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ABSTRACT

We consider the modified restricted three body problem with power-law den-

sity profile of disk, which rotates around the center of mass of the system with

perturbed mean motion. Using analytical and numerical methods we have found

equilibrium points and examined their linear stability. We have also found the

zero velocity surfaces for the present model. In addition to five equilibrium points

there is a new equilibrium point on the line joining the two primaries. It is found

that L2 and L3 are stable for some values of inner and outer radius of the disk

while collinear points are unstable, but L4 is conditionally stable for mass ratio

less than that of Routh’s critical value. Lastly we have obtained the effects of

radiation pressure, oblateness and mass of the disk.

Subject headings: Photogravitational: Oblateness: RTBP:Chermnykh-Like prob-

lem.

1. Introduction

The problem, after imposing a restriction as one body of the three body problem is of

an infinitesimal(negligible) mass and remaining other two are of finite masses, is known as

http://arxiv.org/abs/1107.5390v1
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restricted three body problem(RTBP). The governing force of motion of the RTBP is mainly

the gravitational forces exerted by the finite masses also known as primaries. In the RTBP

if we take bigger primary as a source of radiation then problem called as photogravitational

RTBP which is generalized by taking smaller primary as an oblate spheroid.

The Chermnykh-like problem which was first time studied by Chermnykh (1987), deals

the motion of an infinitesimal mass in the orbital plane of a disk which rotates around

the center of mass of the primaries with constant angular velocity n. Goździewski (1998),

examined the problem in the sense of nonlinear stability of equilibrium points and also

obtained the range of parameter for the same.

The Chermnykh-Like problem has a number of applications in different areas as celestial

mechanics (Goździewski and Maciejewski (1999)), chemistry (Strand and Reinhardt (1979))

etc. Also, the importance of the problem have seen in the extra solar planetary system

(Rivera and Lissauer (2000), Jiang and Ip (2001) etc.).

Further the effect of disc is very helpful in the study of resonance capture of Kuiper

Belt Objects (KBOs) as given in Jiang and Yeh (2004). Papadakis (2005a), by taking as-

sumptions as constant mass parameter and variable angular velocity parameter, analyzed the

equilibrium point and zero velocity curve; Papadakis (2005b) also studied the problem nu-

merically. Jiang and Yeh (2006) examined the Chermnykh problem with µ = 0.5 and shown

a deviation in the result of classical RTBP; also they have found the new equilibrium points

in spite of Lagrangian points. Yeh and Jiang (2006) have found the condition of existence

of new equilibrium points analytically and numerically.

Ishwar and Kushvah (2006) examined the linear stability of triangular points with P-R

drag. Again Kushvah (2008) examined the stability of collinear points and found unstable

points.

Motivating by the importance and applications of the Chermnykh-like problem, we

modeled a generalized photogravitational Chermnykh-like problem (section-2) in which we

consider the angular velocity parameter n > 1 which depends on the gravitational force

of the disk assumed, radiation force of radiating (bigger) primary and oblateness factor of

smaller primary which is an oblate spheroid.Further we determine the equilibrium points

(section-3) and zero velocity surface (section-4) and then find the stability of the equilibrium

points (section-5) finally conclude the results (section-6).
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2. Mathematical Formulation of Model

Let us consider the motion of an infinitesimal mass governed by the gravitational force

from the radiating body of mass m1, oblate spheroid of mass m2 (m1 > m2) and a disk

which considered, around the central binary system, of thickness h ≈ 10−4 with power-law

density profile ρ(r) = c
rp
, where p is natural number(here we take p = 3) and c is a constant

determined by the help of total mass of the disk.

We have chosen the unit of mass such that G(m1+m2) = 1; the primaries are separated

by unit distance so that unit of time obtained by the choice taken; µ = m2

m1+m2
be the mass

parameter then we have the masses Gm1 = µ and Gm2 = 1− µ.

Let us suppose Oxyz be the rotating coordinate system having origin O at the center of

mass of the primaries which is fixed with respect to the inertial system and angular velocity

ω along z-axis. P (x, y, 0), A(x1, 0, 0) = (−µ, 0, 0) and B(x2, 0, 0) = (1 − µ, 0, 0) be the

positions of infinitesimal body, radiating and oblate primaries respectively, relative to the

rotating system.

