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Acceleration of particles by rotating black holes: near-horizon

geometry and kinematics
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Nowadays, the effect of infinite energy in the centre of mass frame due to near-

horizon collisions attracts much attention.We show generality of the effect combining

two seemingly completely different approaches based on properties of a particle with

respect to its local light cone and calculating its velocity in the locally nonrotaing

frame directly. In doing so, we do not assume that particles move along geodesics.

Usually, a particle reaches a horizon having the velocity equals that of light. How-

ever, there is also case of ”critical” particles for which this is not so. It is just the

pair of usual and critical particles that leads to the effect under discussion. The

similar analysis is carried out for massless particles. Then, critical particles are dis-

tinguishable due to the finiteness of local frequency. Thus, both approach based on

geometrical and kinematic properties of particles moving near the horizon, reveal

the universal character of the effect.

PACS numbers: 04.70.Bw, 97.60.Lf , 04.25.-g

I. INTRODUCTION

The effect of infinite grow of the energy in the centre of mass frame due to the near-horizon

collision of two particles (BSW effect) attracts now much attention [1] - [21]. At first, it was

discovered for the Kerr metric [1] but later it was understood that the effect is of quite general

character. It was shown in [17] that such an effect exists if orientation of a four-velocity of

a massive particle with respect to its local light cone obeys some simple conditions. More
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precisely, one of coefficients in a suitable null tetrad basis (which is specified below) should

vanish on the horizon (”critical” particle). From the other hand, in recent works [18], an

alternative explanation was given in terms of kinematic properties of particles. It turned

out that from a kinematic viewpoint, a critical particle is distinguished by the property that

in the horizon limit, its velocity in the locally nonrotating frame (LNRF) [22] tends to the

value which is less than that of light. Meanwhile, for typical (”usual”) particles this velocity

tends just to the speed of light. It is collision between a critical and usual particles that

produces the effect under discussion if such a collision occurs near the horizon.

Qualitatively, it can be explained as follows. If we have two particles one of which is slow

(the value of the velocity v1 < 1, the speed of light c = 1) and the second one is fast (v2 ≈ 1),

the relative velocity is also close to 1. Correspondingly, the Lorentz factor tends to infinity

and we have the BSW effect. Actually, this is explained in terms of simple kinematics of

collision in the flat space-time. Further use of the kinematic approach for investigation of

rather subtle details of the BSW effect in the Kerr background can be found in Ref. [21]. If

one of particles is massless, so its velocity is equal to 1 exactly, the explanation is somewhat

changed. It is based on the relative role of the gravitational blueshift and the Doppler

effect. In doing so, the usual and critical particles are distinguished by the property that

the LNRF frequency of the massless particle is finite or infinite . It turned out that collision

between massive and massless particles produce the BSW effect also for the situation when

one particle is critical and the other one is usual [18].

Thus, we have two quite different explanations using different language - from the geo-

metric point of view and on the basis of kinematics. The geometric explanation [17] was

quite general whereas the kinematic one [18], was obtained for geodesic motion of particles

only.

The aim of the present work is (i) to make a bridge between geometric and kinematic

approaches and (ii) generalize kinematic one to an arbitrary case not requiring geodesic

motion and not using equations of particles’ motion at all.

II. BASIC EQUATIONS

Let us consider the space-time of a rotating black hole described by the metric
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ds2 = −N2dt2 + gφφ(dφ− ωdt)2 + dl2 + gzzdz
2. (1)

The location of the horizon defined as a surface of inifnite redshift corresponds to N → 0.

In what follows we will use the tetrad basis. Denoting coordinates xµ as x0 = t, x1 = l,

x2 = z, x3 = φ, we choose the orthonormal tetrad vectors h(a)µ in the following way:

h(0)µ = −N(1, 0, 0, 0), (2)

h(1)µ = (0, 1, 0, 0) (3)

h(2)µ =
√
gzz(0, 0, 1, 0) (4)

h(3)µ =
√
gφφ(−ω, 0, 0, 1) (5)

If such a tetrad is attached to an observer moving in the metric (1), it has meaning of

zero angular momentum observer [22], so two abbreviations LNRF and ZAMO are used in

literature. A corresponding observer ”rotates with the geometry” in the sense that dφ

dt
≡ ω

for him. The advantage of using the tetrad components consists in that one can use the

formulas of special relativity in the flat space-time tangent to any given point.

