 2m ≥ − , then the solution of problem (1.1) always quenches in finite time for any 45 
0α > . 
Theorem 3. If 2N ≤ , n R∈ , then for any ( , )m∈ −∞ +∞  and (0, )α ∈ ∞ , the 

solution of problem (1.1) always quenches in finite time. 
The paper is arranged as follows. In Section 2, we introduce three lemmas; In Section 3, we 

prove the main results. 50 

1 Three main lemmas  
This section gives three lemmas needed for proving the main results. To this end, let 
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denote the fundamental solution of the heat operator and set 

( ) ( ) ( ), , , 1 .
N

m
m R

I x t p t x y y dy= +∫  55 

Then, we have 

    Lemma 2.1[9, Lemma 1]. If 0m ≤ , then ( , ) 1mI x t ≤  for 0≥t . 

Lemma 2.2[10, Lemma 6]. If 0m ≤  and 0t > , then the function ( , )mI x t  attains its 

maximum at 0x = . 
Lemma 2.3[9, Lemma 3]. Assume that m R∈  and 1t ≥ . Then we have  60 

(i)If m N> − , then there exist two positive constants 1 2,C C such that 
/2 /2

1 2(0 )m m
mC t I t C t≤ ≤， ; 

(ii)If m N= − , then there exist two positive constants 1 2,C C  such that  
/2 /2

1 1 2ln(1 ) (0, ) ln(1 )N N
mC t t I t C t t− −+ ≤ ≤ + ; 

(iii)If m N≤ − , then there exist two positive constants 1 2,C C  such that 65 
/2 /2

1 2(0, )N N
mC t I t C t− −≤ ≤ . 
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2 The proof of the main theorems 
Proof of Theorem 1. If we let 0m = , 0n > , then the absorption of problem (1.1) is 

(1 )nu
α
−

, which can be defined by 

 ( )
(1 )ng u

u
α

=
−

. 70 

By taking 1 21,b c and c nα α= = = , we have ( ) :g u [ ) ( )0, 0,b ∞a  satisfies 

(G1) ( )g u  is a locally Lipschitzian function over [ )0,b  and (0) 0g > , 

(G2) lim ( )
u b

g u
−→

= +∞ , 

(G3) 1 2( ) , [0, ),g u c c u u b≥ + ∈  

(G4) ( )1
2 0cc b+ > . 75 

In view of [11], we can know the solution of problem (1.1) always quenches in finite time for 

any 0α > . In fact, we take ( , ) 0u x t →  as x →∞ ,  then we can get a real number 

0M >  so that ( , )u x t ε<  as x M> . Hence,  

0 | | .xu as x→ →∞  

We assume by contradiction that there exist two points 1 2,x x M>  such that for all 80 

[ ]1 2,x x x∈  

0 0.x xu or uδ δ> > < <  

Without loss of generality, we may assume that 0.xu δ> >  Then, we infer 

( )2 1 2 1( ) 0.xu u x x x xδ> − > − >  

By taking eventually 2 1( )x xε δ= −  we conclude ( , )u x t ε> , which is impossible. 85 

Moreover, similar calculations lead to  

                             0 | | .xxu as x→ →∞                         (2.1) 

To prove that 0u
t

∂
→

∂
 as x →∞ , we assume by contradiction that there exists 0ε >  

such that  

 
u
t

ε∂
>

∂
. 90 

We integrate by parts over [0, ]t  to obtain 

 ,u t Cε> +  

which contradicts the fact that ( , )u x t ε< . Thus, we prove that 0u
t

∂
→

∂
 as x →∞ . 

Therefore, we combine this with (2.1), we get 

0 | | ,u u as x
t

∂
− Δ → →∞

∂
 95 

which is contradictory to problem (1.1). So we imply that the solution of problem (1.1) does 
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not exist globally if 0, 0m n= = . 