So, the equations of motion of the infinitesimal mass in xy-plane with respect to as-

sumptions taken above be written as[as in Kushvah (2011)]

ẍ− 2nẏ = Ωx, (1)

ÿ + 2nẋ = Ωy, (2)

where

Ωx = n2x− (1− µ)q1(x+ µ)

r31
− µ(x+ µ− 1)

r32
− 3

2

µA2(x+ µ− 1)

r52
− Vx,

Ωy = n2y − (1− µ)q1y

r31
− µy

r32
− 3

2

µA2y

r52
− Vy,

and

Ω =
n2(x2 + y2

2
+

(1− µ)q1
r1

+
µ

r2
+

µA2

2r32
− V, (3)

with r1 =
√

(x+ µ)2 + y2, r2 =
√

(x+ µ− 1)2 + y2 and r =
√

x2 + y2.

In above expression q1 = (1 − β) = (1 − Fp

Fg
), the mass reduction factor of radiating

body, Fp is the radiation pressure force and Fg is the gravitational force of same primary.

A2 =
R2

e−R2
p

5R2 is the oblateness coefficient of second primary[as in McCuskey (1963)], Re and Rp
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are the equatorial and polar radii of the same body respectively and R is the distance between

primaries. Then the mean motion of the primaries is given as n =
√

q1 +
3
2
A2 − 2fb(r) which

is greater than 1. The potential (V ) and gravitational force fb(r), of the disk are given as:

V = −2chπ
(b− a)

ab

1

r
+

7

8
chπ

log b
a

r2
, (4)

fb(r) = −2chπ
(b− a)

ab

1

r2
− 3

8
chπ

log b
a

r3
, (5)

where, a and b are inner and outer radii of the disk respectively. We assume that the

gravitational force fb(r) is radially symmetric, so we have x
r
fb(r) and y

r
fb(r) as x and y

components of the force fb(r) respectively. Now, with the help of equations (1) and (2) we

find the energy integral of the problem,

C = −ẋ2 − ẏ2 + 2Ω, (6)

where constant C is known as Jacobi constant.

3. Equilibrium Points

The coordinates of equilibrium points of the problem are obtained[as in Moulton (1914)]

by equating R.H.S.of the equations (1) and (2) both, to zero i.e. Ωx = Ωy = 0 and solving

them for x and y. In other words

n2x− (1− µ)q1(x+ µ)

r31
− µ(x+ µ− 1)

r32
− 3

2

µA2(x+ µ− 1)

r52

−2chπ
(b− a)

ab

x

r3
− 3

8
chπlog

b

a

x

r4
= 0 (7)

n2y − (1− µ)q1y

r31
− µy

r32
− 3

2

µA2y

r52
− 2chπ

(b− a)

ab

y

r3
−

3

8
chπlog

b

a

y

r4
= 0 (8)

Solving equations (7) and (8) for x and y we get the equilibrium points, separately given in

the following subsections.
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3.1. Collinear Equilibrium Points

For the collinear points we have y = 0, so that r1 = |x+µ|, r2 = |x+µ−1| and r = |x|.
Now suppose

f(x, y) = n2x− (1− µ)q1(x+ µ)

r31
− µ(x+ µ− 1)

r32
− 3

2

µA2(x+ µ− 1)

r52

−2chπ
(b− a)

ab

x

r3
− 3

8
chπlog

b

a

x

r4
= 0, (9)

g(x, y) = n2y − (1− µ)q1y

r31
− µy

r32
− 3

2

µA2y

r52
− 2chπ

(b− a)

ab

y

r3

−3

8
chπlog

b

a

y

r4
= 0. (10)

Consequently by substituting y = 0 in equation (9), we have f(x, 0) = 0 = K(x) (say) i.e.

K(x) = n2x− (1− µ)q1(x+ µ)

|x+ µ|3 − µ(x+ µ− 1)

|x+ µ− 1|3 − 3

2

µA2(x+ µ− 1)

|x+ µ− 1|5

−2chπ
(b− a)

ab

x

|x|3 − 3

8
chπ log

b

a

x

|x|4 = 0. (11)

Now, for the sake of simplicity we first divide the plane of motion Oxy into three parts

relative to the primaries as 1 − µ ≤ x , −µ < x < 1 − µ and x ≤ −µ, we further divide

second part into two sub parts as 0 ≤ x < 1 − µ , −µ < x < 0, and for each considerable

interval we have the function K(x), which we shall use in equation (11) for further analysis,

as follows:

K(x) =



































































n2x− (1−µ)q1
(x+µ)2

− µ
(x+µ−1)2

− 3
2

µA2

(x+µ−1)4

−2chπ (b−a)
ab

1
x2 − 3

8
chπlog b

a
1
x3 If 1− µ < x,

n2x− (1−µ)q1
(x+µ)2

+ µ
(x+µ−1)2

+ 3
2

µA2

(x+µ−1)4

−2chπ (b−a)
ab

1
x2 − 3

8
chπlog b

a
1
x3 If 0 ≤ x < 1− µ,

n2x− (1−µ)q1
(x+µ)2

+ µ
(x+µ−1)2

+ 3
2

µA2

(x+µ−1)4

+2chπ (b−a)
ab

1
x2 − 3

8
chπlog b

a
1
x3 If − µ < x < 0,

n2x+ (1−µ)q1
(x+µ)2

+ µ
(x+µ−1)2

+ 3
2

µA2

(x+µ−1)4

+2chπ (b−a)
ab

1
x2 − 3

8
chπlog b

a
1
x3 If x < −µ,

(12)

Case(1) when 1 − µ < x: Let the distance between µ and equilibrium point on the

x-axis in the interval [1− µ,+∞) be ρ then x − x2 = (x + µ − 1) = ρ > 0 and so in this
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case x − x1 = (x + µ) = (1 + ρ) > 0 and x = (1 + ρ − µ) > 0. Substituting these values in

equation (11) and simplifying, we have

8n2ρ10 +B1ρ
9 +B2ρ

8 +

(

B3 − 16chπ
(b− a)

ab
− 8µ

)

ρ7 + {B4 − 48chπ
(b− a)

ab
+

8

(

2chπ
(b− a)

ab
− 5

)

µ+ 24µ2}ρ6 + {B5 − 48chπ
(b− a)

ab
+ 16

(

2chπ
(b− a)

ab
− 5

)

µ+

96µ2 − 24µ3}ρ5 + {B6 − 16chπ
(b− a)

ab
+ 16

(

chπ
(b− a)

ab
− 5

)

µ+ 144µ2 − 72µ3 + 8µ4}ρ4

+B7ρ
3 +B8ρ

2 +B9ρ+B10 = 0. (13)

where, B1 = 48n2 − 32n2µ, B2 = 120n2 − 160n2µ+ 48n2µ2,

B3 = 160n2 − 8q1 + 8 (−40n2 + q1)µ+ 192n2µ2 − 32n2µ3,

B4 = 120n2− 3chπlog b
a
− 24q1 +16 (3q1 − 20n2)µ+24 (−q1 + 12n2)µ2− 96µ3+8n2µ4,

B5 = 48n2 − 6chπlog
b

a
− 24q1 − 4

(

40n2 + 3A2 − 18q1
)

µ+ 24
(

8n2 − 3q1
)

µ2 +

24
(

−4n2 + q1
)

µ3 + 16n2µ4,

B6 = 8n2 − 3chπlog
b

a
− 8q1 − 4

(

8n2 + 15A2 − 8q1
)

µ+ 12
(

4n2 + 3A2 − 4q1
)

µ2 +

32
(

−n2 + q1
)

µ3 + 8
(

n2 − q1
)

µ4,

B7 = −40 (1 + 3A2)µ+ 48 (2 + 3A2)µ
2 − 36 (2 + A2)µ

3 + 16µ4,

B8 = −8 (1 + 15A2)µ+ 24 (1 + 9A2)µ
2 − 12 (2 + 9A2)µ

3 + 4 (2 + 3A2)µ
4,

B9 = −60A2µ+144A2µ
2− 108A2µ

3+24A2µ
4 and B10 = −12A2µ+36A2µ

2− 36A2µ
3+

12A2µ
4.

Suppose all the quantities are constants except µ on which the roots of the above

equation depend. So, here we assume that L.H.S. of the equation (13) is the function of ρ

and µ. For µ = 0, we have

ρ4
(

8n2ρ6 + 48n2ρ5 + 120n2ρ4 + C1ρ
3 + C2ρ

2 + C3ρ+ C4

)

= 0, (14)

where, C1 = 160n2 − 16chπ (b−a)
ab

− 8q1, C2 = 120n2 − 48chπ (b−a)
ab

− 3chπlog b
a
− 24q1,

C3 = 48n2−48chπ (b−a)
ab

−6chπlog b
a
−24q1 and C4 = 8n2−16chπ (b−a)

ab
−3chπlog b

a
−8q1.
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One can see that the equation (14) has four roots equal to zero and others come from

remaining factor. So applying the theory of solution of the algebraic equation assuming as

