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0 Introduction
This paper is concerned with the Cauchy problem of the following Davey-Stewartson system
iug + Au A [ulPlu + B(juf)u =0, t >0, z € RV, (0.1)

u(0, ) = uyg, (0.2)

where i = /—1; A = 6672% + a% 4+ -+ % is the Laplace operator on RY; u = u(t,):
[0,T) x RN — C is the complex valued function and 0 < T < +o00; the parameter 1 < p < 2*—1
(where 2* = 400 for N = 2; 2* = % for N > 3 ); E is the singular integral operator with
symbol o4 (§) = %,f € RN, E(y) = .7:_1%}%, F and F~! are the Fourier transform and
Fourier inverse transform on R”, respectively.

For the Cauchy problem (0.1)-(0.2), Ghidaglia and Saut[1], Guo and Wang|[2] established
the local well-posedness in the energy space H' for N = 2 and N = 3 respectively (see[3, 4] for
a review). Cipolatti [5] showed the existence of the standing waves. Cipolatti[6], Ohta[7, 8],
Gan and Zhang[9] showed the stability and instability of the standing waves. Ghidaglia and
Saut[1], Guo and Wang [2] showed the existence of the blow-up solutions. Ozawa[l10] gave the
exact blow-up solutions. Wang and Guo [11] studied the scattering of solutions. Richards[12],
Papanicolaou etal [13], Gan and Zhang[14, 9], Shu and Zhang[15] studied the sharp conditions
of blow-up and global existence. Richards [12] obtained the mass-concentration properties of
the blow-up solutions in L?-critical case in R2.

We note that in R?, Richards[12] and Papanicolaou etal [13] gave the precise expression
on the sharp blow-up criteria in L2-critical case that is N = 2 and p = 3. But in R® Equation
(0.1) has not any L?-critical case because of influence of the nonlocal term E(|u|?)u. Although
in [14, 9, 15] some sharp thresholds of blow-up and global existence are gotten, we also note
that the upper bound d of the energy functional I(u) is not determined. This motivates us to
investigate the precise expression on the sharp blow-up criteria in R3.

In the present paper, firstly, we study the sharp blow-up criteria for the Cauchy problem
(0.1)-(0.2) in R? for 1 + 3 < p < 5. Motivated by Holmer and Roudenko’s studies[16] for the

classical L?-super nonlinear Schrédinger equation, we consider the following elliptic equations

SAQ-5Q+1QPQ+ B(QPIQ =0, Q € H'(R) 03)
and
gAR _ %R +E(RP)R=0, Re H'(R). (0.4)

Applying the profile decomposition of the bounded sequences in H!(R?), we obtain the following
generalized Gagliardo-Nirenberg inequalities
2

SVFIRIA2 VY f € HY(RY) (0.5)
Q113

/uﬁ+muﬁm%x<

9.
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and

[ B Pd < o A ¥ F € B 06)
where @ is the solution of Equation (0.3) and R is the solution of Equation(0.4). Using the above
Gagliardo-Nirenberg inequalities, we obtain the sharp blow-up criteria to the Cauchy problem
(0.1)-(0.2) for 1+ 3 < p < 5 by overcoming the loss of scaling invariance. We remark that we
get a clear bound value of energy functional, which corresponds to d in [9]. Furthermore, we
prove that there is no L? strong limit of the blow-up solutions to the Cauchy problem (0.1)-(0.2)
provided 1 < p < 3.

There are two major difficulties in the analysis of blow-up solutions to the Davey-Stewartson
system (0.1)-(0.2) in H*(R3): one is the nonlinearity containing the singular integral operator
E; the other one is the loss of scaling invariance to Equation (0.1) for p # 3, which destroys
the balance between |u|P~'u and F(|u|*)u. Due to the singular integral operator E, we have to
establish the corresponding generalized Gagliardo-Nirenberg inequalities and variational struc-
tures. Since there is no scaling invariance for p # 3, improving Holmer and Roudenko’s method
we use the ground state of the classical nonlinear Schrodinger equation to describe the sharp
blow-up criteria to the Davey-Stewartson system (0.1)-(0.2). Finally, for the time being, as
we have mentioned, the results in the present paper are new for the Davey-Stewartson system
(0.1)-(0.2). In particular, the sharp blow-up criteria are different from [9], and the sharp blow-
up criteria obtained in this paper are more precisely, which is very useful from the viewpoint
of physics.

We conclude this section with several notations. We abbreviate LI(R®), || || pa(rz), H*(R?)
and [ps -dx by LY, || - ||l4, H® and [ -dz. The various positive constants will be simply denoted
by C.

1 Preliminary
For the Cauchy problem (0.1)-(0.2), the energy space is defined by
H':={ueLl®; Vue L?*},

which is a Hilbert space. The norm of H' is denoted by||- || g1. Moreover, we define a functional
H(u) in H' by

1 1 1
H(u) = 2/|Vu(t,x)2da:—p+1/|u(t,x)|p+1dac— 4/E(|u2)|u2dm.