If we let 0, 0m n= < , then problem (1.1) implies the following problem 
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We can get (1 ) 1nu −− →  as x →∞ , thus 0u u
t

α∂
− Δ → ≠

∂
 as x →∞ . This 100 

contradicts (1.1) and Theorem 1 is proved. 
Proof of Theorem 2. The mild solution of problem (1.1) is 

 ( ) ( ) ( )
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(i)In order to obtain global solution for α  small enough, which suffices to prove by the 
priori assumption that 105 

         
1( , ) , ( , ) (0, ).
2

Nu x t for all x t R T≤ ∈ ×                (2.2) 

Indeed, it is valid for α  small enough, since the solution may be found by successive 
substitution in right hand side of the last equation. 

By comparison principle, we obtain 

                      ( , ) 0, ( , ) (0, ).Nu x t for x t R≥ ∈ × ∞                   (2.3) 110 
We combine (2.2) and (2.3), which gives 
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where ( ) ( ) ( ), , , 1
N

m
m R

I x t s p t s x y y dy− = − +∫ . We distinguish the following two 115 

cases. 
Case 1: If 1t ≤  occurs, by Lemma 2.1we conclude 
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    Case2: We now suppose that 1t >  occurs, then 
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By Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have 
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Hence, there exists sufficiently small a  such that 

( ) ( )1( , ) , , 0, ,
2

Nu x t x t R< ∈ × ∞  

so we obtain that the problem (1.1) has a global solution for 0α >  small enough. 125 
Next, we are going to prove that the solution of problem (1.1) quenches in finite time for α  

large enough. By taking 1t >  we have 
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Moreover, by (2.4) we obtain 
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By Lemma 2.3, this implies 

1
0 (0, ) , 3, 2.m mI d J for N mθ θ

∞
< = < +∞ ≥ < −∫  

Combining (2.5) and by taking 
( )1

2
n

mJ
α > , we get (0, ) 1u t > , which is impossible. This 

implies that ( ),u x t  quenches in finite time for α  large enough. The proof is finished. 

(ii) We now prove Theorem 2(ii). By contradiction, we assume that 135 

( , ) 1, ( , ) (0, ).Nu x t for x t R< ∈ × ∞  

Since 1t > , we deduce 
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By applying Lemma 2.3, we abtain 
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1

lim (0, ) 2, 3.
t
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I d for m Nθ θ
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= +∞ ≥ − ≥∫ ，              （2.7） 140 

Hence, combining (2.6) and (2.7), we infer  

lim (0, ) , 0, 2, 3.
t

u t for any m Nα
→∞

= +∞ > ≥ − ≥  

This is a contradiction. This implies that ( ),u x t  quenches in finite time for all 0α > . 

    Proof of Theorem 3. We may now conclude the proof of Theorem. By supposing  
1 2N≤ ≤  and 0n < , we obtain 145 
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A similar argument as the proof of Theorem 2(ii) immediately deduce Theorem 3. If we let 

0n = , then 
0
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mu x t I x t s dsα= −∫ . We have Theorem 3 by the same proof. If 0n > , 

then by a priori assume  
1( , ) , ( , ) (0, ),
2
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we have 
11 2

(1 )
n
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≤ ≤

−
. Similarly, for 0n > , we may prove Theorem 3.  
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含非线性源的二阶非线性抛物方程的淬火现象 
徐润章，张明有，刘杰 

（哈尔滨工程大学理学院，哈尔滨 150001） 190 
摘要：在这篇文章里，作者研究了一类二阶非线性抛物方程在无界域上的柯西问题的淬火现

象。通过对具有非线性源项的二阶非线性抛物方程中的某些指数和初值添加约束条件，我们

得到了方程的解在有限时间内淬火。本文的主要研究方法是比较原理和极值原理，特别值得

注意的是在定理的证明过程中比较原理有很重要的作用。我们将结果拓展到更广泛的非线性

项。 195 
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