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摘要：本文研究如下的 Davey-Stewartson 系统的爆破解

iut +△u+ |u|p−1u+ E(|u|2)u = 0, t ≥ 0, x ∈ R3, (DS)

其中 1 < p < 5. 首先，利用 H1(R3) 中有界序列的图景分解, 我们给出了基态的一些新变分特
征以及广义 Gagliardo-Nirenberg 不等式. 进而, 对于 1 + 4

3
≤ p < 5，我们得到 (DS) 爆破解存

在的最佳判别准则.
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Abstract: In this paper, we study the blow-up solutions for the Davey-Stewartson system

iut +△u+ |u|p−1u+ E(|u|2)u = 0, t ≥ 0, x ∈ R3, (DS)

where 1 < p < 5. Firstly, using the profile decomposition of the bounded sequences in
H1(R3), we give some new variational characteristics for the ground states and generalized
Gagliardo-Nirenberg inequalities. Moreover, we obtain the precise expressions on the sharp
blow-up criteria to (DS) for 1 + 4

3
≤ p < 5.
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0 Introduction

This paper is concerned with the Cauchy problem of the following Davey-Stewartson system

iut +△u+ |u|p−1u+ E(|u|2)u = 0, t > 0, x ∈ RN , (0.1)

u(0, x) = u0, (0.2)

where i =
√
−1; △ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · · + ∂2

∂x2
N

is the Laplace operator on RN ; u = u(t, x):
[0, T )×RN → C is the complex valued function and 0 < T ≤ +∞; the parameter 1 < p < 2∗−1

(where 2∗ = +∞ for N = 2; 2∗ = 2N
N−2

for N ≥ 3 ); E is the singular integral operator with
symbol σ1(ξ) = ξ21

|ξ|2 , ξ ∈ RN , E(ψ) = F−1 ξ21
|ξ|2Fψ, F and F−1 are the Fourier transform and

Fourier inverse transform on RN , respectively.
For the Cauchy problem (0.1)-(0.2), Ghidaglia and Saut[1], Guo and Wang[2] established

the local well-posedness in the energy space H1 for N = 2 and N = 3 respectively (see[3, 4] for
a review). Cipolatti [5] showed the existence of the standing waves. Cipolatti[6], Ohta[7, 8],
Gan and Zhang[9] showed the stability and instability of the standing waves. Ghidaglia and
Saut[1], Guo and Wang [2] showed the existence of the blow-up solutions. Ozawa[10] gave the
exact blow-up solutions. Wang and Guo [11] studied the scattering of solutions. Richards[12],
Papanicolaou etal [13], Gan and Zhang[14, 9], Shu and Zhang[15] studied the sharp conditions
of blow-up and global existence. Richards [12] obtained the mass-concentration properties of
the blow-up solutions in L2-critical case in R2.

We note that in R2, Richards[12] and Papanicolaou etal [13] gave the precise expression
on the sharp blow-up criteria in L2-critical case that is N = 2 and p = 3. But in R3 Equation
(0.1) has not any L2-critical case because of influence of the nonlocal term E(|u|2)u. Although
in [14, 9, 15] some sharp thresholds of blow-up and global existence are gotten, we also note
that the upper bound d of the energy functional I(u) is not determined. This motivates us to
investigate the precise expression on the sharp blow-up criteria in R3.

In the present paper, firstly, we study the sharp blow-up criteria for the Cauchy problem
(0.1)-(0.2) in R3 for 1 + 4

3
≤ p < 5. Motivated by Holmer and Roudenko’s studies[16] for the

classical L2-super nonlinear Schrödinger equation, we consider the following elliptic equations

3

2
△Q− 1

2
Q+ |Q|2Q+ E(|Q|2)Q = 0, Q ∈ H1(R3) (0.3)

and
3

2
△R− 1

2
R+ E(|R|2)R = 0, R ∈ H1(R3). (0.4)

Applying the profile decomposition of the bounded sequences inH1(R3), we obtain the following
generalized Gagliardo-Nirenberg inequalities∫

|f |4 + E(|f |2)|f |2dx ≤ 2

∥Q∥22
∥∇f∥32∥f∥2, ∀ f ∈ H1(R3) (0.5)
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and ∫
E(|f |2)|f |2dx ≤ 2

∥R∥22
∥∇f∥32∥f∥2, ∀ f ∈ H1(R3) (0.6)

whereQ is the solution of Equation (0.3) and R is the solution of Equation(0.4). Using the above
Gagliardo-Nirenberg inequalities, we obtain the sharp blow-up criteria to the Cauchy problem
(0.1)-(0.2) for 1 + 4

3
≤ p < 5 by overcoming the loss of scaling invariance. We remark that we

get a clear bound value of energy functional, which corresponds to d in [9]. Furthermore, we
prove that there is no L3 strong limit of the blow-up solutions to the Cauchy problem (0.1)-(0.2)
provided 1 < p ≤ 3.

There are two major difficulties in the analysis of blow-up solutions to the Davey-Stewartson
system (0.1)-(0.2) in H1(R3): one is the nonlinearity containing the singular integral operator
E; the other one is the loss of scaling invariance to Equation (0.1) for p ̸= 3, which destroys
the balance between |u|p−1u and E(|u|2)u. Due to the singular integral operator E, we have to
establish the corresponding generalized Gagliardo-Nirenberg inequalities and variational struc-
tures. Since there is no scaling invariance for p ̸= 3, improving Holmer and Roudenko’s method
we use the ground state of the classical nonlinear Schrödinger equation to describe the sharp
blow-up criteria to the Davey-Stewartson system (0.1)-(0.2). Finally, for the time being, as
we have mentioned, the results in the present paper are new for the Davey-Stewartson system
(0.1)-(0.2). In particular, the sharp blow-up criteria are different from [9], and the sharp blow-
up criteria obtained in this paper are more precisely, which is very useful from the viewpoint
of physics.

We conclude this section with several notations. We abbreviate Lq(R3), ∥ ·∥Lq(R3), Hs(R3)

and
∫
R3 ·dx by Lq, ∥ · ∥q, Hs and

∫
·dx. The various positive constants will be simply denoted

by C.

1 Preliminary

For the Cauchy problem (0.1)-(0.2), the energy space is defined by

H1 := {u ∈ L2 ; ∇u ∈ L2},

which is a Hilbert space. The norm of H1 is denoted by∥·∥H1 . Moreover, we define a functional
H(u) in H1 by

H(u) :=
1

2

∫
|∇u(t, x)|2dx− 1

p+ 1

∫
|u(t, x)|p+1dx− 1

4

∫
E(|u|2)|u|2dx.