The functional H is well-defined according to the Sobolev embedding theorem and the proper-
ties of the singular operator E.
Guo and Wang|2] established the local well-posedness of the Cauchy problem (0.1)-(0.2)

in energy space H'.
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Proposition 1. Let uy € H'. There exists an unique solution u(t,z) of the Cauchy prob-
lem (0.1)-(0.2) on the mazimal time [0,T) such that u(t,xz) € C([0,T); H') and either T =
+oo(global existence), or else T < 400 and lim;_,7 ||u(t, z)|| g = +oo (blow-up). Furthermore,

forallt € 10,T), u(t,z) satisfies the following conservation laws

(i) Conservation of mass
[u(t, 2)[l2 = [Juoll2, (1.1)

(i) Conservation of energy
H{(u(t,z)) = H(uo)- (1.2)

For more specific results concerning the Cauchy problem (0.1)-(0.2), we refer the reader

to[l, 4]. In addition, by some basic calculations, we have the following proposition(see also

Ohtal8)).

Proposition 2. Assume that ug € H', |z|uy € L? and the corresponding solution u(t,z)
of the Cauchy problem (0.1)-(0.2) on the interval [0,T). Then, for all t € [0,T) we have
|z|u(t,z) € L*. Moreover, let J(t) := [ |z|*|u(t, z)|*dz, we have

J (t) = —4%/xuVudx (1.3)

and

J( —8/|Vu dr — 12 /|u|p+1dx /E(|u|2)|u|2dx (1.4)

We give some known facts of the singular integral operator E (see Cipolatti[5, 6]), as

follows.

Lemma 1. Let E be the singular integral operator defined in Fourier variables by

FIEW)](E) = o1 () F[¥](E),

where 01(§) = \fl“g € R? and F denotes the Fourier transform in R®*. For 1 < p < +oo, E

satisfies the following properties:

(i) E € L(L?, L), where L(L?, L?) denotes the space of bounded linear operators from LP to
LP.

(ii) If 1 € H*(R?), then E(v) € H*(R?), s € R.
(iii) If op € W™P then E(¢) € W™P and

hEW) = E@Ok), k=12

(iv) E preserves the following operations:
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— translation: E(Y(-+y))(z) = E(W)(z+y), y € R>;
— dilatation:  E(¢Y(\))(x) = E(¥)(Ax), A > 0;

— conjugation: E(¢) = E(1),
where 1 is the complex conjugate of 1.

At the end of this section, we shall give the profile decomposition of the bounded se-
quences in H' proposed by Gérard[17], Hmidi and Keraani [18], which is important to study

the variational characteristic of the ground state.

Proposition 3. Let {v,}5°, be a bounded sequence in H'. Then there is a subsequence of
{vn}pe, (still denoted by {v,};2, ) and a sequence {V7}32, in H' and a family of {x]}52, C R®
such that

n—00

(i) for every j #k, |l —ak| "= 400,

(ii) for everyl > 1 and every v € R?

Up () = ZVj(x—x{L)—i—va(x) (1.5)

with
Tim sup oL}, "0, (1.6)
for every r € (2,6).
Moreover, we have, as n — oo,
1
loall3 =D IV + [[vh]13 + o(1) (1.7)
j=1
and l
IVuall3 = D IVVINE + VoI5 + o(1). (1.8)
j=1

2 Sharp Gagliardo-Nirenberg Inequalities

In order to study the sharp blow-up criteria to the Cauchy problem (0.1)-(0.2), we have to
establish the generalized Gagliardo-Nirenberg inequalities corresponding to the Davey-Stewartson
system.

Firstly, we consider the following elliptic equation

SAQ- @+ IQPQ+ B(QM@ =0, e i, (1)
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which is the ground state of the Davey-Stewartson system (0.1)-(0.2) for p = 3. Cipolatti[5]
showed the existence of the elliptic Equation (2.1) in dimension two and three. Papanico-
laou etal [13] computed the best constant of the generalized Gagliardo-Nirenberg inequality in
dimension two.

In the present paper, applying the profile decomposition of the bounded sequences in
H'(R?), we obtain a new and simple proof of the existence for Equation (2.1) and the best
constant of the generalized Gagliardo-Nirenberg inequality in dimension three. We should point
out that the method used in this paper is different from [5, 13]. This method can be used for

the dimension N = 2.

Theorem 1. Let f € H', then

2

151+ B e <
where Q is the solution of Equation (2.1).

In order to prove the best constant of the generalized Gagliardo-Nirenberg inequality (2.2),

we consider the variational problem

- - ([ uPdz)} (] [Vufde)?
J:=inf{J(u) :w € H'} where J(u):= f(\u|4 (P

(2.3)

It is obvious that if W is the minimizer of J(u), then |W] is also a minimizer. Hence we can

assume that W is an real positive function. Indeed, W = |W|e?®) we have
VW] < [VW|

in the sense of distribution. On the other hand, if W € H', then|W| € H' and J(|W]) < J(W).

By some basic calculations, if W is the minimizer of J(u), we have the following lemma.