µ is very small, the four roots of the equation (14) are expressible as a power series in µ1/4

and vanish with µ. Two of the four roots are real and others are complex with the real value

of µ1/4. There fore the series is given as:

ρ = α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . , (15)

where α1, α2, α3, α4, . . . are constant to be determined. Putting this ρ into the equation

(13) and equating, the coefficient of corresponding power of µ1/4, to the zero we get

α1 = ±α
1
4

d1
, α2 =

d2
4d1

α
2

4 , α3 = ±{d2
1
+3A2(d3+d4)}

6A2d21
α

3

4 and

α4 = −{2d2
1
d2+3abA2(d5+d6)}

12A2d31
α

4

4 , where

α = 12abA2

d1
, d1 = 8abn2 − 16chπ(b− a)− 3abchπlog b

a
− 8abq1,

d2 = 8abn2 + 32chπ(b− a) + 9abchπlog b
a
+ 16abq1,

d3 = [448a2b2n4 − 6656a2n2chπ(b− a) + 1024c2h2π2(b− a)2 + 135a2b2c2h2π2(log
b

a
)2 +

144abch{15abn2 + 4chπ(b− a)}log b

a
],

d4 = 32ab{104abn2 + 32chπ(b− a) + 9abq1chπlog
b
a
}+ 256a2b2q21 ,

d5 = [512a2b2n6 − 16384a2n4chπ(b− a) + 20480n2c2h2π2(b− a)2 + 5952a2b2n4chπlog
b

a
+

2232a2b2n2c2h2π2(log
b

a
)2 − 27a2b2c3h3π3(log

b

a
)3 + 12288abn2c2h2π2(b− a)log

b

a
],

d6 = 2048abn2{4abn2 + 10bchπ(b− a) + 3abchπlog b
a
}q1 + 5120a2b2n2q21.

So after calculating these constants and with help of equation (15) we get ρ. Therefore

in the case (1) we have














r1 = |x+ µ| = 1 + ρ = 1 + α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . ,

r2 = |x+ µ− 1| = ρ = α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . ,

r = |x| = 1− µ+ ρ = 1− µ+ α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . .

(16)

Case(2) when −µ < x < 1 − µ: sub case(i) when 0 ≤ x < 1 − µ: let us suppose that

the distance between µ and equilibrium point on the x-axis in the interval [0, 1− µ) be −ρ
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then x− x2 = (x+ µ− 1) = −ρ < 0 and so in this case x− x1 = (x+ µ) = (1− ρ) > 0 and

x = (1−ρ−µ) > 0. Putting these values in equation ( 11) for same interval and simplifying,

we have changed form of equation (13) as follows:

8n2ρ10 −B1ρ
9 +B2ρ

8 +

(

−B3 + 16chπ
(b− a)

ab
− 8µ

)

ρ7 + {B4 − 48chπ
(b− a)

ab
+

8

(

16chπ
(b− a)

ab
+ 5

)

µ− 24µ2}ρ6 + {−B5 + 48chπ
(b− a)

ab
− 16

(

2chπ
(b− a)

ab
+ 5

)

µ+

96µ2 − 24µ3}ρ5 + {B6 − 16chπ
(b− a)

ab
+ 16

(

16chπ
(b− a)

ab
− 5

)

µ− 144µ2 + 72µ3 − 8µ4}ρ4

−B7ρ
3 +B8ρ

2 − B9ρ+B10 = 0, (17)

also changed form of equation (14) is

ρ4
(

8n2ρ6 − 48n2ρ5 + 120n2ρ4 − C1ρ
3 + C2ρ

2 − C3ρ+ C4

)

= 0, (18)

where B1, B2, . . . , B9, B10, C1, C2, C3 and C4 are given as in case (1). Similar analysis as in

case (1) provides















r1 = |x+ µ| = 1− ρ = 1− α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r2 = |x+ µ− 1| = −ρ = −α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r = |x| = 1− µ− ρ = 1− µ− α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . .

(19)

where constant α1, α2, α3, α4, . . . are given as:

α1 = ± (−α)
1
4

d1
, α2 =

d2
4d1

(−α)
2

4 , α3 = ±{d2
1
+3A2(d3+d4)}

6A2d21
(−α)

3

4 and

α4 = −{2d2
1
d2+3abA2(d5+d6)}

12A2d31
(−α)

4

4 and α, d1, d2, d3, d4, d5 and d6 are as in case (1).