The functional H is well-defined according to the Sobolev embedding theorem and the proper-
ties of the singular operator E.

Guo and Wang[2] established the local well-posedness of the Cauchy problem (0.1)-(0.2)
in energy space H1.
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Proposition 1. Let u0 ∈ H1. There exists an unique solution u(t, x) of the Cauchy prob-
lem (0.1)-(0.2) on the maximal time [0, T ) such that u(t, x) ∈ C([0, T );H1) and either T =

+∞(global existence), or else T < +∞ and limt→T ∥u(t, x)∥H1 = +∞ (blow-up). Furthermore,
for all t ∈ [0, T ), u(t, x) satisfies the following conservation laws

(i) Conservation of mass
∥u(t, x)∥2 = ∥u0∥2, (1.1)

(ii) Conservation of energy
H(u(t, x)) = H(u0). (1.2)

For more specific results concerning the Cauchy problem (0.1)-(0.2), we refer the reader
to[1, 4]. In addition, by some basic calculations, we have the following proposition(see also
Ohta[8]).

Proposition 2. Assume that u0 ∈ H1, |x|u0 ∈ L2 and the corresponding solution u(t, x)

of the Cauchy problem (0.1)-(0.2) on the interval [0, T ). Then, for all t ∈ [0, T ) we have
|x|u(t, x) ∈ L2. Moreover, let J(t) :=

∫
|x|2|u(t, x)|2dx, we have

J
′
(t) = −4ℑ

∫
xu∇udx (1.3)

and
J

′′
(t) = 8

∫
|∇u|2dx− 12

p− 1

p+ 1

∫
|u|p+1dx− 6

∫
E(|u|2)|u|2dx. (1.4)

We give some known facts of the singular integral operator E (see Cipolatti[5, 6]), as
follows.

Lemma 1. Let E be the singular integral operator defined in Fourier variables by

F [E(ψ)](ξ) = σ1(ξ)F [ψ](ξ),

where σ1(ξ) = ξ21
|ξ|2 , ξ ∈ R3 and F denotes the Fourier transform in R3. For 1 < p < +∞, E

satisfies the following properties:

(i) E ∈ L(Lp, Lp), where L(Lp, Lp) denotes the space of bounded linear operators from Lp to
Lp.

(ii) If ψ ∈ Hs(R3), then E(ψ) ∈ Hs(R3), s ∈ R.

(iii) If ψ ∈Wm,p, then E(ψ) ∈Wm,p and

∂kE(ψ) = E(∂kψ), k = 1, 2.

(iv) E preserves the following operations:
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– translation: E(ψ(·+ y))(x) = E(ψ)(x+ y), y ∈ R3;

– dilatation: E(ψ(λ·))(x) = E(ψ)(λx), λ > 0;

– conjugation: E(ψ) = E(ψ),

where ψ is the complex conjugate of ψ.

At the end of this section, we shall give the profile decomposition of the bounded se-
quences in H1 proposed by Gérard[17], Hmidi and Keraani [18], which is important to study
the variational characteristic of the ground state.

Proposition 3. Let {vn}∞n=1 be a bounded sequence in H1. Then there is a subsequence of
{vn}∞n=1 (still denoted by {vn}∞n=1 ) and a sequence {V j}∞j=1 in H1 and a family of {xjn}∞j=1 ⊂ R3

such that

(i) for every j ̸= k, |xjn − xkn|
n→∞→ +∞;

(ii) for every l ≥ 1 and every x ∈ R3

vn(x) =
l∑

j=1

V j(x− xjn) + vln(x) (1.5)

with
lim
n→∞

sup ∥vln∥r
l→∞→ 0, (1.6)

for every r ∈ (2, 6).

Moreover, we have, as n→ ∞,

∥vn∥22 =
l∑

j=1

∥V j∥22 + ∥vln∥22 + o(1) (1.7)

and

∥∇vn∥22 =
l∑

j=1

∥∇V j∥22 + ∥∇vln∥22 + o(1). (1.8)

2 Sharp Gagliardo-Nirenberg Inequalities

In order to study the sharp blow-up criteria to the Cauchy problem (0.1)-(0.2), we have to
establish the generalized Gagliardo-Nirenberg inequalities corresponding to the Davey-Stewartson
system.

Firstly, we consider the following elliptic equation

3

2
△Q− 1

2
Q+ |Q|2Q+ E(|Q|2)Q = 0, Q ∈ H1, (2.1)
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which is the ground state of the Davey-Stewartson system (0.1)-(0.2) for p = 3. Cipolatti[5]
showed the existence of the elliptic Equation (2.1) in dimension two and three. Papanico-
laou etal [13] computed the best constant of the generalized Gagliardo-Nirenberg inequality in
dimension two.

In the present paper, applying the profile decomposition of the bounded sequences in
H1(R3), we obtain a new and simple proof of the existence for Equation (2.1) and the best
constant of the generalized Gagliardo-Nirenberg inequality in dimension three. We should point
out that the method used in this paper is different from [5, 13]. This method can be used for
the dimension N = 2.

Theorem 1. Let f ∈ H1, then∫
|f |4 + E(|f |2)|f |2dx ≤ 2

∥Q∥22
∥∇f∥32∥f∥2, (2.2)

where Q is the solution of Equation (2.1).

In order to prove the best constant of the generalized Gagliardo-Nirenberg inequality (2.2),
we consider the variational problem

J := inf{J(u) : u ∈ H1} where J(u) :=
(
∫
|u|2dx) 1

2 (
∫
|∇u|2dx) 3

2∫
(|u|4 + E(|u|2)|u|2)dx

. (2.3)

It is obvious that if W is the minimizer of J(u), then |W | is also a minimizer. Hence we can
assume that W is an real positive function. Indeed, W = |W |eiθ(x) we have

|∇|W || ≤ |∇W |

in the sense of distribution. On the other hand, if W ∈ H1, then|W | ∈ H1 and J(|W |) ≤ J(W ).
By some basic calculations, if W is the minimizer of J(u), we have the following lemma.