Lemma 2. If W is the minimizer of J(u), then W satisfies

3 L|VW|3
—||Wl2[| VW . AW — —
I ITW AW — S

W+ 2J(|[W]? + E(|W]*)W = 0. (2.4)

Proof. Since W is a minimizing function of J(u) in H', we have

d
ZIW +20) |,y = 0. (2.5)
By some basic calculations, we have
d 1|vw3 3
OV 4 2l OV + o)} |y = 3 erl? [ 2Rwade - 1w laI 9wl [ 2mawsds

(2.6)

and

56{/|(W—|—5v)|4+E(|W+5v]2)|W+5v]2d:c} s _4/(W|2+E(|W|2)§]%Wvdx. (2.7)

- 6-



|I| E ﬂ]i itXEﬁ http://www.paper.edu.cn

By (2.5)-(2.7), we have

LIS [ oRi5de — W (| VW |, [ 2RAWTde -

3
= 2 e J (W2 + E(W2)2RWode,

which implies that (2.4) is true.
Now, we use the profile decomposition of the bounded sequences in H' to prove the fol-

lowing proposition, and Theorem 1 is a direct conclusion of the following proposition.

Proposition 4. J is attained at a function U(zx) with the following properties:
U(x) = aQ(\x +b) for some a€ C*, A>0and bc R (2.9)

where Q is the solution of Equation(2.1). Moreover,

2
J = H%”z. (2.10)
Proof. If we set u™* = pu(Ar), where A\ = %, = %a we have

[y =1, [[VuM[y =1 and J(u™") = J(u).

Now, choosing a minimizing sequence {u,}>°; C H' such that J(u,) — J as n — oo,

after scaling, we may assume

[unllz =1 and [[Vu,[2 =1, (2.11)
and we have
. 1
[ funl* + E(|un]?)un[?dx

Note that {u,}°, is bounded in H'. It follows form the profile decomposition (Proposition 3)
that

I (un)

— J, as n — oo. (2.12)

l
un(e) = YU =) + 7} @),

l !
DU <1 and > VU3 <1, (2.13)
j=1

j=1
where UJ = U’(xz — xJ). Moreover, using the Hélder’s inequality for r!, and the properties of

E, we have

S+ Bk Pk de - < Okl + 1B )]z )2)
(2.14)
<O 4+ IrL]4) = 0, as 1 — oo.

Applying the orthogonal conditions and the properties of E, we have the following claims:

-7
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(i) l l
/|ZUj(:r—x{L)4da;—>Z/|Uj|4dx, as n — oo. (2.15)
(i)
l l l
/E(| S v )P Y U7 ) P Z/E(|Uj|2)Uj|2dm, as n — oo, (2.16)

Indeed, for (2.15), it suffices to show that

I, = /Ui1 UlUBUMdz — 0, as n — oo (2.17)

for 1 < j, <1l and at least two j, are different. Assuming for example j; # j», by the Holder’s
inequality, we can estimate

|I* < C?UR U3,

where C = II}_,||UZ*||,. Without loss of generality, we can assume that both UJt and U2 are
continuous and compactly supported. Now, we use the pairwise orthogonal conditions, and we

have the following estimation

L2 < C? / U3 () U7 (y — (272 — 20))2dy — 0, as n — oo. (2.18)

This completes the proof of Claim (i).
For (2.16), we have

l l
JE( X U@ —a)P)| 32 Uz — 27,)]dx
j=1 j=1
<C (JIXEWPH+ X E(GUIIZIUP+ X |UUdz),
j=1 1<4,k<l,j#k Jj=1 1<4,k<l,j#k

which implies that

B X Ve = a)) 3 V(e — o) Pdo — 32 ] BP0 Pda

IN

l
CY [E(UPNUPde+ > [E(UIP)|U;Pdx
j=1

1<, k<L, j#k

+C ¥ JE(UUIDUSPde+ > [E(ULP)IULURdx (2.19)

1<id, 4, k<l,i#] 1<4,5,k<l,j#k

+C 2 JE(U.UINIUU | d

1<i g, k,m<lij k#m

= I+I1I+1II
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Without loss of generality, we can assume that U?, U7, U¥ and U™ are continuous and compactly

supported. Using the orthogonal conditions and the properties of the singular operator E(u),

we have
I=C ¥  JE(UIPUPd = > [E(UP)(z—a]) Uz — o) Pda
1<j,k<l,j#k 1<4,k<l,j#k
=C ¥ JEWUP)@)|U z— (2 — 23))[*dw
1<5,k<l,j#k
— 0, as n — oo,
1 <o ¥ BTN+ IE(U D)= UL U]
1<i,5,k<l,i#j
<C X U:IUE
1<i,g,k<l,i#j
— 0, asn — oo
and
II1<cC Z IE(ULUIN 2| URU |2 — 0, as n — oc.