Sub case(ii) when −µ < x < 0: let the distance between µ and equilibrium point on the

x-axis in the interval (−µ, 0) be −ρ then x− x2 = (x+µ− 1) = −ρ < 0, x−x1 = (x+µ) =

(1 − ρ) > 0 and x = (1 − ρ − µ) < 0 (The main difference in sub case (i) and(ii) is that

in (i) x > 0 and in (ii) x < 0). Putting these values in equation (11) for same interval and
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simplifying, we have changed form of equation (13) of the case (1) as follows:

8n2ρ10 −B1ρ
9 +B2ρ

8 +

(

−B3 − 16chπ
(b− a)

ab
− 8µ

)

ρ7 + {B4 + 48chπ
(b− a)

ab
−

8

(

2chπ
(b− a)

ab
− 5

)

µ− 24µ2}ρ6 + {−B5 − 48chπ
(b− a)

ab
+ 16

(

2chπ
(b− a)

ab
− 5

)

µ+

96µ2 − 24µ3}ρ5 + {B6 + 16chπ
(b− a)

ab
− 16

(

chπ
(b− a)

ab
− 5

)

µ− 144µ2 + 72µ3 − 8µ4}ρ4 −

B7ρ
3 +B8ρ

2 − B9ρ+B10 = 0, (20)

also, changed form of equation (14) of the case (1) is

ρ4
[

8n2ρ6 − 48n2ρ5 + 120n2ρ4 + (C1 + 16q1) ρ
3 +

(

C2 + 96chπ
(b− a)

ab

)

ρ2

+

(

C3 − 12chπlog
b

a
+ 48q1

)

ρ+

(

C4 + 32chπ
(b− a)

ab

)]

= 0, (21)

where B1, B2, . . . , B9, B10, C1, C2, C3 and C4 are given as in case (1).















r1 = |x+ µ| = 1− ρ = 1− α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r2 = |x+ µ− 1| = −ρ = −α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r = |x| = −(1 − µ− ρ) = −1 + µ+ α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . .

(22)

where constant α1, α2, α3, α4, . . . and α given as in case (1) whereas

d1 = 8abn2 + 16chπ(b− a)− 3abchπlog b
a
− 8abq1,

d2 = 8abn2 − 32achπ(b− a) + 9abchπlog b
a
+ 16abq1,

d3 = [448a2b2n4 − 6656abchn2π(b− a) + 1024c2h2π2(b− a)2 + 135a2b2c2h2π2(log
b

a
)2 +

144abch{15abn2 − 4chπ(b− a)}log b

a
],

d4 = 32ab{104abn2 − 32chπ(b− a) + 9abchπlog b
a
}q1 + 256a2b2q21,

d5 = [512a2b2n6 − 16384abn4chπ(b− a) + 20480n2c2h2π2(b− a)2 + 5952a2b2n4chπlog
b

a
+

2232a2b2n2c2h2π2(log
b

a
)2 + 27a2b2c3h3π3(log

b

a
)3 − 12288abn2c2h2π2(b− a)log

b

a
],

d6 = 2048abn2{4abn2 − 10chπ(b− a) + 3abchπlog b
a
}q1 + 5120a2b2n2q21.
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Case(3) when x < −µ: let the distance between 1 − µ and equilibrium point on the

x-axis in the interval (−∞,−µ) be denoted by 1− ρ then x− x1 = (x+ µ) = (ρ− 1) < 0 is

negative and so x− x2 = (x+ µ− 1) = (ρ− 2) < 0 and x = (ρ− µ− 1) < 0. Putting these

values in equation (11) and simplifying we get

8n2ρ10 +B1ρ
9 +B2ρ

8 +B3ρ
7 +B4ρ

6 +B5ρ
5 +B6ρ

4 +B7ρ
3 +B8ρ

2 +B9ρ+B10 = 0,(23)

where in this case,

B1 = −112n2 − 32n2µ, B2 = 696n2 + 416n2µ+ 48n2µ2,

B3 = −2528n2 + 16chπ (b−a)
ab

+ 8q1 − 8 (296n2 + q1 − 1),

B4 = 5944n2 − 176chπ
(b− a)

ab
− 3chπlog

b

a
− 88q1 + 8{968n2 − 16chπ

(b− a)

ab
−8q1 − 9}µ+ 24

(

124n2 + q1 − 1
)

µ2 + 352n2µ3 + 8n2µ4,

B5 = −9456n2 + 816chπ
(b− a)

ab
+ 30chπlog

b

a
+ 408q1 + 4{−4008n2 + 40chπ

(b− a)

ab
+

3A2 − 42q1 + 68}µ− 8
(

1080n2 + 27q1 − 24
)