In a given context [17], a null tetrad is also convenient for the decomposition of the metric:

gαβ = −lαNβ − lβNα + σαβ (6)

where σαβ = aαaβ + bαbβ, l
ασαβ = Nασαβ = 0, aµ and bµ are spacelike vectors (see, for

example, textbook [23]). For the metric (1) one can check that the null vectors can be

chosen in the following way:

lµ = (−N2, N, 0, 0), (7)

Nµ =
1

2
(−1,− 1

N
, 0, 0). (8)

(Nl) = −1. (9)

Then, it is seen that

h(0)µ = NNµ +
lµ

2N
, (10)

h(1)µ =
lµ

2N
−NNµ. (11)
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III. CASE OF MASSIVE PARTICLES

Let us consider motion of massive particles (electrons, for brevity). Then, using our

tetrad basis, we can write down the decomposition of the four-velocity,

uµ =
lµ

2α
+ βNµ + sµ, sµ = Aaµ +Bbµ, (12)

A and B are coefficients. The normalization condition (uu) = −1 entails

α =
β

(ss) + 1
. (13)

The vector uµ is future-directed. We consider the vicinity of the future horizon, so vectors

lµ and Nµ are also future-directed. Therefore, in what follows the coefficients α ≥ 0, β ≥ 0.

Straightforward calculations give us

− (uh(0)) =
αβ +N2

2Nα
, (14)

(uh(1)) =
N2 − αβ

2αN
. (15)

(uh(2)) = (h(2)s), (16)

(uh(3)) =
L

√
gφφ

(17)

where L = uφ is the angular momentum per unit mass. If the metric does not depend on

φ, it is conserved. However, we do not exploit such a property, so our consideration is more

general.

Then, we can introduce the three-velocity in this frame according to [22]:

v(i) = v(i) =
uµhµ(i)

−uµhµ(0)

. (18)

The absolute value of the velocity equals

v2 =
[

v(1)
]2

+
[

v(2)
]2

+
[

v(3)
]2
. (19)

It is seen from (18) that v2 < 1 as it should be for massive particles. Indeed, using the

representaion of the metric in terms of orthonormal tetrad

gµν = −h(0)µh(0)ν + h(i)µh(i)ν (20)
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where summation is taken over index i and taking into account that (uu) = −1, one obtains

that

v2 =
ε

1 + ε
< 1 (21)

where ε = uµuνh(i)µh
(i)
ν > 0. Actually, eq. (18) is nothing else than natural generaization of

formulas of special relativity vi = ui

u0 where u0 = 1√
1−v2

.

One can check that for our metric and choice of tetrads

v(1) =
N2 − αβ

N2 + αβ
, (22)

v(2) = 2(h(2)s)
Nα

αβ +N2
, (23)

v(3) =
2LN
√
gφφ

α

N2 + αβ
. (24)

In the particular case of the Kerr metric, the effect of infinite acceleration for geodesic

particle with all nonzero components of the velocity was studied in [15].

In the horizon limit.N → 0 we obtain for a generic case (”usual” particles) that

v(1) → −1, v(2) → 0, v(3) → 0, v → 1. (25)

Here the sign ”minus” corresponds to motion towards the horizon.

However, there is special case (”critical particles”) when near the horizon the quantity

β → 0 when N → 0. As for a space-like vector (ss) > 0, the denominator in (13) does

not vanish, so α has the same order as β. We assume that the first nonvanishing term in

the Taylor expansion of β has the order N. (This is confirmed by explicit calculations for

the geodesic motion in the Kerr metric [17]. In general, this can be taken simply as an

assumption that, by definition, distinguishes usual and critical particles.) If β ≈ c1N , the

coefficient α ≈ c2N where c1 and c2 are some coefficients. As, as is explained above, the

coefficients α and β cannot be negative and N > 0 by definition, the coefficients c1,2 > 0.