Lemma 2. If W is the minimizer of J(u), then W satisfies

3

2
∥W∥2∥∇W∥2△W − 1

2

∥∇W∥32
∥W∥2

W + 2J(|W |2 + E(|W |2))W = 0. (2.4)

Proof. Since W is a minimizing function of J(u) in H1, we have

d

dε
J(W + εv) |ε=0 = 0. (2.5)

By some basic calculations, we have

d

dε
{∥(W + εv)∥2∥∇(W + εv)∥32} |ε=0 =

1

2

∥∇W∥32
∥W∥2

∫
2ℜWvdx− 3

2
∥W∥2∥∇W∥2

∫
2ℜ△Wvdx

(2.6)
and

d

dε
{
∫

|(W + εv)|4 + E(|W + εv|2)|W + εv|2dx} |ε=0 = 4

∫
(|W |2 + E(|W |2)ℜWvdx. (2.7)
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By (2.5)-(2.7), we have
1
2

∥∇W∥3
2

∥W∥2

∫
2ℜWvdx− 3

2
∥W∥2∥∇W∥2

∫
2ℜ△Wvdx

= 2 ∥∇W∥3
2∥W∥2∫

|W |4+E(|W |2)|W |2dx

∫
(|W |2 + E(|W |2))2ℜWvdx,

(2.8)

which implies that (2.4) is true.
Now, we use the profile decomposition of the bounded sequences in H1 to prove the fol-

lowing proposition, and Theorem 1 is a direct conclusion of the following proposition.

Proposition 4. J is attained at a function U(x) with the following properties:

U(x) = aQ(λx+ b) for some a ∈ C∗, λ > 0 and b ∈ R3 (2.9)

where Q is the solution of Equation(2.1). Moreover,

J =
∥Q∥22
2

. (2.10)

Proof. If we set uλ,µ = µu(λx), where λ = ∥u∥2

∥∇u∥2
, µ =

∥u∥
1
2
2

∥∇u∥
3
2
2

, we have

∥uλ,µ∥2 = 1, ∥∇uλ,µ∥2 = 1 and J(uλ,µ) = J(u).

Now, choosing a minimizing sequence {un}∞n=1 ⊂ H1 such that J(un) → J as n → ∞,
after scaling, we may assume

∥un∥2 = 1 and ∥∇un∥2 = 1, (2.11)

and we have

J(un) =
1∫

|un|4 + E(|un|2)|un|2dx
→ J, as n→ ∞. (2.12)

Note that {un}∞n=1 is bounded in H1. It follows form the profile decomposition (Proposition 3)
that

un(x) =
l∑

j=1

U j(x− xjn) + rln(x),

l∑
j=1

∥U j
n∥22 ≤ 1 and

l∑
j=1

∥∇U j
n∥22 ≤ 1, (2.13)

where U j
n = U j(x − xjn). Moreover, using the Hölder’s inequality for rln and the properties of

E, we have

∫
(|rln|4 + E(|rln|2)|rln|2)dx ≤ C(∥rln∥44 + ∥E(|rln|2)∥2∥rln∥24)

≤ C(∥rln∥44 + ∥rln∥44) → 0, as l → ∞.
(2.14)

Applying the orthogonal conditions and the properties of E, we have the following claims:
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(i) ∫
|

l∑
j=1

U j(x− xjn)|4dx→
l∑

j=1

∫
|U j |4dx, as n→ ∞. (2.15)

(ii) ∫
E(|

l∑
j=1

U j(x−xjn)|2)|
l∑

j=1

U j(x−xjn)|2dx→
l∑

j=1

∫
E(|U j |2)|U j |2dx, as n→ ∞. (2.16)

Indeed, for (2.15), it suffices to show that

In =

∫
U j1

n U
j2
n U

j3
n U

j4
n dx→ 0, as n→ ∞ (2.17)

for 1 ≤ jk ≤ l and at least two jk are different. Assuming for example j1 ̸= j2, by the Hölder’s
inequality, we can estimate

|In|2 ≤ C2∥U j1
n U

j2
n ∥22,

where C = Π4
k=3∥U jk

n ∥4. Without loss of generality, we can assume that both U j1 and U j2 are
continuous and compactly supported. Now, we use the pairwise orthogonal conditions, and we
have the following estimation

|In|2 ≤ C2

∫
|U j1(y)U j2(y − (xj2n − xj1n ))|2dy → 0, as n→ ∞. (2.18)

This completes the proof of Claim (i).
For (2.16), we have

∫
E(|

l∑
j=1

U j(x− xjn)|2)|
l∑

j=1

U j(x− xjn)|2dx

≤ C (
∫
[

l∑
j=1

E(|U j
n|2) +

∑
1≤j,k≤l,j ̸=k

E(|U j
nU

k
n |)][

l∑
j=1

|U j
n|2 +

∑
1≤j,k≤l,j ̸=k

|U j
nU

k
n |]dx),

which implies that

∫
E(|

l∑
j=1

U j(x− xjn)|2)|
l∑

j=1

U j(x− xjn)|2dx−
l∑

j=1

∫
E(|U j |2)|U j |2dx

≤ C
l∑

j=1

∫
E(|U j

n|2)|U j
n|2dx+

∑
1≤j,k≤l,j ̸=k

∫
E(|U j

n|2)|Uk
n |2dx

+C
∑

1≤i,j,k≤l,i ̸=j

∫
E(|U i

nU
j
n|)|Uk

n |2dx+
∑

1≤i,j,k≤l,j ̸=k

∫
E(|U i

n|2)|U j
nU

k
n |dx

+C
∑

1≤i,j,k,m≤l,i ̸=j,k ̸=m

∫
E(|U i

nU
j
n|)|Uk

nU
m
n |dx

= I + II + III.

(2.19)
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Without loss of generality, we can assume that U i, U j , Uk and Um are continuous and compactly
supported. Using the orthogonal conditions and the properties of the singular operator E(u),
we have

I = C
∑

1≤j,k≤l,j ̸=k

∫
E(|U j

n|2)|Uk
n |2dx =

∑
1≤j,k≤l,j ̸=k

∫
E(|U j |2)(x− xjn)|Uk(x− xkn)|2dx

= C
∑

1≤j,k≤l,j ̸=k

∫
E(|U j |2)(x)|Uk(x− (xkn − xjn))|2dx

→ 0, as n→ ∞,

II ≤ C
∑

1≤i,j,k≤l,i ̸=j

[∥E(|U i
nU

j
n|)∥2∥Uk

n∥24 + ∥E(|Uk
n |2)∥L2∥U i

nU
j
n∥2]

≤ C
∑

1≤i,j,k≤l,i ̸=j

∥U i
nU

j
n∥2∥Uk

n∥24

→ 0, as n→ ∞
and

III ≤ C
∑

1≤i,j,k,m≤l,i ̸=j,k ̸=m

∥E(|U i
nU

j
n|)∥2∥Uk

nU
m
n ∥2 → 0, as n→ ∞.

