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The quenching phenomena for second-order nonlinear

parabolic equation with nonlinear source

XU Runzhang, ZHANG Mingyou, LIU Jie
(College of Science, Harbin Engineering University, Harbin 150001)

Abstract: In this paper, we investigate the quenching phenomena of the Cauchy problem for the
second-order nonlinear parabolic equation on unbounded domain. It is shown that the solution
quenches in finite time under some assumptions on the exponents and the initial data. Our main tools
are comparison principle and maximum principle. We extend the result to the case of more generally
nonlinear absorption.
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0 Introduction
In this context, we investigate the quenching phenomena of the following Cauchy problem

Mg @@ XDy RN < (0,T),

ot @-uw"
u(x,0) =0, x e RV, (1.1)
u(x,t) -0, | X | oo,

where m,n € (—oo, + oo) are real number and ¢« is a positive parameter.
For convenience, we first introduce the following definition of the quenching.

Definition. We say that the solution u(x,t) of problem (1.1) quenches in finite time if

there exists a real number 0 <T < oo such that
limsupu(x,t)=1.

t-T, xRN

The quenching problem has 36 —year history. In 1975, Kawarada first introduced the concept
of quenching when considering a famous initial boundary problem for the parabolic equation

u, = U, +l/(1— u) and derived many interesting results (see [1-6] and references therein). In

[5], Acker and Walter have considerably sharpened and generalized Kawardada's results. Levine[6]
thoroughly considered the following problem which greatly generalized the results of [1] and [5]
u=u +el-u)’, 0<x<l 0<t<T,
u(0,t)=u(,t)=0, O0<t<T, (1.2)
u(x,0) = u,(x), u, <1, 0<x<1,
then gave the criteria for the quenching, nonquenching and beyond quenching of the solution.
There are many authors who extended the results of (1.2) in [7-11]. In [7], Levine determined

quenching sets and derived quenching rate estimates. Furthermore, papers [12-14] presented
recent progress in the analysis of quenching phenomena on bounded domain. It’s clear that all
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results in the papers above were obtained in bounded domain.
Compared to the case of bounded domain, it seems that very few results concerning the
quenching phenomena were obtained on unbounded domain (see [15, 16]). In [17], Dai Quiyi

investigated the quenching phenomena of problem (1.1) when n =1 and obtained some results
that the solution quenches in finite time. In addition, it is shown in [1, 10, 17] that the absorbing

term (1- u)’1 plays an essential role in quenching phenomena. For the case that the absorbing
term is(1—u)™", will the solution quench in finite time? The problem above is still open up to

now. We will restrict our attention to more complex problem and the case where (1—u)™". For the
problem, we can obtain the following results

Theorem 1. If m=0, n>0, then the solution of problem (1.1) always quenches in finite
time forany o >0.

Theorem 2. Assume that N >3, n e R . Then we have

()If m< =2, then the solution of problem (1.1) exists globally for & small enough and
quenches in finite time for « large enough.

(i)if m> -2, then the solution of problem (1.1) always quenches in finite time for any
a>0.
Theorem 3. If N<2, neR, then for any me(—o,+») and «e€(0,0), the

solution of problem (1.1) always quenches in finite time.
The paper is arranged as follows. In Section 2, we introduce three lemmas; In Section 3, we
prove the main results.

1 Three main lemmas

This section gives three lemmas needed for proving the main results. To this end, let
2
_ X—
p(t,x,y)=(4t)" “exp kvt
4t
denote the fundamental solution of the heat operator and set
m
. (x,t) = JRN p(t.x,y)(1+]y]) dy.

Then, we have
Lemma 2.1[9, Lemma 1]. If m <0, then | _(X,t)<1 for t>0.

Lemma 2.2[10, Lemma 6]. If m<0 and t> 0, then the function | _(X,t) attains its

maximumat X =0.
Lemma 2.3[9, Lemma 3]. Assume that me R and t>1. Then we have

(i)If m>—N, then there exist two positive constants C,, C, such that
Ct™ <1 (0, t)<Cpt™;
(i)If m=—N, then there exist two positive constants C,,C, such that
CH"In(+t) < 1_(0,t) <Ct “2In(L+t);
(ii)If 'm < —N, then there exist two positive constants C,,C, such that

Ct M <1 (0t)<Ct "2
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2 The proof of the main theorems

Proof of Theorem 1. If we let m=0, n>0, then the absorption of problem (1.1) is

ﬁ, which can be defined by
—Uu

e
1-u)"

By takingb=1,¢, = and ¢, =na, we have g(u): [0,b) > (0,0) satisfies

70 g(u) =

(G1) g(u) isa locally Lipschitzian function over [0, b) and g(0) >0,
(G2) Iirp g(u) = +o,

(G3) g(u)=>c, +c,u, uel0,b),

75 (G4) ¢, + (%) >0.

