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0 Introduction

In this paper, we study the Cauchy problem of the following inhomogeneous Schrédinger

equation with L? critical nonlinearity
i b 2b44 N
iug + Au+ |z]’lu] ¥ u=0,t>0, x e RY, (0.1)

u(O,I) = Up, (0'2)

where i = /—1; A = Zj\;l % is the Laplace operator in RY; u = u(t,z): [0,T) x RN — C is
the complex valued function and 0 < T" < 400; N is the space dimension; the parameter b > 0.
A few years ago, it was suggested that stable high power propagation can be achieved in plasma
by sending a preliminary laser beam that creates a channel with a reduced electron density,
and thus reduces the nonlinearity inside the channel(see[1, 2]). In this case, beam propagation

can be modeled by the inhomogeneous nonlinear Schrodinger equation in the following form
iy + Do+ K(2)|¢]P %0 =0, ¢(0,2) = ¢ e H'(RY). (0.3)

Recently, this type of inhomogeneous nonlinear Schrodinger equations have been widely in-
vestigated. When k; < K(z) < ky with ki, k2 > 0 and p = 24+ + , Merle[3] proved
the existence and nonexistence of blow-up solutions of the Cauchy problem (0.3). When
K (z) = K (e|z|) € C*(RY) (N L>=(RY) with & small and p = 24+, Fibich, Liu and Wang|2, 4, 5]
obtained the stability and instability of standing waves of the Cauchy problem (0.3).

For the Cauchy problem (0.1)-(0.2), Chen and Guo[6] showed the local well-posedness in
H! = H'(RY), where H}(R") is the set of radially symmetric functions in H*(R"). Chen][7]
showed the sharp conditions of blow-up and global existence of the solutions. On the other
hand, in Equation (0.1), the nonlinearity is in the form |z|*|u|**" u. Due to the unbounded
potential |2|°, to our knowledge, there are few results on the blow-up dynamical properties of
the blow-up solutions.

Motivated by the studies of the classical homogeneous nonlinear Schrédinger equation(seel[8,
9, 10]), we consider the ground state solution of the Cauchy problem (0.1)-(0.2), which is a spe-
cial periodic solutions of Equation (0.1) in the form u(t, z) = €“!Q(z), where w € R and Q(x)
is called a ground state satisfying
b+2

N

2b+4

Q—12"QI'™ Q=0, QeH). (0.4)

~0Q+

In this paper, we call the solution of Equation (0.4) @ = Q(z) as the ground state solution of
Equation (0.4). Sintzoff and Willem[13] proved the existence of the ground state (0.4). Chen|[7]
showed the following generalized Gagliardo-Nirenberg inequality: V f € H}(R™) and b > 0

2b+4

2N +2b+4 2N +2b+4 2 N
[l < 2R (M) T o, 0.5)

9.
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where @ is the ground state solution of Equation (0.4). In the present paper, we firstly obtain
the lower bound of blow-up rate of the solutions to the Cauchy problem (0.1)-(0.2) by the

scaling invariance, as follows.

IVu(t,z)||L2 > as t—T. (0.6)

K
VT —t
Moreover, we obtain the rate of L2-concentration of the radially symmetric blow-up solutions.
It reads that if u(¢, z) is the radially symmetric blow-up solution of the Cauchy problem (0.1)-
(0.2) in finite time 0 < T' < 400, then, V ¢ > 0, 3 K > 0 such that

lim inf

/ lu(t, 2)|2dz > (1—5)/|Q|2d:c, (0.7)
t—T | <KVT—E

where @ is the ground state solution of Equation (0.4).

The major difficulties in studying the L?-concentration of the radially symmetric blow-up
solutions to the Cauchy problem (0.1)-(0.2) is that the nonlinearity containing a unbounded
potential |z|°. Firstly, Although our main arguments are from Merle and Tsutsumi[9, 10], we
need some new estimations to deal with the unbounded potential |z|°. Secondly, for the time
being, as we have mentioned, the results in the present paper are new for the Cauchy problem
(0.1)-(0.2) and the L2-concentration properties of the radially symmetric blow-up solutions have
definite meanings in physics. Finally, since b > 0, there is no space transformation invariance
for Equation (0.1) and the uniqueness of the ground state solution of Equation (0.4) is still
open. The L?-concentration properties of blow-up solutions to the Cauchy problem (0.1)-(0.2)
in the nonradial case is still unknown.