The last step estimations of I, II and III follows from the proof of Claim (i) and this completes
the proof of Claim (ii).

Therefore, by (2.12) and (2.14)- (2.16), we have
l∑

j=1

∫
(|U j |4 + E(|U j |2)|U j |2)dx→ 1

J
, as n→ ∞. (2.20)

On the other hand, by the definition of J , we have

J

∫
(|U j |4 + E(|U j |2)|U j |2)dx ≤ ∥U j∥2∥∇U j∥32. (2.21)

Since the series
∑

j ∥U j∥22 is convergent, there exists a j0 ≥ 1 such that

∥U j0∥2 = sup{∥U j∥2 ; j ≥ 1}. (2.22)

It follows from (2.20)-(2.22) that

1 ≤ J

(
l∑

j=1

∫
(|U j |4 + E(|U j |2)|U j |2)dx

)
≤ sup{∥U j∥2 ; j ≥ 1}

(
l∑

j=1

∥∇U j∥32

)

≤ ∥U j0∥2

(
l∑

j=1

∥∇U j∥22

)
≤ ∥U j0∥2.

(2.23)

It follows from (2.13) that ∥U j0∥2 = 1, which implies that there exists only one term U j0 ̸= 0

such that

∥U j0∥2 = 1, ∥∇U j0∥2 = 1 and
∫
(|U j0 |4 + E(|U j0 |2)|U j0 |2)dx =

1

J
. (2.24)
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Therefore, we show that U j0 is the minimizer of J(u). It follows from Lemma 2 that
3

2
△U j0 − 1

2
U j0 + 2J(|U j0 |2 + E(|U j0 |2))U j0 = 0. (2.25)

We may assume that U j0 is an real positive function by the definition of J(u).
On the other hand, if Q is the solution of Equation (2.1), we claim

−1

2

∫
Q2dx− 3

2

∫
|∇Q|2dx+

∫
Q4 + E(|Q|2)Q2dx = 0 (2.26)

and ∫
Q2dx+

∫
|∇Q|2dx−

∫
Q4 + E(|Q|2)Q2dx = 0. (2.27)

Indeed, multiplying (2.1) by Q and integrating by parts, we have that (2.26) is true.
For another thing, multiplying (2.1) by x · ∇Q and integrating by parts, we have
3

2

∫
△Qx · ∇Qdx− 1

2

∫
Qx · ∇Qdx+

∫
Q2Qx · ∇Qdx+

∫
E(|Q|2)Qx · ∇Qdx = 0.

It follows from some basic calculations that

−
∫

△Qx · ∇Qdx =

∫
|∇Q|2dx+

∫
x · ∇(

|∇Q|2

2
)dx = −1

2

∫
|∇Q|2dx,∫

Qx · ∇Qdx = −3

2

∫
Q2dx,∫

Q2Qx · ∇Qdx = −3

4

∫
Q4dx

and ∫
E(|Q|2)Qx · ∇Qdx = −3

4

∫
E(|Q|2)Q2dx.

Collecting the above identities, we have that (2.27) is true.
Now, we return to the proof of Proposition 4, and we take U j0 = aQ(λx + b) with Q is

the positive solution of (2.1). By some computations, we have that ∥U j0∥22 = a2

λ3 ∥Q∥22 = 1,
∥∇U j0∥22 = a2

λ
∥∇Q∥22 = 1 and

∫
(|U j0 |4+E(|U j0 |2)|U j0 |2)dx = a4

λ3

∫
(|Q|4+E(|Q|2)|Q|2)dx = 1

J
.

Applying Claim (2.26) and (2.27), we have∫
(|Q|4 + E(|Q|2)|Q|2)dx = 2

∫
Q2dx = 2

∫
|∇Q|2dx,

which implies that

J =
λ3

a4
1∫

(|Q|4 + E(|Q|2)|Q|2)dx
=

1

2a2
=

∥Q∥22
2

. (2.28)

This completes the proof Proposition 4.

In the end of this section, we consider the following elliptic equation
3

2
△R− 1

2
R+ E(|R|2)R = 0, R ∈ H1. (2.29)

By the same argument in Theorem 1, we have the following theorem.
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Theorem 2. Let f ∈ H1, then∫
E(|f |2)|f |2dx ≤ 2

∥R∥22
∥∇f∥32∥f∥2, (2.30)

where R is the solution of Equation(2.29).

Remark 1. The best constant of the generalized Gagliardo-Nirenberg inequalities (2.2) and
(2.30) are dependent on space dimension N , but it is independent of the choice of the ground
state solution Q(x) and R(x). Since the effect of singular integral operator E, the uniqueness of
elliptic Equations (2.1) and (2.29) is still open. In this paper, for the elliptic Equations (2.1)
and (2.29), we suppose all minimizers of the corresponding variational problem have the same
L2 norm.

In the end, we collect Weinstein’s[22] results, and we consider the following elliptic equation

3(p− 1)

4
△P − 5− p

4
P + |P |p−1P = 0, P ∈ H1. (2.31)

Strauss[21] showed the existence of equation (2.31). Weinstein[22] showed the best constant of
the Gagliardo-Nirenberg inequality, as follows

Proposition 5. Let f ∈ H1 and 1 < p < 5, then

∥f∥p+1
p+1 ≤

p+ 1

2∥P∥p−1
2

∥∇f∥
3(p−1)

2
2 ∥f∥

5−p
2

2 , (2.32)

where P is the solution of Equation (2.31).

3 Sharp Blow-up Criteria

In this section, using the sharp Gagliardo-Nirenberg inequalities obtained in Section 2, we
obtain the sharp blow-up criteria to the Cauchy problem (0.1)-(0.2). More precisely, establishing
four classes of invariant evolution flows according to the value of p, we obtain the sharp blow-up
criteria to the Cauchy problem (0.1)-(0.2) for all 1 + 3

4
≤ p < 5.

• Sharp Criteria for p = 3

Theorem 3. Let p = 3, u0 ∈ H1 and satisfy

H(u0)∥u0∥22 <
2

27
∥Q∥42. (3.1)

Then, we have that

- 11 -

http://www.paper.edu.cn  中国科技论文在线 



(i) If
∥∇u0∥2∥u0∥2 <

2

3
∥Q∥22, (3.2)

then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover,
u(t, x) satisfies

∥∇u(t, x)∥2∥u(t, x)∥2 <
2

3
∥Q∥22. (3.3)

(ii) If
∥∇u0∥2∥u0∥2 >

2

3
∥Q∥22, (3.4)

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +∞,

where Q is the solution of Equation (2.1).