µ2 − 24
(

68n2 + q1 − 1
)

µ3 − 80n2µ4,

B6 = 10312n2 − 2064chπ
(b− a)

ab
− 123chπlog

b

a
− 1032q1 + 4{5448n2 − 164chπ

(b− a)

ab
−15A2 + 12q1 − 140}µ+ 12

(

1284n2 − 3A2 − 64q1 − 52
)

µ2 + 8
(

516n2 + 26q1 − 21
)

µ3

+8
(

41n2 + q1 − 1
)

µ4,

B7 = −7616n2 + 3072chπ
(b− a)

ab
+ 264chπlog

b

a
+ 1536q1 + 8{2432n2 + 176chπ

(b− a)

ab
+15A2 + 72q1 + 85}µ+ 4

(

−4320n2 + 36A2 + 336q1 + 264
)

µ2 + 4
(

−1536n2 + 9A2−
176q1 + 114)µ3 − 16

(

44n2 + 4q1 − 3
)

µ4,

B8 = 3648n2 − 2688chπ
(b− a)

ab
− 312chπlog

b

a
− 1344q1 + 8{1376n2 − 208chπ

(b− a)

ab
−15A2 − 144q1 − 61}µ+ 8

(

1488n2 − 27A2 + 144q1 − 123
)

µ2 + 4
(

1344n2 − 27A2 + 288q1

−150)µ3 + 4
(

208n2 − 3A2 + 48q1 − 13
)

µ4,

B9 = −1024n2 + 1280chπ
(b− a)

ab
+ 192chπlog

b

a
+ 640q1 + 4{−896n2 + 256chπ

(b− a)

ab
+15A2 + 224q1 + 48}µ+ 8

(

−576n2 + 18A2 − 48q1 + 60
)

µ2 + 4
(

−640n2 + 27A2 − 224q1

+96)µ3 + 8
(

−64n2 + 3A2 − 32q1 + 12
)

µ4,



– 11 –

B10 = 128n2 − 256chπ
(b− a)

ab
− 48chπlog

b

a
− 128q1 + 4{128n2 − 64chπ

(b− a)

ab
−3A2 − 64q1 − 8}µ+ 12

(

64n2 − 3A2 − 8
)

µ2 + 4
(

128n2 − 9A2 + 64q1 − 24
)

µ3

+4
(

32n2 − 3A2 + 32q1 − 8
)

µ4.

Putting µ = 0 in equation (23), we have

(−2 + ρ)4(−1 + ρ)2[8abn2ρ4 − 32abn2ρ3 + 48abn2ρ2{−32abn2 + 16chπ(b− a)

+8abq1}ρ+ 8abn2 − 16chπ(b− a)− 3abchπlog
b

a
− 8abq1] = 0. (24)

Clearly out of ten roots of equation (24), four equal to 2, two equal to 1 and others come

from remaining factor. Now here we want to apply the theory of solution of the algebraic

equation similar as earlier cases assuming as µ very small and L.H.S. of equation (23) is

function of ρ and µ only. So the four roots of the equation (23) are expressible as a power

series in µ1/4 with an extra term as 2 and two roots as a power series in µ1/2 with an extra

term as 1 and these series not vanish with µ due to extra term. The power series in µ1/2

with an extra term as 1 is independent to µ as its constant coefficient comes out zero, so this

series is unimportant whenever the power series in µ1/4 with an extra term as 2 depends on

µ. The two of the four roots are real and other are complex with the real value of µ1/4.The

power series is given as:

ρ = 2 + α1µ
1

4 + α2µ
2

4 + α3µ
3

4 + α4µ
4

4 + . . . , (25)

where α1, α2, α3, α4, . . . are given as in case (1) which is obtained by putting ρ from (25)

into the equation (23) and equating, the coefficient of corresponding power of µ1/4, to the

zero. In this case α is same as in earlier cases and d3, d5 are as in sub case (ii), whereas

d1 = 8abn2 + 16chπ(b− a)− 3abchπlog b
a
+ 8abq1,

d2 = −8abn2 + 32chπ(b− a)− 9abchπlog b
a
+ 16abq1,

d4 = −32ab{104abn2 − 32chπ(b− a) + 9abchπlog b
a
}q1 + 256a2b2q21,

d6 = −2048abn2{4abn2 − 10chπ(b− a) + 3abchπlog b
a
}q1 + 5120a2b2n2q21.