In this paper, we denote LY(RY), || - [|Lorny, HF(RY) and [oy -da by L2, || - ||1«, H} and

| -dx respectively, and the various positive constants will be simply denoted by C.

1 Preliminary

For the Cauchy problem (0.1)-(0.2), the work space is defined by

H!:={ue€ H'| u(z) = u(r)} where r=|z| = \/x%+x§+~-~+x?\,,

which is a Hilbert space. Moreover, we define the energy functional E(u) on H! by

1 N 2N 42b+4
E(u) = = dg — —— b=~ da.
(u) 2/|Vu| dz 2N+2b+4/|x| | dx

The functional E(u) is well-defined according to the Sobolev embedding theorem(see [8]). Chen
and Guo[6] showed the local well-posedness for the Cauchy problem (0.1)-(0.2) in H}, as follows.

Proposition 1. (Chen and Guo[6]) Let N > 3 and uo € H}. There exists an unique solution
u(t, z) of the Cauchy problem (0.1)-(0.2) on the maximal time interval [0, T) such that u(t,z) €

-3
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C([0,T); H}) and either T = +oc(global existence), or else T < +oo0 and thrr% lu(t, )| = +o0
—
(blow-up). Furthermore, for allt € [0,T), u(t,z) satisfies the following conservation laws

/u(t,x)|2dx:/|u0|2d:1:. (1.1)

E(u(t,z)) = E(up). (1.2)

(i) Conservation of mass

(7i) Conservation of energy

At the end of this section, we introduce two lemmas, which are important in studying the

radially symmetric functions.

Lemma 1. (Strauss/11]) Let N > 2 and u(t) € H}. Then, for any positive constant R, we

have

(i)

2] u(@)] < CN)|ull 2]Vl (1.3)

(ii)

[u®) e (g5 my) < CRN VUl (o> | w2101 )- (1.4)

Lemma 2. (Rother[12]) If N > 3, 1 < p < +o0 and p = 2* + 255, then there exists a

C(N,¢) > 0 such that for every u € DY?(RN) = {u € L* ;Vu € L?},

(/ 2| |u|de>2 < O(N /|Vu|2dx (1.5)

Proposition 2. (Chen/7]) Let N >3 and 0 < b < 2(N —1). If f € H}, then
2b+4
b 2N +2b+44 2N + 2b+ 4 ( ||u||L2 ) N 2
z’|u|m ¥ dx < Vul5e, 1.6
[ et el C e IAC (16)

where Q is the ground state solution of Equation (0.4).

2 Rate of L2-Concentration

In this section, we first show the lower bound of blow-up rate of the solutions to the Cauchy
problem (0.1)-(0.2) by the scaling-invariant of Equation (0.1). Secondly, we obtain the rate of
L?-concentration of the radially symmetric blow-up solutions to the Cauchy problem (0.1)-(0.2)
by the generalized Gagliardo-Nirenberg inequality (1.6), as follows.

Theorem 1. Let N >3, 0<b < 2(N —1) and ug € H} be radially symmetric. Assume that
u(t,z) € C([0,T); H}) is the corresponding blow-up solution of the Cauchy problem (0.1)-(0.2)
in finite time 0 < T < +o00.
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) a(t) s a decreasing function from to such that
(i)If a(t) is a d ing function from [0,T) to R* such th

VT —
lima(t) -0 and lim d — 0, (2.1)
t—T t—T a(t)
then
lim inf/ lu(t, z)|*dx 2/Q|2d:v. (2.2)
=T Jjel<a)

(ii)For any € > 0,there exists a constant K > 0 such that

lim inf

lim, /x|<K\/ﬁ lu(t,z)?dr > (1 —¢) / |Q|dz, (2.3)

where Q is the ground state solution of Equation (0.4).

