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0 Introduction

In this paper, we study the Cauchy problem of the following inhomogeneous Schrödinger
equation with L2 critical nonlinearity

iut +△u+ |x|b|u|
2b+4
N u = 0, t ≥ 0, x ∈ RN , (0.1)

u(0, x) = u0, (0.2)

where i =
√
−1; △ =

∑N
j=1

∂2

∂x2
j

is the Laplace operator in RN ; u = u(t, x): [0, T )× RN → C is
the complex valued function and 0 < T ≤ +∞; N is the space dimension; the parameter b ≥ 0.
A few years ago, it was suggested that stable high power propagation can be achieved in plasma
by sending a preliminary laser beam that creates a channel with a reduced electron density,
and thus reduces the nonlinearity inside the channel(see[1, 2]). In this case, beam propagation
can be modeled by the inhomogeneous nonlinear Schrödinger equation in the following form

iϕt +△ϕ+K(x)|ϕ|p−2ϕ = 0, ϕ(0, x) = φ ∈ H1(RN ). (0.3)

Recently, this type of inhomogeneous nonlinear Schrödinger equations have been widely in-
vestigated. When k1 ≤ K(x) ≤ k2 with k1, k2 > 0 and p = 2 + 4

N
, Merle[3] proved

the existence and nonexistence of blow-up solutions of the Cauchy problem (0.3). When
K(x) = K(ε|x|) ∈ C4(RN )

∩
L∞(RN ) with ε small and p = 2+ 4

N
, Fibich, Liu and Wang[2, 4, 5]

obtained the stability and instability of standing waves of the Cauchy problem (0.3).
For the Cauchy problem (0.1)-(0.2), Chen and Guo[6] showed the local well-posedness in

H1
r = H1

r (RN ), where H1
r (RN ) is the set of radially symmetric functions in H1(RN ). Chen[7]

showed the sharp conditions of blow-up and global existence of the solutions. On the other
hand, in Equation (0.1), the nonlinearity is in the form |x|b|u| 2b+4

N u. Due to the unbounded
potential |x|b, to our knowledge, there are few results on the blow-up dynamical properties of
the blow-up solutions.

Motivated by the studies of the classical homogeneous nonlinear Schrödinger equation(see[8,
9, 10]), we consider the ground state solution of the Cauchy problem (0.1)-(0.2), which is a spe-
cial periodic solutions of Equation (0.1) in the form u(t, x) = eiωtQ(x), where ω ∈ R and Q(x)

is called a ground state satisfying

−△Q+
b+ 2

N
Q− |x|b|Q|

2b+4
N Q = 0, Q ∈ H1

r . (0.4)

In this paper, we call the solution of Equation (0.4) Q = Q(x) as the ground state solution of
Equation (0.4). Sintzoff and Willem[13] proved the existence of the ground state (0.4). Chen[7]
showed the following generalized Gagliardo-Nirenberg inequality: ∀ f ∈ H1

r (RN ) and b ≥ 0∫
|x|b|f |

2N+2b+4
N dx ≤ 2N + 2b+ 4

2N

(
∥f∥L2

∥Q∥L2

) 2b+4
N

∥∇f∥2L2 , (0.5)
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where Q is the ground state solution of Equation (0.4). In the present paper, we firstly obtain
the lower bound of blow-up rate of the solutions to the Cauchy problem (0.1)-(0.2) by the
scaling invariance, as follows.