Proof. Applying the generalized Gagliardo-Nirenberg inequality (Theorem 1), we have

H(u) = 1
2

∫
|∇u|2dx− 1

4

∫
|u|4 + E(|u|2)|u|2dx

≥ 1
2
∥∇u∥22 −

∥u∥2

2∥Q∥2
2
∥∇u∥32.

(3.5)

Now, we define a function f(y) on [0,+∞) by

f(y) =
1

2
y2 − ∥u0∥2

2∥Q∥22
y3,

then we have f(y) is continuous on [0,+∞) and

f
′
(y) = y − 3∥u0∥2

2∥Q∥22
y2 = y(1− 3∥u0∥2

2∥Q∥22
y). (3.6)

It is obvious that there are two roots for equation f
′
(y) = 0: y1 = 0, y2 = 2∥Q∥2

2

3∥u0∥2
. Hence, we

have that y1 and y2 are two minimizers of f(y), and f(y) is increasing on the interval [0, y2)
and decreasing on the interval [y2,+∞).

Note that f(0) = 0 and fmax = f(y2) = 2∥Q∥4
2

27∥u0∥2
2
. By the conservation of energy and

assumption (3.1), we have

f(∥∇u∥2) ≤ H(u) = H(u0) <
2∥∥Q∥42
27∥u0∥22

= f(y2). (3.7)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two
invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows.

K1 := {u ∈ H1 | 0 < ∥∇u∥2∥u∥2 <
2

3
∥Q∥22, 0 < H(u)∥u∥22 <

2∥Q∥42
27

}

and
K2 := {u ∈ H1 | ∥∇u∥2∥u∥2 >

2

3
∥Q∥22, 0 < H(u)∥u∥22 <

2∥Q∥42
27

}.
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Indeed, by the conservation of mass and energy, we have ∥u∥2 = ∥u0∥2 and H(u) = H(u0).
If u0 ∈ K1, we have 0 < H(u)∥u∥22 <

2∥Q∥4
2

27
and ∥∇u0∥2∥u0∥2 < 2

3
∥Q∥22, which implies that

∥∇u0∥2 < y2. Since f(y) is continuous and increasing on [0, y2) and f(y) < fmax = 2∥∥Q∥4
2

27∥u0∥2
2
, we

have that for all t ∈ I(maximal existence interval)

∥∇u(t, x)∥2 < y2,

which implies that K1 is invariant.
If u0 ∈ K2, we have ∥∇u0∥2∥u0∥2 > 2

3
∥Q∥22, which implies that ∥∇u0∥2 > y2. Since f(y)

is continuous and decreasing on [y2,+∞) and f(y) < fmax = 2∥∥Q∥4
2

27∥u0∥2
2
, we have that for all

t ∈ I(maximal existence interval)

∥∇u(t, x)∥2 > y2 and ∥∇u(t, x)∥2∥u(t, x)∥2 >
2

3
∥Q∥22, (3.8)

which implies that K2 is invariant.
Now, we return to the proof the Theorem 3. By (3.1) and (3.2), we have u0 ∈ K1. Applying

the invariant of K1, we have that (3.3) is true and the solution u(t, x) of the Cauchy problem
(0.1)-(0.2) exists globally. This completes the part (i) of the proof.

By (3.1) and (3.4), we have u0 ∈ K2. Applying the invariant of K2, we have (3.8) is true.
If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local well-posedness. Thus, we
recall the virial identity and the conservation of energy H(u(t)) = H(u0), and we have

J
′′
(t) = d2

dt2

∫
|x|2|u(t, x)|2dx

= 8
∫
|∇u|2dx− 6

∫
|u|4 + E(|u|2)|u|2dx

= 24H(u0)− 4∥∇u∥22.

(3.9)

Multiplying both side of (3.9) by ∥u0∥22, applying the conservation laws, (3.1) and (3.8), we
have

∥u0∥22 d2

dt2

∫
|x|2|u(t, x)|2dx = 24H(u0)∥u0∥22 − 4∥∇u∥22∥u0∥22

< 16
9
∥Q∥42 − 16

9
∥Q∥42 = 0.

(3.10)

By the classical analysis identity

J(t) = J(0) + J
′
(0)t+

∫ t

0

J
′′
(s)(t− s)ds, (3.11)

we have that the maximal existence interval I of u(t, x) must be finite, which implies that
the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in finite time T < +∞. This
completes the proof.

• Sharp Criteria for p = 1 + 4
3
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Theorem 4. Let p = 1 + 4
3
, u0 ∈ H1 and satisfy

∥u0∥2 < ∥P∥2 and H(u0) <
2∥R∥42(∥P∥

4
3
2 − ∥u0∥

4
3
2 )

3

27∥u0∥22∥P∥42
. (3.12)

Then, we have

(i) If

∥∇u0∥2∥u0∥2 <
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

, (3.13)

then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover, for
all time t, u(t, x) satisfies

∥∇u(t, x)∥2∥u(t, x)∥2 <
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

. (3.14)

(ii) If

∥∇u0∥2∥u0∥2 >
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

, (3.15)

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +∞,

where P is the solution of Equation (2.31) and R is the solution of Equation (2.29).

Proof. Applying Theorem 2 and Proposition 5, we have

H(u) = 1
2

∫
|∇u|2dx− 1

2+ 4
3

∫
|u|2+ 4

3 dx− 1
4

∫
E(|u|2)|u|2dx

≥ 1
2
∥∇u∥22 −

∥u∥
4
3
2

2∥P∥
4
3
2

∥∇u∥22 −
∥u∥2

2∥R∥2
2
∥∇u∥32.

(3.16)

Now, we define a function f(y) on [0,+∞) by

f(y) = (
1

2
− ∥u0∥

4
3
2

2∥P∥
4
3
2

)y2 − ∥u0∥2
2∥R∥22

y3,

then we have f(y) is continuous on [0,+∞) and

f
′
(y) = (1− ∥u0∥

4
3
2

∥P∥
4
3
2

)y − 3∥u0∥2
2∥R∥22

y2. (3.17)

It is obvious that there are two roots for equation f ′
(y) = 0: y1 = 0, y2 = 2

3

∥R∥2
2(∥P∥

4
3
2 −∥u0∥

4
3
2 )

∥u0∥2∥P∥
4
3
2

>

0. Hence, we have that y1 and y2 are two minimizers of f(y), and f(y) is increasing on the
interval [0, y2) and decreasing on the interval [y2,+∞).
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Note that f(y1) = 0 and

fmax = f(y2) =
2∥R∥42(∥P∥

4
3
2 − ∥u0∥

4
3
2 )

3

27∥u0∥22∥P∥42
.