In order to prove Theorem 1, we have to establish the lower bound of blow-up rate of the
solutions to the Cauchy problem (0.1)-(0.2). Motivated by the study of the classical nonlinear

Schrodinger equation(see[14, 15]), we have the following proposition.

Proposition 3. Let N > 3, 0 < b < 2(N — 1) and u(t,x) be the radially blow-up solution
to the Cauchy problem (0.1)-(0.2) in finite time 0 < T < +oo. Then, there exists a constant
K = K(||uo|lz2) > 0 such that

IVau(t, z)|| 2 > 0<t<T. (2.4)

K
VT =t
Proof. Motivated by the study of classical nonlinear Schrédinger equation (see [15]), for
a fixed 0 <t < T, one defines

(s, z) = A7 (B)u(t + A2(t)s, A(t)z) (2.5)
with \(t) = m. Note that 1!(s, z) is defined for
T—-1
2
t+ XN t)s<T & s<8.= (D)
and for all s € [0, S.), ¥'(s, ) satisfies
i+ A+ [ [t R = 0, (2.6)
Moreover, since ||Vul|zz — 0 as t — T', one has
IVY'||L2 = 400, as s — S, (2.7)
and
19" (s = 0,2) |2 = [lu(t)l|z2 = ||uol|z2- (2.8)
By the definition of A(¢), one has
IV (s = 0,2)[[72 = A*() [ Vu(®)[|7- = 1, (2.9)

_5-
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which implies that
14 (s = 0,2) |72 = [luollZ> + 1. (2.10)

On the other hand, by resolution of the Cauchy problem locally in time by fixed point
arguments (see[6]), for all ¢; > 0, there exists a t1(c;) > 0 such that if ||*(s = 0,2)|%: < e,
then there exists a ¢; > 0 such that [[¢’(s,2)||3, < ¢z in the interval ¢ € [0,¢,]. Therefore,
applying this statement with ¢; = ||u||32 + 1 (independent of t), one obtains that V ¢ € [0,T’)

Tt
=8>, 2.11
22(t) = (2.11)

which implies that
ty

22 > )
IVu(t) 3 >

This completes the proof of Proposition 3.2.
Now, using the generalized Gagliardo-Nirenberg inequality (1.6), we have the following

proposition and Theorem 1 is a direct application.

Proposition 4. Let N > 3,0 <b < 2(N —1) and ug € H} be radially symmetric. Assume that
u(t,z) € C([0,T); H}) is the corresponding blow-up solution of the Cauchy problem (0.1)-(0.2)
in finite time 0 < T < 4o00. Set A(t) = ||Vu(t)||r2. Then,

(i)If a(t) is a decreasing function from [0,T) to R™ such that

. . 1
th_{r% a(t) -0 and th_{r% NDa) — 0, (2.12)
then
lim inf/ lu(t, z)*dx > /Q|2daz, (2.13)
=T Jjei<a(n)
(ii)For any € > 0,there exists a constant K > 0 such that
lim inf/ lu(t, 2)’dz > (1 —5)/Q|2da:, (2.14)
t—=T \z|<%

where @Q is the ground state solution of FEquation (0.4).

Proof. (i) Let p(z) = p(|z|) € C°(RY) be a radially symmetric function such that
() 1 for |z| <1,
xTr) =
P 0 for |z|>2,

and V r > 0, one denotes p.(x) = p(7). Using these notations, one takes po(z) = p(;75);
A(t) = [[Vu(t)||zz and A\, (t) = |[Vpau(t)||zz. Since the initial data uy € H}, one has that the
corresponding solution u(t, z) is also radially symmetric according to the local well-posedness.

By the conservation of energy, one has

1 N 2N+2b+4 N 2N +2b+4

— Vu2d:p—/ P dx—/ zPlu| T~ de+FE(up).