∥∇u(t, x)∥L2 ≥ K√
T − t

as t→ T. (0.6)

Moreover, we obtain the rate of L2-concentration of the radially symmetric blow-up solutions.
It reads that if u(t, x) is the radially symmetric blow-up solution of the Cauchy problem (0.1)-
(0.2) in finite time 0 < T < +∞, then, ∀ ε > 0, ∃ K > 0 such that

lim
t→T

inf
∫
|x|≤K

√
T−t

|u(t, x)|2dx ≥ (1− ε)

∫
|Q|2dx, (0.7)

where Q is the ground state solution of Equation (0.4).
The major difficulties in studying the L2-concentration of the radially symmetric blow-up

solutions to the Cauchy problem (0.1)-(0.2) is that the nonlinearity containing a unbounded
potential |x|b. Firstly, Although our main arguments are from Merle and Tsutsumi[9, 10], we
need some new estimations to deal with the unbounded potential |x|b. Secondly, for the time
being, as we have mentioned, the results in the present paper are new for the Cauchy problem
(0.1)-(0.2) and the L2-concentration properties of the radially symmetric blow-up solutions have
definite meanings in physics. Finally, since b > 0, there is no space transformation invariance
for Equation (0.1) and the uniqueness of the ground state solution of Equation (0.4) is still
open. The L2-concentration properties of blow-up solutions to the Cauchy problem (0.1)-(0.2)
in the nonradial case is still unknown.

In this paper, we denote Lq(RN ), ∥ · ∥Lq(RN ), H1
r (RN ) and

∫
RN ·dx by Lq, ∥ · ∥Lq , H1

r and∫
·dx respectively, and the various positive constants will be simply denoted by C.

1 Preliminary

For the Cauchy problem (0.1)-(0.2), the work space is defined by

H1
r := {u ∈ H1| u(x) = u(r)} where r = |x| =

√
x21 + x22 + · · ·+ x2N ,

which is a Hilbert space. Moreover, we define the energy functional E(u) on H1
r by

E(u) :=
1

2

∫
|∇u|2dx− N

2N + 2b+ 4

∫
|x|b|u|

2N+2b+4
N dx.

The functional E(u) is well-defined according to the Sobolev embedding theorem(see [8]). Chen
and Guo[6] showed the local well-posedness for the Cauchy problem (0.1)-(0.2) in H1

r , as follows.

Proposition 1. (Chen and Guo[6]) Let N ≥ 3 and u0 ∈ H1
r . There exists an unique solution

u(t, x) of the Cauchy problem (0.1)-(0.2) on the maximal time interval [0, T ) such that u(t, x) ∈
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C([0, T );H1
r ) and either T = +∞(global existence), or else T < +∞ and lim

t→T
∥u(t, x)∥H1

r
= +∞

(blow-up). Furthermore, for all t ∈ [0, T ), u(t, x) satisfies the following conservation laws

(i) Conservation of mass ∫
|u(t, x)|2dx =

∫
|u0|2dx. (1.1)

(ii) Conservation of energy
E(u(t, x)) = E(u0). (1.2)

At the end of this section, we introduce two lemmas, which are important in studying the
radially symmetric functions.

Lemma 1. (Strauss[11]) Let N ≥ 2 and u(t) ∈ H1
r . Then, for any positive constant R, we

have

(i)
|x|

N−1
2 |u(x)| ≤ C(N)∥u∥

1
2

L2∥∇u∥
1
2

L2 . (1.3)

(ii)
∥u(t)∥2L∞(|x|>R) ≤ CR1−N∥∇u(t)∥L2(|x|>R)∥ u(t)∥L2(|x|>R). (1.4)

Lemma 2. (Rother[12]) If N ≥ 3, 1 ≤ p < +∞ and p = 2∗ + 2c
N−2

, then there exists a
C(N, c) > 0 such that for every u ∈ D1,2

r (RN ) = {u ∈ L2∗ ;∇u ∈ L2},(∫
|x|c|u|pdx

) 2
p

≤ C(N, c)

∫
|∇u|2dx. (1.5)

Proposition 2. (Chen[7]) Let N ≥ 3 and 0 ≤ b < 2(N − 1). If f ∈ H1
r , then∫

|x|b|u|
2N+2b+4

N dx ≤ 2N + 2b+ 4

2N

(
∥u∥L2

∥Q∥L2

) 2b+4
N

∥∇u∥2L2 , (1.6)

where Q is the ground state solution of Equation (0.4).