Again from equation (25) we get ρ and there fore in this case we have















r1 = |x+ µ| = −(ρ− 1) = −1− α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r2 = |x+ µ− 1| = −(ρ− 2) = −α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . ,

r = |x| = −(ρ− µ− 1) = −1 + µ− α1µ
1

4 − α2µ
2

4 − α3µ
3

4 − α4µ
4

4 − . . . .

(26)
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For numerical calculation we set the parametric values as follows: Mass parameter(µ) =
mj

Ms+mj
= 0.000953728, where Ms(Sun mass)= 1.98892 × 1030kg and mj(Jupiter mass)=

1.8987×1027kg, radiation factor(q1) = 0.75, oblateness effect(A2) = 0.0025, disk’s mass(Mb) =

0.4 (taking disk’s inner radius(a) = 1, disk’s outer radius(b) = 1.5, control factor of density

profile(c) = 1910.83, disk’s thickness(h) = 0.0001 and π = 3.14). Putting these values into

the equation (11) for each intervals and solving we have collinear equilibrium points with

respect to the relevant intervals given below:

In interval (1−µ,+∞) we have six real values of x out of that five lie outside the interval

and remaining one i.e. L1 = 1.05667 belongs to the interval. Similarly in case of interval

(0, 1−µ) we have four real values of x, one of them i.e.L2 = 0.813609 belongs to the interval

(0, 1 − µ) and three other lie outside the interval. In the interval, (−µ, 0) we again have

four real values of x, one of them i.e.l1 = −0.00879106(new point) belongs to the interval

(−µ, 0) and three other lie outside the interval but in the interval (−∞,−µ), we have only

two real value of x one of them i.e. L3 = −0.823420 belongs to the (−∞,−µ) and other one

is positive.

We also find the collinear equilibrium points with the help of equations (16), (19), (22)

and (26), after evaluating αi,i = 1, 2, 3, 4 . . . and hence ρ for each case, also for mean motion

(n) we set here disk’s reference radius r = 0.99, given as L1 = 1.04411, L2 = 0.971566,

l1 = −0.975463 and L3 = −0.977926 which is very close to the points obtained above one

excepting the new point l1 which is also outside of the relevant interval.

In figure 1 (a), f(x, 0) = K(x) Vs x contains four curves (i), (ii), (iii) and (iv) for the

different intervals of x or domains of f(x, 0) but same range of f(x, 0). These four curves

intersect x-axis at one and only one point i.e. at L1, L2, L3 and l1 in their respective intervals

(but out side the respective intervals we find some more intersections points of each curves

-2 -1 0 1 2
x

-60

-40

-20

0

20

40

f L2
L3 L1ll
HiiL
HiiiL

HiL

HivL

HaL

-2 -1 0 1 2
x

-3

-2

-1

0

1

2

3

4

f L2L3 L1ll

HiiLHiiiL

HiL

HivL

HbL

Fig. 1.— Collinear Points: f(x, 0) Vs x- at q1 = 0.75, A2 = 0.0025, a = 1, b = 1.5 (a) range

and domain of f(x, 0) both different (b)range and domain of f(x, 0) both same.
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-1

0

1
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4

f L2L3 L1ll
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Fig. 2.— Comparison of nature of curve f(x, 0) drown at different values of parameters:

q1, A2 and b.
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which are other roots of the (13), (17), (20) and (23). These intersection points i.e. L1, L2,

L3 and l1 are much clear in figure 1 (b) which is drown at same domain and range, which is

nothing but the respective intervals of each curves. In figure 2, we plots same curves as in

figure 1 (a) but at different values of disk’s outer radius b i.e at b = 1.0, 1.2, 1.5, and 2.0 in

addition with classical case (q1 = 1, A2 = 0 and a = b = 1.0). In other words figure 2, shows

the nature of curve f(x, 0), at different widths of disk, which is similar in nature as in figure

1 (a) and intersects x-axis at only one point L1, L2, L3 and l1 in their respective intervals

while in classical case (even in our cases also i.e. if q1 = 0.75, A2 = 0.0025 and a = b = 1)

the curves f(x, 0) intersect x-axis at three different points L1, L2, L3 and for x in (−µ, 0),

f(x, 0) does not intersect x-axis.

Thus, we conclude that in the presence of disk, there are always four different intersection

points L1, L2, L3 and l1 of curve f(x, 0) with x-axis, each lies in the four different intervals

described above.