By the conservation of energy and the assumption (3.12), we have

f(∥∇u∥2) ≤ H(u) = H(u0) < f(y2). (3.18)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two
invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows.

K3 := {u ∈ H1 | 0 < ∥∇u∥2∥u∥2 <
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

, ∥u∥2 < ∥P∥2, 0 < H(u) < D}

and

K4 := {u ∈ H1 | ∥∇u∥2∥u∥2 >
2

3

∥R∥22(∥P∥
4
3
2 − ∥u∥

4
3
2 )

∥P∥
4
3
2

, ∥u∥2 < ∥P∥2, 0 < H(u) < D},

where D =
2∥R∥4

2(∥P∥
4
3
2 −∥u∥

4
3
2 )3

27∥u0∥2
2∥P∥4

2
. Indeed, by the conservation of mass and energy, we have ∥u∥2 =

∥u0∥2 and H(u) = H(u0). If u0 ∈ K3, we have ∥u∥2 < ∥P∥2, 0 < H(u) < D and ∥∇u0∥2 <
2
3

∥R∥2
2(∥P∥

4
3
2 −∥u0∥

4
3
2 )

∥u0∥2∥P∥
4
3
2

, which implies that ∥∇u0∥2 < y2. Since f(y) is increasing on [0, y2) and

0 < f(y) < D, we have that for all t ∈ I(maximal existence interval)

∥∇u(t, x)∥2∥u(t, x)∥2 <
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

,

which implies that K3 is invariant.

If u0 ∈ K4, we have ∥u∥2 < ∥P∥2, 0 < H(u) < D and ∥∇u0∥2 > 2
3

∥R∥2
2(∥P∥

4
3
2 −∥u0∥

4
3
2 )

∥u0∥2∥P∥
4
3
2

, which

implies ∥∇u0∥2 > y2. Since f(y) is decreasing on [y2,∞) and 0 < f(y) < D, we have that for
all t ∈ I(maximal existence interval)

∥∇u(t, x)∥2 > y2 and ∥∇u(t, x)∥2∥u(t, x)∥2 >
2

3

∥R∥22(∥P∥
4
3
2 − ∥u0∥

4
3
2 )

∥P∥
4
3
2

, (3.19)

which implies that K4 is invariant.
Now, we return to the proof the Theorem 4. By (3.12) and (3.13), we have u0 ∈ K3.

Applying the invariant of K3, we have that (3.14) is true and the solution u(t, x) of the Cauchy
problem (0.1)-(0.2) exists globally. This completes the part (i) of the proof.

By (3.12) and (3.15), we have u0 ∈ K4. Applying the invariant of K4, we have (3.19) is
true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local well-posedness. Thus,
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we recall the virial identity and the conservation of energy H(u(t)) = H(u0), and we have

J
′′
(t) = d2

dt2

∫
|x|2|u(t, x)|2dx

= 8
∫
|∇u|2dx− 16

2+ 4
3

∫
|u|2+ 4

3 − 6
∫
E(|u|2)|u|2dx

= 24H(u0)− 4
∫
|∇u|2dx+ 8

2+ 4
3

∫
|u|2+ 4

3 dx

≤ 24H(u0)− 4[1− ∥u0∥
4
3
2

∥P∥
4
3
2

]∥∇u∥22.

(3.20)

By the assumption (3.12), it follows from (3.19) and (3.20) that

∥u0∥22 d2

dt2

∫
|x|2|u(t, x)|2dx ≤ 24H(u0)∥u0∥22 − 4[1− ∥u0∥

4
3
2

∥P∥
4
3
2

]∥∇u∥22∥u0∥22

<
16∥R∥4

2(∥P∥
4
3
2 −∥u0∥

4
3
2 )3

9∥P∥4
2

− 16∥R∥4
2(∥P∥

4
3
2 −∥u0∥

4
3
2 )3

9∥P∥4
2

= 0,

(3.21)

which implies that the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in finite time
T < +∞. This completes the proof.

In order to study the sharp thresholds of blow-up and global existence for the Cauchy
problem (0.1)-(0.2) for 1 + 4

3
< p < 3 and 3 < p < 5, we need the following preparations.

Let us define a function g(y) on [0,+∞)

g(y) = 1− 3(p− 1)∥u0∥
5−p
2

2

4∥P∥p−1
2

y
3(p−1)

2 −2 − 3∥u0∥2
2∥P∥22

y, (3.22)

where P is the solution of Equation (2.31). We claim that there exists an unique positive
solution y0 for the equation g(y) = 0. Indeed, by some computations, we have for y > 0

g
′
(y) = −3(p− 1)(3p− 7)∥u0∥

5−p
2

2

8∥P∥p−1
2

y
3(p−1)

2 −3 − 3∥u0∥2
2∥P∥22

< 0, (3.23)

which implies that g(y) is decreasing on [0,+∞). Notice that

g(0) = 1 > 0,

and
g(

2∥P∥22
3∥u0∥2

) = −3(p− 1)

4
(
2

3
)

3p−7
2

∥u0∥6−2p
2

∥P∥6−2p
2

< 0.

Since g(y) is continuous on [0,+∞), there exists an unique positive y0 ∈ [0, 2∥P∥2
2

3∥u0∥2
] such that

g(y0) = 0.

• Sharp Criteria for 1 + 4
3
< p < 3
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Theorem 5. Let 1 + 4
3
< p < 3, u0 ∈ H1 and satisfy

0 < H(u0) <
3p− 7

6(p− 1)
y20 . (3.24)

Then, we have

(i) If
∥∇u0∥2 < y0, (3.25)

then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) exists globally. Moreover, for
all time t, u(t, x) satisfies

∥∇u(t, x)∥2 < y0. (3.26)

(ii) If
∥∇u0∥2 > y0, (3.27)

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +∞,

where y0 is the unique positive solution of the equation g(y) = 0 and g(y) is defined in (3.22).

Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 5), we have

H(u) = 1
2

∫
|∇u|2dx− 1

1+p

∫
|u|p+1dx− 1

4

∫
E(|u|2)|u|2dx

≥ 1
2

∫
|∇u|2dx− 1

1+p

∫
|u|p+1dx− 1

4

∫
|u|4dx

≥ 1
2
∥∇u∥22 −

∥u∥
5−p
2

2

2∥P∥p−1
2

∥∇u∥
3(p−1)

2
2 − ∥u∥2

2∥P∥2
2
∥∇u∥32.