2 Rate of L2-Concentration

In this section, we first show the lower bound of blow-up rate of the solutions to the Cauchy
problem (0.1)-(0.2) by the scaling-invariant of Equation (0.1). Secondly, we obtain the rate of
L2-concentration of the radially symmetric blow-up solutions to the Cauchy problem (0.1)-(0.2)
by the generalized Gagliardo-Nirenberg inequality (1.6), as follows.

Theorem 1. Let N ≥ 3, 0 ≤ b < 2(N − 1) and u0 ∈ H1
r be radially symmetric. Assume that

u(t, x) ∈ C([0, T );H1
r ) is the corresponding blow-up solution of the Cauchy problem (0.1)-(0.2)

in finite time 0 < T < +∞.
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(i)If a(t) is a decreasing function from [0, T ) to R+ such that

lim
t→T

a(t) → 0 and lim
t→T

√
T − t

a(t)
→ 0, (2.1)

then
lim
t→T

inf
∫
|x|≤a(t)

|u(t, x)|2dx ≥
∫

|Q|2dx. (2.2)

(ii)For any ε > 0,there exists a constant K > 0 such that

lim
t→T

inf
∫
|x|<K

√
T−t

|u(t, x)2dx ≥ (1− ε)

∫
|Q|2dx, (2.3)

where Q is the ground state solution of Equation (0.4).

In order to prove Theorem 1, we have to establish the lower bound of blow-up rate of the
solutions to the Cauchy problem (0.1)-(0.2). Motivated by the study of the classical nonlinear
Schrödinger equation(see[14, 15]), we have the following proposition.

Proposition 3. Let N ≥ 3, 0 ≤ b < 2(N − 1) and u(t, x) be the radially blow-up solution
to the Cauchy problem (0.1)-(0.2) in finite time 0 < T < +∞. Then, there exists a constant
K = K(∥u0∥L2) > 0 such that

∥∇u(t, x)∥L2 ≥ K√
T − t

, 0 ≤ t < T. (2.4)

Proof. Motivated by the study of classical nonlinear Schrödinger equation (see [15]), for
a fixed 0 ≤ t < T , one defines

ψt(s, x) = λ
N
2 (t)u(t+ λ2(t)s, λ(t)x) (2.5)

with λ(t) = 1
∥∇u∥L2

. Note that ψt(s, x) is defined for

t+ λ2(t)s < T ⇔ s < Sc =
T − t

λ2(t)
,

and for all s ∈ [0, Sc), ψt(s, x) satisfies

iψt
s +△ψt + |x|b|ψt|

2b+4
N ψt = 0. (2.6)

Moreover, since ∥∇u∥L2 → 0 as t→ T , one has

∥∇ψt∥L2 → +∞, as s→ Sc, (2.7)

and
∥ψt(s = 0, x)∥L2 = ∥u(t)∥L2 = ∥u0∥L2 . (2.8)

By the definition of λ(t), one has

∥∇ψt(s = 0, x)∥2L2 = λ2(t)∥∇u(t)∥2L2 = 1, (2.9)
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which implies that
∥ψt(s = 0, x)∥2H1

r
= ∥u0∥2L2 + 1. (2.10)

On the other hand, by resolution of the Cauchy problem locally in time by fixed point
arguments (see[6]), for all c1 > 0, there exists a t1(c1) > 0 such that if ∥ψt(s = 0, x)∥2H1

r
≤ c1,

then there exists a c2 > 0 such that ∥ψt(s, x)∥2H1
r
≤ c2 in the interval t ∈ [0, t1]. Therefore,

applying this statement with c1 = ∥u0∥2L2 + 1 (independent of t), one obtains that ∀ t ∈ [0, T )

T − t

λ2(t)
= Sc ≥ t1, (2.11)

which implies that
∥∇u(t)∥2L2 ≥ t1

T − t
.

This completes the proof of Proposition 3.2.
Now, using the generalized Gagliardo-Nirenberg inequality (1.6), we have the following

proposition and Theorem 1 is a direct application.