1<i,5,k,m<L i k#m
The last step estimations of I, IT and III follows from the proof of Claim (i) and this completes
the proof of Claim (ii).
Therefore, by (2.12) and (2.14)- (2.16), we have

l

. ) . 1
Z/(|UJ|4+E(|U72)|U]2)dm—> 5o as n— oo (2.20)
j=1

On the other hand, by the definition of .J, we have
J/(|Uj4 +E(U )|V [*)de < U7 VT3 (2.21)
Since the series ) ||U”||3 is convergent, there exists a jo > 1 such that
17l = sup{||U7 |2 3 j > 1}. (2.22)

It follows from (2.20)-(2.22) that

Jj=1

1<y (z o+ E<|Uf‘|2>|w‘|2>dm> <ouw(lvls 52 1) (i ||vw'||§>
’ (2.23)

< [|U]l ( 1IIVUJH%) < (|5l

Jj=

It follows from (2.13) that ||U7]||; = 1, which implies that there exists only one term U’ # 0
such that

. . . . . 1
[U%]l2 =1, [[VUP[]; =1 and /(lUJOI4 + E(UPP)U P)dr = 5. (2.24)

9.
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Therefore, we show that U’ is the minimizer of J(u). It follows from Lemma 2 that

;AU” — U+ 20U+ B(UR U = 0 (2.25)

We may assume that U7° is an real positive function by the definition of J(u).

On the other hand, if @ is the solution of Equation (2.1), we claim

—;/Cfda:—g/|VQ2dm+/Q4+E(|Q|2)Q2da:=0 (2.26)
and
/Q2dx+/|vc2|2da:—/Q4+E(|Q2)Q2dx =0. (2.27)

Indeed, multiplying (2.1) by @ and integrating by parts, we have that (2.26) is true.
For another thing, multiplying (2.1) by x - VQ and integrating by parts, we have

;/Agx-vc}dx— ;/Qx-Vde+/QQQQ:-Vde+/E(|Q|2)Qx-VQd:r: 0.

It follows from some basic calculations that

—/AQI~Vde:/|VQ|2dx+/z~V(|v

Q.1 ,
: )dw——2/|vc2 dz,

Qr-VQdx = —§ Q?dx,
2

/Q2Qx -VQdz = —i/Q4d$
and

[ ety vaa == [ Biargtar

Collecting the above identities, we have that (2.27) is true.

Now, we return to the proof of Proposition 4, and we take U7 = aQ(Az + b) with @Q is
the positive solution of (2.1). By some computations, we have that |[U7°]]2 = i—iHQH% =1,
VU3 = 2 [VQI3 = 1 and [([U5] + E(U#[2)|U 2)dz = & [(QI'+ E(QI?)|QP)dz = L.
Applying Claim (2.26) and (2.27), we have

/ (1QI* + E(QP)QP)dz = 2 / Qe =2 / VQ[*de,
which implies that
A | L QI3

J — = — 2.28
o J1QF + B(QP QP ~ 222~ 2 (225)
This completes the proof Proposition 4.
In the end of this section, we consider the following elliptic equation
3 1
SR - 5JDHLE(\J%F)R:0, Re H'. (2.29)

By the same argument in Theorem 1, we have the following theorem.

- 10 -
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Theorem 2. Let f € H', then

2
I3

/E(|f|2)|f2dx < IV AI11f 12, (2.30)

where R is the solution of Equation(2.29).

Remark 1. The best constant of the generalized Gagliardo-Nirenberg inequalities (2.2) and
(2.30) are dependent on space dimension N, but it is independent of the choice of the ground
state solution Q(x) and R(x). Since the effect of singular integral operator E, the uniqueness of
elliptic Equations (2.1) and (2.29) is still open. In this paper, for the elliptic Equations (2.1)
and (2.29), we suppose all minimizers of the corresponding variational problem have the same

L? norm.

In the end, we collect Weinstein’s[22] results, and we consider the following elliptic equation

1 — P+ |PP~'P =0, Pc H". (2.31)

Strauss[21] showed the existence of equation (2.31). Weinstein[22] showed the best constant of
the Gagliardo-Nirenberg inequality, as follows

Proposition 5. Let f € H' and 1 < p <5, then

p+ 1 3(p—1) 5—p
IF155 < Wﬂvfﬂg Ol (2.32)
2

where P is the solution of Equation (2.31).

3 Sharp Blow-up Criteria

In this section, using the sharp Gagliardo-Nirenberg inequalities obtained in Section 2, we
obtain the sharp blow-up criteria to the Cauchy problem (0.1)-(0.2). More precisely, establishing
four classes of invariant evolution flows according to the value of p, we obtain the sharp blow-up
criteria to the Cauchy problem (0.1)-(0.2) for all 1+ 2 < p < 5.

e Sharp Criteria for p =3

Theorem 3. Let p =3, ug € H' and satisfy

2
H (uo)[uoll3 < 7= 1@Qll2- (3.1)

Then, we have that

- 11 -
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(1) If )

IVuollslluoll2 < SIS, (3.2)
then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover,
u(t, z) satisfies

IVu(t, ©)ll2l[ult, )2 < ;I\Q\li (3-3)
(ii) If
Vuolllluollz > 2 113 (3.4)

and |x|luy € L?, then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +00,

where @ s the solution of Equation (2.1).
Proof. Applying the generalized Gagliardo-Nirenberg inequality (Theorem 1), we have

H(u) =3 [|Vul*dz— % [ |u]* + E(|u]?)|ul*dz

(3.5)
> 3Vull} — 3Vl
Now, we define a function f(y) on [0, +0o0) by
1 [uollz
fly)=Sy* - v
27 20l
then we have f(y) is continuous on [0, +00) and
’ 3[luollz o 3[Juoll
fly)=y- y =yl - y)- (3.6)
2/|QlII2 21QII13
It is obvious that there are two roots for equation f (y) = 0: y; = 0, yp = ;‘llﬁ“lé. Hence, we

have that y; and y, are two minimizers of f(y), and f(y) is increasing on the interval [0, y,)
and decreasing on the interval [ys, +00).
Note that f(0) = 0 and fie: = f(y2) = 219

27[uoll3

S

By the conservation of energy and

assumption (3.1), we have

2[ I3
27 [ uolI3

FUIVull2) < H(u) = H(ug) < = f(y2)- (3.7)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two

invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows.