2/' SN a1 4 mga(t)' el 2N +2b+4 |I|>a(t)‘ el (to)
(2.15)
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Since
N 2N+2b+4 N 2N+42b+4
R S . dr < ——— B 2.16
e e L e el BN T e AT
and
Ae(t) =1V (pau(t))ll
= [[Vpau(t) + pa Vu(t)||7
(2.17)
< (S fu®)ll e + 1Vu(®)] )2
c
< N0 + G0 + F
one has N
+2b+
%f |V (pau)|?dz — mf 2’| pau| N dx
2N tobta (2.18)
< 2N+2b+4 f’I‘|>(L(t) |°[ul dr + 755 /\(t) + 3 t) +C.
On the other hand, by Lemma 2 and the conservation of mass, one has
2N+2b+4 N-—-1 2b 2N+2b+4 _ _2b
2N+]\;b+4 f|m\>a (t) |2 °|ul dr = 2N+A;b+4 f\m|>a(t)(‘x| Z Ju(a)]) ¥ Y ~-1dx
+2 2N+42b+4  _2b 9
< Cllu ||N ' HVUHfz Hlull o o ac) |
< ﬁl\ully ||VU||L2
(2.19)
One claims that, for 0 < b < 2(N — 1)
2N+2b+4
. f"c\>a(t) ‘LU| ‘U| dx
lim sup =0. (2.20)
=T IV (patt)||72

Indeed, since 0 < b < 2(N — 1), one has bj\“,Q < 2. It follows from the conservation laws and
(1.6) that

1 2 _ 2N+2b+4 N 2N+2b+4
3 JIVuPde = 5555 fajcam 12110l A2 + 5575577 Jpmaqe 12110l dz + E(uo)

<C |z u| P ¢ VU2, + C
f| | |paul (a(t)HVuHL2)2NNb 7|l ||L2
Clpaull 5 [V (pau)]2 c VullZ. + C
< QU|| 2 ol + — ull%, +
ol I (o) + s | Tl
< CIV(pa)lli> + ——Sow=== =2 IVul|7: +C

(a(®)A(?))

< COV(pa)l7 + el VUl + C,
(2.21)
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where 0 < & < 1 and in the last step, one uses (2.12) and 0 < b < 2(N —1). Therefore, one has
that 3K < +o0 such that

. [VullZ:

lim sup ——=—— = K. (2.22)
=1 [ V(pau)||7:

It follows from (2.19) and (2.22) that
2N+2b+4
Jajsaw olPlul” N do [Vullp2 btz 1
< C( i5) Y ==
HV(Pau)”ig Hv(pau)HLQ NNb (t)llv(pau)‘li;%

(2.23)
<C

IN-—0—2 -

1
)

Since 0 < b < 2(N — 1), one has 2 — %2 > 0, which implies that Claim (2.20) is true for
1 .

W —0ast—T.

Applying the generalized Gagliardo-Nirenberg inequality (1.6), it follows from (2.18) and

(2.20) that

2b+4
HpauHLz > N 2 2N / b 2N+2b+4 C C
11— Vipou)|ie € 77— x|’lu|” N dr+—=A(t)+ +C,
1= (TP ) el < g [ el O+ s
where @ is the ground state solution of Equation (0.4).
Therefore, by (2.22), one has
2644 b 2N+42b+4
||pau||Lz> v Jatsag 2l dz ¢ c
1— (MPallE? <C + + + . (2.24
- (i) %0 arm e e

It follows from the Claim (2.12) and (2.20) that
lpaulzz
. Pattiirz\
limsup [ 1 — <) <0.
=T < 1Q1lz>

lim inf/ lu(t, z)|*dx > lim inf/|pau(t,x)|2dx 2/|Q|2dx, (2.25)
|z <2a(t) =T

Therefore, one has

t—=T

which implies that (2.13) is true.

(ii) The proof is similar with (i). Taking a(t) = %, where K is an arbitrary positive

constant. By (2.24), one has

b4
||p(—’\1((t):c)u|],;z Y _2N-b—2 1 _9
L2

Taking K sufficient large and letting ¢ — 7" in (2.26), one has that (2.14) is true.

At the end of this section, we shall give the proof of Theorem 1.
Proof of Theorem 1. By Proposition 3, one has that there exists a constant M > 0 such

- 8-
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that
A < MVT—t, 0<t<T. (2.27)
Applying Proposition 4, one has that the conclusions in Theorem 1 hold. This completes the
proof.
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