In view of [11], we can know the solution of problem (1.1) always quenches in finite time for
any a>0. In fact, we take u(x,t) >0 as |X|—)oo, then we can get a real number
M >0 sothat u(x,t)<e& as x> M . Hence,
u —>0 as |[x|> .
80 We assume by contradiction that there exist two points X;,X, > M such that for all
X €%, %]
u >0>0 or u,<o<0.
Without loss of generality, we may assume that U, > 6 > 0. Then, we infer
u>u, (x,—x,)>8(x,—x)>0.
85 By taking eventually &=J(X,—X;) we conclude u(X,t)>e&, which is impossible.

Moreover, similar calculations lead to
u, >0 as |x}> . (2.1)

ou . .
To prove that E —0 as |X| —> 0o, we assume by contradiction that there exists & >0

such that
90 8_u >E.
ot

We integrate by parts over [0,t] to obtain
u>et+C,

which contradicts the fact that u(x,t) <&. Thus, we prove that %—) 0 as |x| — 0,

Therefore, we combine this with (2.1), we get
ou
95 E—Au—>0 as | x| oo,

which is contradictory to problem (1.1). So we imply that the solution of problem (1.1) does

-3-
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not exist globally if m=0,n=0.
If we let m=0,n <0, then problem (1.1) implies the following problem

%-Au al-u)™",  (x,t)eR"x(0,T),

u(x,0)=0, xeR",
u(x,t) =0, | X > 0.
100 We can get (1-u)™" —>1 as |X|—>oo, thus aa—l:—Au—>a¢0 as |X|—>oo. This

contradicts (1.1) and Theorem 1 is proved.
Proof of Theorem 2. The mild solution of problem (1.1) is

t (L+]y])"
u(x,t)=«a CP(t=s,xy dyds.
(=af, [ p(t-sxy) T
(i)In order to obtain global solution for ¢ small enough, which suffices to prove by the
105  priori assumption that
u(x,t)é%, for all (x,t)eR™ x(0,T). (2.2)

Indeed, it is valid for « small enough, since the solution may be found by successive
substitution in right hand side of the last equation.
By comparison principle, we obtain

110 u(x,t)>0, for (x,t) e R" x(0,00). (2.3)
We combine (2.2) and (2.3), which gives

Gjn <(1-u) " <1,

u(x,t)zaj':IRN p(t-s,x, y)%yds

Then we have

SaI:IRN p(t—s,x, y)(1+|y|)m dyds
=aj;|m(x,t—s)ds,

115 where Im(x,t—s):'[RN p(t—s,x, y)(1+|y|)m dy. We distinguish the following two

cases.
Case 1: If t<1 occurs, by Lemma 2.1we conclude

u(x,t)ﬁa.[;lm(x,t—s)ds

t
Sa.[odséa.

Case2: We now suppose that t>1 occurs, then
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u(x ) <af 1,(x.t-s)ds
120 L t
=ajo Im(x,t—s)ds+a.[tillm(x,t—s)ds.

By Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have

u(x,t) < a+aj':1lm(0,t—s)ds

< a(1+j1°° I (O, H)d&’).
Hence, there exists sufficiently small a such that
u(x,t) < %,(x,t) e R" x(0,),

125 so we obtain that the problem (1.1) has a global solution for « >0 small enough.
Next, we are going to prove that the solution of problem (1.1) quenches in finite time for «

large enough. By taking t >1 we have
1+|y

u(x,t):a.[ot.[RN p(t—s,x, y)%dyds

>af 1, (x,t—s)@n ds.

Moreover, by (2.4) we obtain

S 1Y "
u(0,t)_a(5j jo |_(0,t—s)ds
130 (2.5)

1) et
=a(5j jllm(o,e)de.

(2.4)

By Lemma 2.3, this implies
0<j1‘” | (0,0)d0=J_<+w, for N=3m<-2.

(%2)

Combining (2.5) and by taking « > T we get U(0,t) >1, which is impossible. This

m

implies that u (X,t) quenches in finite time for « large enough. The proof is finished.

135 (ii) We now prove Theorem 2(ii). By contradiction, we assume that
u(x,t) <1, for (x,t) e R" x (0, ).

Since t>1, we deduce

1Y "
u(O,t)Za(Ej jo |_(0,t—s)ds

1) et
=a(ﬂ jllm(o,e)de.

By applying Lemma 2.3, we abtain

(2.6)
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lim ltlm(0,0)d6’:+oo, form>-2,N > 3. Q2.7

Hence, combining (2.6) and (2.7), we infer
!im u(0,t) =+, for any a¢>0m=>-2,N >3.

This is a contradiction. This implies that u (X,t) quenches in finite time forall a >0.

Proof of Theorem 3. We may now conclude the proof of Theorem. By supposing
1<N <2 and n<0, we obtain

j: 1,,(0,0)d@ — +0 ast— oo, for any m e (—oo,0).
A similar argument as the proof of Theorem 2(ii) immediately deduce Theorem 3. If we let
n=0, then u(xt)= ajot I,,(X,t—s)ds. We have Theorem 3 by the same proof. If n>0,
then by a priori assume

u(x,t) S%, for (x,t) e R" x(0,0),

1
we have 1<————< 2" Similarly, for n >0, we may prove Theorem 3.

(1-u)"
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