Then, it follows from (22), (24) that in the limit under discussion

∣

∣v(1)
∣

∣ → 1− c1c2

1 + c1c2
< 1. (26)

v(2) → 2(sh(2))
c2

c1c2 + 1
, (27)

v(3) → 2L
√
gφφ

c2

1 + c1c2
. (28)
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Thus, both components have the same order, the particle hits the horizon nonperpendic-

ularly (as was noticed in [1] for the Kerr metric), v 6= 1. Actually, this means that v < 1

according to the property (21).

Let us denote the absolute values of velocities as v1 and v2 for particles 1 and 2, respec-

tively (not to be confused with the tetrad components). Once the properties v1 → 1, v2 < 1

are establish for some pairs of particles, the further analysis of their collisions which was

elaborated in [18] applies to this case directly, so we reduce our problem to the known one.

As a result, the relative velocity of such two particles w → 1, the corresponding Lorentz

factor diverges and we gain an infinite energy in the centre of mass frame (see [18] for

details).

Some reservations are in order. Particles can approach the extremal horizon but in the

critical case cannot reach it. Then, the proper time needed for this is infinite. If the horizon

is nonextremal, the critical particle cannot penetrate the potential barrier but the near-

critical one can approach the horizon as nearly as one like. Then, the energy of collision is

finite but can be made as large as one wishes. These issues are already considered in [6], [9],

[10], so we do not repeat details here.

IV. MASSLESS CASE

A massless particle (photon for brevity) is characterized by the wave four-vector kµ.

Then, the frequency measured by ZAMO equals

ω = −kµhµ(0). (29)

Now, the normalization condition changes to (kk) = 0, so instead of (13) we have

α =
β

(ss)
. (30)

Then,

ω =
αβ +N2

2Nα
(31)

For usual photons, with α, β 6= 0,

ω ≈ β

2N
→ ∞. (32)
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For critical ones, again α ∼ β near the horizon, β ≈ c1N , the coefficient α ≈ c2N , so we

obtain that

ω ≈ c1c2 + 1

2c2
(33)

remains finite. This is nothing else than, by definition, the critical photons.

Once the existence of such photnos with finite ω near the horizon is established, we can use

our previous results again. Namely, different combinations of collisions between an electron

and a photon are considered in Sec. VI of [18] with the conclusion that pairs (critical electron,

usual photon) and (critical photon, usual electron) lead to infinitely growing energies in the

centre of mass frame.

V. CONCLUSION

Thus, from geometric reasonings, we deduced kinematic properties of particles moving

near the horizon (N → 0) both for the massive and massless cases. This revealed the role of

”critical” particles as having special behavior of coefficients of expansion of the four-velocity

(or the wave vector) with respect to the null version of the ZAMO basis. The effect of

infinite grow if the energy in the centre of mass frame depends crucially on whether v → 1

or v 6= 1 for massive particles near the horizon and whether ω → ∞ or ω is finite in the

massless case. Once the existence of critical particle is noticed, further results follow directly

from previous works [18], details of which are not repeated here.

The present approach revealed the generality of the effect under discussion. We did not

use geodesic equations of motion. Moreover, we even did not use the existence of Killing

vectors and did not assume that the metric coefficients (1) are independent of t and φ.

Therefore, the results have a rather general character. They apply to any surfaces of infinite

redshidt (horizons) which can be characterized by the property N → 0 in metric (1). Thus,

pure geometric approach of [17] perfectly agrees with the kinematic ones of [18] under very

general circumstances.

This generality means a challenge to attempts to restrict the effect under discussion

in such collisions invoking backreaction or gravitational radiation [2], [3]. It is not clear,

whether and how account for these factors can restrict the grow of the energy and in what

way they can change the role of critical particles. For better understanding, dynamic analysis
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should be combined with geometrical and kinematic approaches.
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