(3.28)

Now, we define a function f(y) on [0,+∞) by

f(y) =
1

2
y2 − ∥u0∥

5−p
2

2

2∥P∥p−1
2

y
3(p−1)

2 − ∥u0∥2
2∥P∥22

y3,

then we have f(y) is continuous on [0,+∞) and

f
′
(y) = y[1− 3(p− 1)∥u0∥

5−p
2

2

4∥P∥p−1
2

y
3(p−1)

2 −2 − 3∥u0∥2
2∥P∥22

y] = yg(y). (3.29)

By the properties of g(y), we have

f
′
(0) = f

′
(y0) = y0g(y0) = 0 and f

′′
(y0) = g(y0) + y0g

′
(y0) < 0, (3.30)

which implies that 0 and y0 are two minimizers of f(y), and f(y) is increasing on the interval
[0, y0) and decreasing on the interval [y0,+∞).
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Note that fmax = f(y0) and f(0) = 0. Since g(y0) = 0, we have

fmax = f(y0) = 1
2
y20 −

∥u0∥
5−p
2

2

2∥P∥p−1
2

y
3(p−1)

2
0 − ∥u0∥2

2∥P∥2
2
y30

= [ 1
2
− 2

3(p−1)
]y20 + [ 1

p−1
− 1

2
]∥u0∥2

∥P∥2
2
y30

≥ 3p−7
6(p−1)

y20 .

(3.31)

By the conservation of energy and the assumption (3.24), we have

H(u) = H(u0) <
3p− 7

6(p− 1)
y20 < fmax. (3.32)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two
invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows. We set

K5 := {u ∈ H1 | 0 < ∥∇u∥2 < y0, 0 < H(u) <
3p− 7

6(p− 1)
y20}

and
K6 := {u ∈ H1 | ∥∇u∥2 > y0, 0 < H(u) <

3p− 7

6(p− 1)
y20}.

Indeed, by the conservation of mass and energy, we have ∥u∥2 = ∥u0∥2 and H(u) = H(u0).
If u0 ∈ K5, we have 0 < H(u) < 3p−7

6(p−1)
y20 and ∥∇u0∥2 < y0. Since f(y) is continuous and

increasing on [0, y0) and f(y) < 3p−7
6(p−1)

y20 < fmax, we have that for all t ∈ I(maximal existence
interval)

∥∇u(t, x)∥2 < y0,

which implies that K5 is invariant.
If u0 ∈ K6, we have 0 < H(u) < 3p−7

6(p−1)
y20 and ∥∇u0∥2 > y0. Since f(y) is continuous

and decreasing on [y0,+∞) and f(y) < 3p−7
6(p−1)

y20 < fmax, we have that for all t ∈ I(maximal
existence interval)

∥∇u(t, x)∥2 > y0, (3.33)

which implies that K6 is invariant.
Now, we return to the proof the Theorem 5. By (3.24) and (3.25), we have u0 ∈ K5.

Applying the invariant of K5, we have that (3.26) is true and the solution u(t, x) of the Cauchy
problem (0.1)-(0.2) exists globally . This completes the part (i) of the proof.

By (3.24) and (3.27), we have u0 ∈ K6. Applying the invariant of K6, we have (3.33) is
true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local well-posedness. Thus,
we recall the virial identity and the conservation of energy H(u(t)) = H(u0), and we have

J
′′
(t) = d2

dt2

∫
|x|2|u(t, x)|2dx

= 8
∫
|∇u|2dx− 12(p−1)

p+1

∫
|u|p+1dx− 1

4

∫
E(|u|2)|u|2dx

= 12(p− 1)H(u0)− [6(p− 1)− 8]∥∇u∥22 + [3(p− 1)− 6]
∫
E(|u|2)|u|2dx

≤ 2[3(p− 1)− 4]y20 − [6(p− 1)− 8]y20 = 0,

(3.34)
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for 1 + 4
3
< p < 3, which implies that the solution u(t, x) of the Cauchy problem (0.1)-(0.2)

blows up in finite time T < +∞. This completes the proof.

• Sharp Criteria for 3 < p < 5

Theorem 6. Let 3 < p < 5, u0 ∈ H1 and satisfy

0 < H(u0) <
1

6
y20 . (3.35)

Then, we have that

(i) If
∥∇u0∥2 < y0, (3.36)

then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) exists globally . Moreover, for
all time t, u(t, x) satisfies

∥∇u(t, x)∥2 < y0. (3.37)

(ii) If
∥∇u0∥2 > y0, (3.38)

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows up in
finite time T < +∞,

where y0 is the unique positive solution of the equation g(y) = 0 and g(y) is defined in (3.22).

Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 5), we have

H(u) = 1
2

∫
|∇u|2dx− 1

1+p

∫
|u|p+1 − 1

4

∫
E(|u|2)|u|2dx

≥ 1
2
∥∇u∥22 −

∥u∥
5−p
2

2

2∥P∥p−1
2

∥∇u∥
3(p−1)

2
2 − ∥u∥2

2∥P∥2
2
∥∇u∥32.

(3.39)

Now, we define a function f(y) on [0,+∞)

f(y) =
1

2
y2 − ∥u0∥

5−p
2

2

2∥P∥p−1
2

y
3(p−1)

2 − ∥u0∥2
2∥P∥22

y3,

then we have f(y) is continuous on [0,+∞) and

f
′
(y) = y[1− 3(p− 1)∥u0∥

5−p
2

2

4∥P∥p−1
2

y
3(p−1)

2 −2 − 3∥u0∥2
2∥P∥22

y] = yg(y), (3.40)

where g(y) is defined in (3.22). By the properties of g(y), we have

f
′
(0) = f

′
(y0) = y0g(y0) = 0 and f

′′
(y0) = g(y0) + y0g

′
(y0) < 0, (3.41)
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which implies that 0 and y0 are two minimizers of f(y), and f(y) is increasing on the interval
[0, y0) and decreasing on the interval [y0,+∞).

Note that f(0) = 0 and fmax = f(y0). Since g(y0) = 0, we have

fmax = f(y0) = 1
2
y20 −

∥u0∥
5−p
2

2

2∥P∥p−1
2

y
3(p−1)

2
0 − ∥u0∥2

2∥P∥2
2
y30

= [ 1
2
− 1

3
]y20 + [p−1

4
− 1

2
]
∥u0∥

5−p
2

2

2∥P∥p−1
2

y
3(p−1)

2
0

≥ 1
6
y20 .