Proposition 4. Let N ≥ 3, 0 ≤ b < 2(N−1) and u0 ∈ H1
r be radially symmetric. Assume that

u(t, x) ∈ C([0, T );H1
r ) is the corresponding blow-up solution of the Cauchy problem (0.1)-(0.2)

in finite time 0 < T < +∞. Set λ(t) = ∥∇u(t)∥L2 . Then,
(i)If a(t) is a decreasing function from [0, T ) to R+ such that

lim
t→T

a(t) → 0 and lim
t→T

1

λ(t)a(t)
→ 0, (2.12)

then
lim
t→T

inf
∫
|x|≤a(t)

|u(t, x)|2dx ≥
∫

|Q|2dx, (2.13)

(ii)For any ε > 0,there exists a constant K > 0 such that

lim
t→T

inf
∫
|x|< K

λ(t)

|u(t, x)2dx ≥ (1− ε)

∫
|Q|2dx, (2.14)

where Q is the ground state solution of Equation (0.4).

Proof. (i) Let ρ(x) = ρ(|x|) ∈ C∞
0 (RN ) be a radially symmetric function such that

ρ(x) =

{
1 for |x| ≤ 1,

0 for |x| ≥ 2,

and ∀ r > 0, one denotes ρr(x) = ρ(x
r
). Using these notations, one takes ρa(x) = ρ( x

a(t)
),

λ(t) = ∥∇u(t)∥L2 and λa(t) = ∥∇ρau(t)∥L2 . Since the initial data u0 ∈ H1
r , one has that the

corresponding solution u(t, x) is also radially symmetric according to the local well-posedness.
By the conservation of energy, one has

1

2

∫
|∇u|2dx− N

2N + 2b+ 4

∫
|x|≤a(t)

|x|b|u|
2N+2b+4

N dx =
N

2N + 2b+ 4

∫
|x|>a(t)

|x|b|u|
2N+2b+4

N dx+E(u0).

(2.15)
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Since

− N

2N + 2b+ 4

∫
|x|b|ρau|

2N+2b+4
N dx ≤ − N

2N + 2b+ 4

∫
|x|≤a(t)

|x|b|u|
2N+2b+4

N dx (2.16)

and
λ2
a(t) = ∥∇(ρau(t))∥2L2

= ∥∇ρau(t) + ρa∇u(t)∥2L2

≤ ( C
a(t)

∥u(t)∥L2 + ∥∇u(t)∥L2)2

≤ λ2(t) + C
a(t)

λ(t) + C
a2(t)

,

(2.17)

one has
1
2

∫
|∇(ρau)|2dx− N

2N+2b+4

∫
|x|b|ρau|

2N+2b+4
N dx

≤ N
2N+2b+4

∫
|x|>a(t)

|x|b|u| 2N+2b+4
N dx+ C

a(t)
λ(t) + C

a2(t)
+ C.

(2.18)

On the other hand, by Lemma 2 and the conservation of mass, one has

N
2N+2b+4

∫
|x|>a(t)

|x|b|u| 2N+2b+4
N dx = N

2N+2b+4

∫
|x|>a(t)

(|x|N−1
2 |u(x)|) 2b

N−1 |u|
2N+2b+4

N − 2b
N−1 dx

≤ C∥u∥
b

N−1+2

L2 ∥∇u∥
b

N−1

L2 ∥u∥
2N+2b+4

N − 2b
N−1−2

L∞(|x|>a(t))

≤ C

a
2N−b−2

N (t)
∥u∥

2N+b+2
N

L2 ∥∇u∥
b+2
N

L2

≤ C

a
2N−b−2

N (t)
∥∇u∥

b+2
N

L2 .