2(1QI13
27

2
Kii={ue H" [0 <|Vullllul; < SQI5 0 < H(u)ull; <

and 4
2|1Qll5

2
Ky i={ue H" [ [Vulls]ulz > ZIIQ[5, 0 < H(w)llul; < =5

.

- 12 -
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Indeed, by the conservation of mass and energy, we have ||ulls = ||ug|l2 and H(u) = H(ug).

If up € K, we have 0 < H(u)|[u|3 < 291

IVugll2 < y2. Since f(y) is continuous and increasing on [0, y2) and f(y) < foar =

and [|Vugl2[lullz < 2/|Q[]3, which implies that
2)llQll3

27[[uoll3?

we

have that for all ¢ € I(maximal existence interval)
IVu(t, z)]l2 < ya,

which implies that K is invariant.
If ug € Ks, we have ||[Vug|2[luoll2 > 3[|Q|3, which implies that |[Vug|2 > y2. Since f(y)

is continuous and decreasing on [yz, +00) and f(y) < fomaz = 227‘|“|I3) ‘an we have that for all
2
t € I(maximal existence interval)
2
IVu(t, z)ll2 > y> and [[Vu(t, )|a[lu(t, 2)]2 > ZIIQI3, (3.8)

which implies that K, is invariant.

Now, we return to the proof the Theorem 3. By (3.1) and (3.2), we have uy € K;. Applying
the invariant of K, we have that (3.3) is true and the solution wu(¢,x) of the Cauchy problem
(0.1)-(0.2) exists globally. This completes the part (i) of the proof.

By (3.1) and (3.4), we have uy € K>. Applying the invariant of K5, we have (3.8) is true.
If we assume |z|ug € L?, then we have |z|u(t,z) € L? by the local well-posedness. Thus, we

recall the virial identity and the conservation of energy H (u(t)) = H(ug), and we have

J'() =L [z |u(t,z)]?dx
=8 [ |Vul?dz — 6 [ |ul* + E(Ju|?)|u|?dz (3.9)
= 24H (ug) — 4[|Vul|3.

Multiplying both side of (3.9) by |luol|3, applying the conservation laws, (3.1) and (3.8), we

have
luoll3 sz [ |2f?lut, z)[*dz = 24H (ug)uo||3 — 4| Vul|3 ] uo|3
(3.10)
< glel: - Flelz =o.
By the classical analysis identity
t
J(t) = J(0) + J (0)¢ + / T (s)(t — 5)ds, (3.11)
0

we have that the maximal existence interval I of u(¢,z) must be finite, which implies that
the solution u(t,z) of the Cauchy problem (0.1)-(0.2) blows up in finite time 7" < +oo. This

completes the proof.

e Sharp Criteria for p=1+ %

- 13-
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Theorem 4. Let p =1+ 3, ug € H' and satisfy

4 4
2| RIS(IPIS — lluoll3)?
27 uol[311PII3

luoll2 < [[P[l2 and H(uo) < (3.12)

Then, we have

(i) 1f -
2 [[RIZAIPNS — [luoll3)
3 1PI3

then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover, for

all time t, u(t, x) satisfies

[V |2]|uoll2 <

(3.13)

4 4
2 | RIBIPIS — [luolls)
’ 1713

IVu(t, z)|laf[u(t, 2)]2 < ~ (3.14)
(ii) If

2 [ RIBIPYS ~ uolld)
S el

and |x|lug € L?, then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +00,

Vg |2][uoll2 >

(3.15)

where P is the solution of Equation (2.31) and R is the solution of Equation (2.29).

Proof. Applying Theorem 2 and Proposition 5, we have

H(u) L[|\ VulPde — 555 [ |ul* 5de — L [ B(|ul?)|ul?dx

2+ 3% 4
s (3.16)
> | Vul3 - ”“—";%Hwnz — Sl [ Va3,
Now, we define a function f(y) on [0, +0o0) by
T Juolls \ o luoll2 5
9 SV T oRpY
2| Pl 2
then we have f(y) is continuous on [0, +00) and
’ Ug % 3 Ug||2

)Y — Y.
1P| 2| RI3

4 4
, 4 4
IRIUPIS ~lluolls)

4
lluollll PNl 3
0. Hence, we have that y; and y» are two minimizers of f(y), and f(y) is increasing on the

It is obvious that there are two roots for equation f’ (y)=0: y1 =0, y2 = %

interval [0,y2) and decreasing on the interval [ys, +00).

14 -
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Note that f(y;) = 0 and

o 2ARIAPIS — ol
Jmar = fly2) = =000 2P

By the conservation of energy and the assumption (3.12), we have
f(IVull2) < H(u) = H(uo) < f(y2)- (3.18)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two

invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows.