(3.42)

By the conservation of energy and the assumption (3.35), we have

0 < H(u) = H(u0) <
1

6
y20 < fmax. (3.43)

Therefore, using the convexity and monotony of f(y) and the conservation laws, we obtain two
invariant evolution flows generated by the Cauchy problem (0.1)-(0.2), as follows. We set

K7 := {u ∈ H1 | 0 < ∥∇u∥2 < y0, 0 < H(u) <
1

6
y20}

and
K8 := {u ∈ H1 | ∥∇u∥2 > y0, 0 < H(u) <

1

6
y20}.

Indeed, by the conservation of mass and energy, we have ∥u∥2 = ∥u0∥2 and H(u) = H(u0).
If u0 ∈ K7, we have ∥∇u0∥2 < y0. Since f(y) is continuous and increasing on [0, y0) and
∀ y ∈ [0,+∞), f(y) < 1

6
y20 < fmax, we have that for all t ∈ I(maximal existence interval)

∥∇u(t, x)∥2 < y0,

which implies that K7 is invariant.
If u0 ∈ K8, we have ∥∇u0∥2 > y0. Since f(y) is continuous and decreasing on [y0,+∞)

and ∀ y ∈ [0,+∞), f(y) < 1
6
y20 < fmax, we have that for all t ∈ I(maximal existence interval)

∥∇u(t, x)∥2 > y0, (3.44)

which implies that K8 is invariant.
Now, we return to the proof the Theorem 6. By (3.35) and (3.36), we have u0 ∈ K7.

Applying the invariant of K7, we have that (3.37) is true and the solution u(t, x) of the Cauchy
problem (0.1)-(0.2) exists globally . This completes the part (i) of the proof.

By (3.35) and (3.38), we have u0 ∈ K8. Applying the invariant of K8, we have (3.44) is
true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local well-posedness. Thus,
we recall the virial identity and the conservation of energy H(u(t)) = H(u0), and we have

J
′′
(t) = d2

dt2

∫
|x|2|u(t, x)|2dx

= 8
∫
|∇u|2dx− 12(p−1)

p+1

∫
|u|p+1dx− 1

4

∫
E(|u|2)|u|2dx

= 24H(u0)− 4∥∇u∥22 +
24−12(p−1)

p+1

∫
|u|p+1dx

< 4y20 − 4y20 = 0,

(3.45)
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for 3 < p < 5, which implies that the solution u(t, x) of the Cauchy problem (0.1)-(0.2) blows
up in finite time T < +∞. This completes the proof.

4 Properties of Blow-up Solutions

In this section, we shall investigate the blow-up properties of the solutions to the Cauchy
problem (0.1)-(0.2). We prove the nonexistence of the L3 strong limit to the blow-up solutions
of the Cauchy problem (0.1)-(0.2) for 1 < p ≤ 3, as follows.

Theorem 7. Let 1 < p ≤ 3 and the initial data u0 ∈ H1. If the solution of the Cauchy problem
(0.1)-(0.2) u(t, x) blows up in finite time T < +∞, Then for any sequence {tn}∞n=1 such that
tn → T as n→ ∞, {u(tn, x)}∞n=1 does not have any strong limit in L3 as n→ ∞.

Proof. We prove this result by contradiction. Suppose that {u(tn, x)}∞n=1 has a strong
limit in L3 along a sequence {tn}∞n=1 such that tn → T as n→ ∞. Since the solution u(t, x) of
the Cauchy problem (0.1)-(0.2) blows up at finite time T in H1, we have ∥∇u(tn)∥2 → +∞ as
n→ +∞. By the conservation of energy

H(u) :=
1

2

∫
|∇u(t, x)|2dx− 1

p+ 1

∫
|u(t, x)|p+1dx− 1

4

∫
E(|u|2)|u|2dx = H(u0),

for 1 < p ≤ 3, we claim ∀n ̸= m,

∥∇u(tn)∥22 ≤ C∥u(tn)− u(tm)∥44 + C∥u(tm)∥44 + C. (4.1)

Indeed, if p = 3, by the conservation of energy, we have

∥∇u(tn)∥2L2 ≤ 2H(u0) +
1
2
∥u(tn)∥44 + 1

2

∫
E(|u(tn)|2)|u(tn)|2dx

≤ 2H(u0) + C∥u(tn)∥44 + C

≤ C∥u(tn)− u(tm)∥44 + C∥u(tm)∥44 + C.

If 1 < p < 3, using the Gagliardo-Nirenberg inequality and Hölder inequality, we have ∀ ε > 0

∥u(tn)∥p+1
p+1 ≤ C∥∇u(tn)∥

3(p−1)
2

2 ∥u0∥
5−p
2

2 ≤ ε∥∇u(tn)∥22 + C(ε).

By the conservation of energy, we have

∥∇u(tn)∥22 ≤ 2H(u0) + ε∥∇u(tn)∥22 + C∥u(tn)∥44 + C(ε)

≤ ε∥∇u(tn)∥22 + C∥u(tn)− u(tm)∥44 + C∥u(tm)∥44 + C,

for ε < 1, which implies that Claim (4.1) is true.
Since 3 < 4 < 6, applying the Hölder’s inequality for 1

4
= θ

3
+ 1−θ

6
, θ ∈ (0, 1), we have

∥u(tn)− u(tm)∥44 ≤ C∥u(tn)− u(tm)∥4θ3 ∥u(tn)− u(tm)∥4(1−θ)
6

≤ C∥u(tn)− u(tm)∥23∥∇(u(tn)− u(tm))∥22.
(4.2)
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It follows from (4.1) and (4.2) that for m ̸= n large enough

∥∇u(tn)∥22 ≤ C∥u(tn)− u(tm)∥23∥∇(u(tn)∥22 + Cm, (4.3)

where Cm depends on m.
On the other hand, since the sequence {u(tn)}∞n=1 converges strongly in L3, there is a

positive integer k such that for all n ≥ k,m ≥ k

C∥u(tn)− u(tm)∥23 ≤
1

2
.

Therefore, choosing m = k in the inequality (4.3), we obtain that for all n ≥ nk

∥∇u(tn)∥22 ≤
1

2
∥∇u(tn)∥22 + Ck, (4.4)

which implies that the sequence {∇u(tn)}∞n=1 is bounded in L2. This is contradictory to that
u(t, x) blows up in finite time T < +∞. This completes the proof.
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