(2.19)
One claims that, for 0 ≤ b < 2(N − 1)

lim
t→T

sup
∫
|x|>a(t)

|x|b|u| 2N+2b+4
N dx

∥∇(ρau)∥2L2

= 0. (2.20)

Indeed, since 0 ≤ b < 2(N − 1), one has b+2
N

< 2. It follows from the conservation laws and
(1.6) that

1
2

∫
|∇u|2dx = N

2N+2b+4

∫
|x|<a(t)

|x|b|u| 2N+2b+4
N dx+ N

2N+2b+4

∫
|x|>a(t)

|x|b|u| 2N+2b+4
N dx+ E(u0)

≤ C
∫
|x|b|ρau|

2N+2b+4
N dx+ C

(a(t)∥∇u∥L2 )
2N−b−2

N

∥∇u∥2L2 + C

≤ C∥ρau∥
2b+4
N

L2 ∥∇(ρau)∥2L2 + C

(a(t)∥∇u∥L2 )
2N−b−2

N

∥∇u∥2L2 + C

≤ C∥∇(ρau)∥2L2 + C

(a(t)λ(t))
2N−b−2

N

∥∇u∥2L2 + C

≤ C∥∇(ρau)∥2L2 + ε∥∇u∥2L2 + C,

(2.21)
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where 0 < ε < 1
2

and in the last step, one uses (2.12) and 0 ≤ b < 2(N − 1). Therefore, one has
that ∃K < +∞ such that

lim
t→T

sup ∥∇u∥2L2

∥∇(ρau)∥2L2

= K. (2.22)

It follows from (2.19) and (2.22) that
∫
|x|>a(t)

|x|b|u|
2N+2b+4

N dx

∥∇(ρau)∥2
L2

≤ C(
∥∇u∥L2

∥∇(ρau)∥L2
)

b+2
N

1

a
2N−b−2

N (t)∥∇(ρau)∥
2− b+2

N
L2

≤ C 1

(a(t)λ(t))
2N−b−2

N

.

(2.23)

Since 0 ≤ b < 2(N − 1), one has 2 − b+2
N

> 0, which implies that Claim (2.20) is true for
1

a(t)λ(t)
→ 0 as t→ T .

Applying the generalized Gagliardo-Nirenberg inequality (1.6), it follows from (2.18) and
(2.20) that

[1−
(
∥ρau∥L2

∥Q∥L2

) 2b+4
N

]∥∇(ρau)∥2L2 ≤ 2N

2N + 2b+ 4

∫
|x|>a(t)

|x|b|u|
2N+2b+4

N dx+
C

a(t)
λ(t)+

C

a2(t)
+C,

where Q is the ground state solution of Equation (0.4).
Therefore, by (2.22), one has

[1−
(
∥ρau∥L2

∥Q∥L2

) 2b+4
N

] ≤ C

∫
|x|>a(t)

|x|b|u| 2N+2b+4
N dx

λ2
a(t)

+
C

a(t)λa(t)
+

C

a2(t)λ2
a(t)

+
C

λ2
a(t)

, (2.24)

It follows from the Claim (2.12) and (2.20) that

lim
t→T

sup
(
1−

(
∥ρau∥L2

∥Q∥L2

) 2b+4
N

)
≤ 0.

Therefore, one has

lim
t→T

inf
∫
|x|≤2a(t)

|u(t, x)|2dx ≥ lim
t→T

inf
∫

|ρau(t, x)|2dx ≥
∫

|Q|2dx, (2.25)

which implies that (2.13) is true.

(ii) The proof is similar with (i). Taking a(t) = K
λ(t)

, where K is an arbitrary positive
constant. By (2.24), one has

[1−

(
∥ρ(λ(t)

K
x)u∥L2

∥Q∥L2

) 2b+4
N

] ≤ CK− 2N−b−2
N + CK−1 + CK−2. (2.26)

Taking K sufficient large and letting t→ T in (2.26), one has that (2.14) is true.

At the end of this section, we shall give the proof of Theorem 1.
Proof of Theorem 1. By Proposition 3, one has that there exists a constant M > 0 such
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that
λ(t) ≤M

√
T − t, 0 ≤ t < T. (2.27)

Applying Proposition 4, one has that the conclusions in Theorem 1 hold. This completes the
proof.
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