2 |RIBAIPIS = lluoll3)
3 I1PIl3

2

Ks:={uc H' |0 < ||Vula|ul. <

» lulls < [[Pll2, 0 < H(u) < D}

and

2 [ RIGAUPIS = llull5)

Ky:={ue H" |||Vul2||ul > 3 3
(PiEs

o lullz < [[Pll2; 0 < H(u) < D},

4 4
2|RISUIPINS —llulld)? .
where D = 2l ”227(\I‘uo‘\||22\| PH|\4H2 ) Indeed, by the conservation of mass and energy, we have ||ulls =
2 2

lluoll2 and H(u) = H(up). If ug € K3, we have |lull2 < ||Pll2, 0 < H(u) < D and ||Vugll2 <
2 I\R\lg(HPHg—HZng)

luollll Pl
0 < f(y) < D, we have that for all ¢ € I(maximal existence interval)

, which implies that ||Vuol|l2 < y2. Since f(y) is increasing on [0,y2) and

2 |RIZUPIS — lluoll3)
3 1Pl

IVu(t, z)2llu(t, z)]2 <

which implies that K3 is invariant.

4 4
If ug € K4, we have ||ulls < ||Pll2, 0 < H(u) < D and ||Vuglly > %”R”%(”P‘lg_llg‘)“’?), which
lluoll2 I PIS

implies || Vug||2 > y2. Since f(y) is decreasing on [y2,00) and 0 < f(y) < D, we have that for

all t € I(maximal existence interval)

2 [ RIEIPIS — [luollz)

||Vu(t7x)||2 > Yo and ||Vu(t,$)“2”u(t,$)||2 > 3 HPH&
5

(3.19)
which implies that K, is invariant.

Now, we return to the proof the Theorem 4. By (3.12) and (3.13), we have uy € Kj;.
Applying the invariant of K3, we have that (3.14) is true and the solution u(t, ) of the Cauchy
problem (0.1)-(0.2) exists globally. This completes the part (i) of the proof.

By (3.12) and (3.15), we have ug € K4. Applying the invariant of K4, we have (3.19) is

true. If we assume |x|ug € L?, then we have |z|u(t,x) € L? by the local well-posedness. Thus,

15 -
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we recall the virial identity and the conservation of energy H(u(t)) = H(ug), and we have

1"

J't) =L [z |ult,z)]*dz

= 8 [ |Vuf2de — 2% [ [uf**} 6 [ E(|uf?)ulde

4 3.20
=24 (ug) — 4 [ |Vul*dz + 535 [|u[*T5dx (3:20)
< 24H (uo) — A[1 — Ll )7y 2.
|P[3
By the assumption (3.12), it follows from (3.19) and (3.20) that
ol 2% [ |2?|u(t, «)[2de < 24H (ug)|luol|3 — 4[1 — L2117 o |3
1P| (3 21)

4 4 4 4
16| Rl UIPIS —lluoll3)® _ 16IRISUIPIS —lluoll$)® _ 0

<
9IPIl3 9PI3 ’

which implies that the solution u (¢, x) of the Cauchy problem (0.1)-(0.2) blows up in finite time
T < 4o00. This completes the proof.

In order to study the sharp thresholds of blow-up and global existence for the Cauchy
problem (0.1)-(0.2) for 1 + % <p<3and 3 < p <5, we need the following preparations.
Let us define a function g(y) on [0, 4+00)

3(p — Duolly* e 3||U0||2y
4| PII5™ 2[1P3 ™

gly) =1- (3.22)

where P is the solution of Equation (2.31). We claim that there exists an unique positive

solution yq for the equation g(y) = 0. Indeed, by some computations, we have for y > 0

5-p
/ 3(p—1)Bp = Nluolly®  sw-n_3  3fuoll

9 () =— = y <0, (3.23)
8Pl 2| P13
which implies that g(y) is decreasing on [0, 4+00). Notice that
g(0)=1>0,
and 62
g(2||P||§ __3— 1)(2 az Jluoll, "
3luol|2 43 1P~
Since g(y) is continuous on [0,400), there exists an unique positive y, € [0, ;‘PZE] such that

9(yo) = 0.

e Sharp Criteria for 1+ % <p<3

- 16 -
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Theorem 5. Let 1+ 3 <p <3, ug € H' and satisfy

3p—7
0< H — . 3.24
Then, we have
(i) If
HVUOHQ < Yo, (325)

then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover, for
all time t, u(t, x) satisfies

[Vu(t, z)|l2 < yo. (3.26)

(it) If
HVUOHQ > Yo, (327)

and |z|ug € L?, then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +00,

where yo is the unique positive solution of the equation g(y) =0 and g(y) is defined in (3.22).
Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 5), we have

H(u) = %f |Vul?dz — == [ |u[Ptdz — %fE(|u|2)|u|2d:c

1+p
> 1 [ [VuPdo - o [ [up*de - 1 [ ul'ds (3.28)
! >l WLy, 3
> 3IVul - BT uly T~ s vl

Now, we define a function f(y) on [0, +00) by

1

5-p
2 luolla®  seon Juollz g

fly)=sv* — ——=—vy v,
2 2P| 2| PlI5

then we have f(y) is continuous on [0, +0c0) and

/ 3(p— Duolls® son_»  3Juolls
fy)=y[l— - y 2 - y) =
4| P|5 T 2||P[I3

y9(y)- (3.29)

By the properties of g(y), we have

’

£(0) = f'(y0) = yog(yo) =0 and f"(yo) = g(y0) + yog (y0) < O, (3.30)

which implies that 0 and y, are two minimizers of f(y), and f(y) is increasing on the interval

[0,90) and decreasing on the interval [yq, +00).
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Note that fa. = f(yo) and f(0) = 0. Since g(yo) = 0, we have

2P 3(p-1)
1,2 Hu0H2 b

fmae = f(yo) = 3% — gypirY0 ° — draleys
=[5 — st ld + [ — Sl e (3:51)
> S Yh-
By the conservation of energy and the assumption (3.24), we have
H(u) = H(ug) < ;Eiz)yo < fmaz- (3.32)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two

invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows. We set

3 7
Ks:={ue H" | 0<||Vullz <yo, 0< H(u) < 6(§ ) vo}
and S
Ko:={ue H" | |Vulls > yo, 0 < H(u) < ai L
Indeed, by the conservation of mass and energy, we have ||ull2 = ||uo|l2 and H(u) = H (uop).

If up € K5, we have 0 < H(u) < ?(’i I) y3 and ||[Vugll2 < yo. Since f(y) is continuous and
3p—7

increasing on [0, o) and f(y) < 6(p—1

)yo < fmaz, we have that for all ¢ € I(maximal existence
interval)
[Vu(t, z)|l2 < vo,

which implies that K5 is invariant.

If ug € Kg, we have 0 < H(u) < 6:2271)3/0 and ||Vugll2 > yo. Since f(y) is continuous

and decreasing on [yo, +00) and f(y) < G:Z I) Y5 < fmaz, we have that for all ¢t € I(maximal

existence interval)
[Vu(t, z)l2 > vo, (3.33)

which implies that Kg is invariant.

Now, we return to the proof the Theorem 5. By (3.24) and (3.25), we have uy € K.
Applying the invariant of K5, we have that (3.26) is true and the solution wu(t, z) of the Cauchy
problem (0.1)-(0.2) exists globally . This completes the part (i) of the proof.

By (3.24) and (3.27), we have uy € Ks. Applying the invariant of Kg, we have (3.33) is
true. If we assume |z|ug € L?, then we have |x|u(t,z) € L? by the local well-posedness. Thus,

we recall the virial identity and the conservation of energy H(u(t)) = H(ug), and we have

1"

J't) =L [z lult,z)]*dz

=8 [ |Vul*dz — 121()111) [ ufpttde — 1 [ E(|ul?)|ul*dz

(3.34)
=12(p — 1)H (uo) — [6(p — 1) — 8]||Vull3 + [3(p — 1) — 6] [ E(|ul*)|ul*dz

<23(p—1) —4lys — [6(p— 1) — 8Jys =0,

- 18 -
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for 1 +3 < p < 3, which implies that the solution u(t,z) of the Cauchy problem (0.1)-(0.2)
blows up in finite time 7" < +o0. This completes the proof.

e Sharp Criteria for 3 <p <5

Theorem 6. Let 3 <p <5, ug € H* and satisfy

1
0 < H(up) < gyg. (3.35)
Then, we have that
(i) If
[Vuoll2 < yo, (3.36)

then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) exists globally . Moreover, for
all time t, u(t,x) satisfies

[Vu(t, z)|l2 < yo. (3.37)
(it) If
[Vuoll2 > yo, (3.38)
and |z|ug € L?, then the solution u(t,x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < 400,
where yo is the unique positive solution of the equation g(y) =0 and g(y) is defined in (3.22).

Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 5), we have

H(u) =35 [IVulde — o [|ulP* = 5 [ E(luf?)|ul’dz
5-p 3(;,271) (339)

2
> 1Vullf - i [Vully, = - il |Vl

Now, we define a function f(y) on [0, +0o0)

5—p
1 Juolly  sw—v  |lugllz 4
fy) =z -2y~ 7 — Y,
2 2(|P|5~" 2||P||3

then we have f(y) is continuous on [0, +00) and

5-p
, _ 3 = Dluolly” s 5 3fuoll

fy) =yl Y yl =y9(y), (3.40)

4| P|5 2(|1P|13

where ¢(y) is defined in (3.22). By the properties of g(y), we have
F1(0) = f'(y0) = yog(y0) =0 and £ (y0) = 9(t0) + ¥og (30) <0, (3.41)
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which implies that 0 and y, are two minimizers of f(y), and f(y) is increasing on the interval
[0,40) and decreasing on the interval [yg, +00).
Note that f(0) =0 and fae = f(yo). Since g(yo) = 0, we have

Fooe = flyo) = Ly? — luolla 2, 222 juglls 3
max — Yo - Qyo QHPHg—l Yo 2||p“§y0

_ wlly 2 2 3.42
=[5 - 3+ (25t - el Ty, (3.42)

Y

§Y5-
By the conservation of energy and the assumption (3.35), we have

0 < H(u) = H(ug) < éyg < Fonan- (3.43)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two

invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows. We set

1
K;={uc H" | 0< ||[Vuls <yo, 0< H(u) < ~y3}

6
and )
Kg:={ue H"| |Vuls >y, 0 < H(u) < éyg}
Indeed, by the conservation of mass and energy, we have ||ulls = ||ug|l2 and H(u) = H(uy).

If ug € Ky, we have |[Vugll2 < yo. Since f(y) is continuous and increasing on [0,y0) and

Vyel0,+00), fly) < %y% < fmaz, We have that for all ¢ € I(maximal existence interval)
[Vu(t, z)ll2 < vo,

which implies that K is invariant.
If uy € Kg, we have ||[Vugll2 > yo. Since f(y) is continuous and decreasing on [y, +00)

and V y € [0,400), f(y) < £48 < fmax, We have that for all ¢ € I(maximal existence interval)
[Vu(t, z)l2 > o, (3.44)

which implies that Ky is invariant.

Now, we return to the proof the Theorem 6. By (3.35) and (3.36), we have uy € K.
Applying the invariant of K7, we have that (3.37) is true and the solution (¢, x) of the Cauchy
problem (0.1)-(0.2) exists globally . This completes the part (i) of the proof.

By (3.35) and (3.38), we have uy € Ks. Applying the invariant of Ky, we have (3.44) is
true. If we assume |z|ug € L?, then we have |z|u(t,z) € L? by the local well-posedness. Thus,

we recall the virial identity and the conservation of energy H(u(t)) = H(ug), and we have
IO = [lallutt, o) Pde
=8 [ |Vul?dz — 222V [|u[ptlde — 1 [ E(jul?)|ul?dz

p+1

(3.45)
= 24H (ug) — 4[|V} + Z=2E=D [ |y[r+ida

p+1
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for 3 < p < 5, which implies that the solution (¢, z) of the Cauchy problem (0.1)-(0.2) blows
up in finite time T" < 400. This completes the proof.

4 Properties of Blow-up Solutions

In this section, we shall investigate the blow-up properties of the solutions to the Cauchy
problem (0.1)-(0.2). We prove the nonexistence of the L? strong limit to the blow-up solutions
of the Cauchy problem (0.1)-(0.2) for 1 < p < 3, as follows.

Theorem 7. Let 1 < p < 3 and the initial data ug € H'. If the solution of the Cauchy problem
(0.1)-(0.2) u(t,x) blows up in finite time T' < 400, Then for any sequence {t,};>, such that

tn = T asn — oo, {u(t,, )}, does not have any strong limit in L as n — oo.

Proof. We prove this result by contradiction. Suppose that {u(t,,x)}°; has a strong
limit in L3 along a sequence {t,}°°, such that ¢, — T as n — oco. Since the solution u(t, ) of
the Cauchy problem (0.1)-(0.2) blows up at finite time 7" in H*, we have |Vu(t,)|s = 400 as

n — +o00. By the conservation of energy

H(u) := 1/|Vu(t z)|? dacf /|u (t, )P dx — /E(|u|2)|u2dac = H(ug),
for 1 < p <3, we claim Vn # m,
IVu(ta)l3 < Cllu(ta) = ultn)lls + Cllutm)|i + C. (4.1)
Indeed, if p = 3, by the conservation of energy, we have
IVut)|Z. < 2H(uo) + llulta)li + 5 [ E(ju(tn)?)u(t,)*dz
< 2H (u) + Cllu(t,)|ls + C
< Cllultn) — utm)ll3 + Cllultnm)i + C-

If 1 < p < 3, using the Gagliardo-Nirenberg inequality and Hélder inequality, we have V & > 0

lu(t) 25} < CIVulta)ls = lluolla® < el Vu(t,)3 + C ().

By the conservation of energy, we have
IVu(ta)llf < 2H (uo) + el Vu(tn)ll3 + Cllu(t.)[i + C(e)

< el Vulta)l3 + Cllutn) = ultm)llz + Cllutm)]i + C,

for e < 1, which implies that Claim (4.1) is true.
Since 3 < 4 < 6, applying the Holder’s inequality for i = g + %, 6 € (0,1), we have

() — u(ta) i < Cllultn) — ultm) 18 ]u(ts) — u(tn)llg" "

< Cllultn) = ultm)II1V (w(tn) = u(tm))3.

(4.2)

- 21 -
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It follows from (4.1) and (4.2) that for m # n large enough
IVu(ta)l3 < Cllutn) — w(tm) 51V ()3 + C, (4.3)

where C,,, depends on m.
On the other hand, since the sequence {u(t,)}%, converges strongly in L3, there is a

positive integer k such that for all n > k,m > k

Cllutn) — ultm)ll5 <

|

Therefore, choosing m = k in the inequality (4.3), we obtain that for all n > ny

1
IVa(tn)llz < 5lIValtn)ll; + C, (4.4)

which implies that the sequence {Vu(t,)}5%; is bounded in L?. This is contradictory to that
u(t, ) blows up in finite time 7" < +oo. This completes the proof.
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