3.2. Triangular Equilibrium Point

In this case we have y 6= 0, for the convenience let us suppose that r1 = q
1/3
1 (1 + δ1)

and r2 = 1 + δ2, where δ1, δ2 ≪ 1. Putting these values of r1 and r2 into the equations

r21 = (x+ µ)2 + y2 and r22 = (x+ µ− 1)2 + y2 and then solving with the rejection of second

and higher order terms of δ1 and δ2, we get

x =
q
2/3
1

2
− µ + (q

2/3
1 δ1 − δ2) and y = ±q

1/3
1

(

1− q
2/3
1

4
+ (2− q

2/3
1 )δ1 + δ2

)

1/2. We de-

termine the values of δ1 and δ2 by putting the values of x, y (after neglecting the terms

containing δ1, δ2 ≪ 1), r1 = q
1/3
1 (1 + δ1) and r2 = 1 + δ2 into the equation (7) and (8) and

solving them with the rejection of second and higher order terms of δ1 and δ2, we get

δ1 =
1

3

[

1− n2 + 2chπ
(b− a)

ab

1

(µ2 + q
2/3
1 (1− µ))3/2

+
3

8
chπ

log b
a

(µ2 + q
2/3
1 (1− µ))2

]

,(27)

δ2 =
1

3(1 + 5
2
A2)

[

1 +
3

2
A2 − n2 + 2chπ

(b− a)

ab

1

(µ2 + q
2/3
1 (1− µ))3/2

+

3

8
chπ

log b
a

(µ2 + q
2/3
1 (1− µ))2

]

. (28)

Hence, the coordinates of triangular points are :










x =
q
2/3
1

2
− µ+ (q

2/3
1 δ1 − δ2)

y = ±q
1/3
1

(

1− q
2/3
1

4
+ (2− q

2/3
1 )δ1 + δ2

)

1/2
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where δ1 and δ2 are given by equation (27) and (28) respectively.

Numerically the co-ordinates of triangular equilibrium points are L4 = (0.366171, 0.641213),

and L5 = (0.366171,−0.641213) which are obtained by using same parametric values as in

collinear case into the equation (9) and (10) and solving them for x and y. We also calculated

L4 = (0.447217, 0.515281) and L4 = (0.447217,−0.515281) with the help of equation (29) by

evaluating δ1 and δ2 from the equations (27) and (28). The mean motion (n) is calculated

at disk’s reference radius (r) = 0.99 and found very similar results. We have seen that the

L4(5) are no longer remain triangular equilibrium points as they are in classical case.

4. Zero Velocity Surface

Since, equation (6) generally denotes the relation between coordinate and velocity of

infinitesimal mass with respect to the rotating system, so by taking velocity term as zero in

equation (6) we have the equation of zero velocity surfaces as follows:

2Ω = C (29)

that is


























x2 + y2 − 2(1−µ)q1
r1

− 2µ
r2

− µA2

r3
2

+ 4chπ (b−a)
ab

1
r
− 7

4
chπ

log b
a

r2
= C

r1 =
√

(x+ µ)2 + y2 + z2

r2 =
√

(x+ µ− 1)2 + y2 + z2

r =
√

x2 + y2 + z2

Here, we try to know the approximate form of zero velocity surface[as in Moulton (1914)] by

analyzing the shape of the curves obtained by intersection of surface (30) with the xy-plane.

The equation of curve is given by putting z = 0 in (30) which is as follows:

x2 + y2 +
2(1− µ)q1

√

(x+ µ)2 + y2
+

2µ
√

(x+ µ− 1)2 + y2
+

µA2

((x+ µ− 1)2 + y2)3/2
+

4chπ
(b− a)

ab

1
√

x2 + y2
− 7

4
chπ

log b
a

x2 + y2
= C (30)

Here if we increases the value of x and y, all terms, except first and second, on L.H.S. of

(30), become negligible compare to first and second terms. Thus for the large value of x and
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Fig. 3.— Zero velocity surface: q1 = 0.75, A2 = 0.0025, a = 1, b = 1.5 and r = 0.99.
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y, curves become very close to a circle of radius
√
C − ǫ having equation

x2 + y2 = C − 2(1− µ)q1
√

(x+ µ)2 + y2
− 2µ

√

(x+ µ− 1)2 + y2
− µA2

((x+ µ− 1)2 + y2)3/2
−

4chπ
(b− a)

ab

1
√

x2 + y2
+

7

4
chπ

log b
a

x2 + y2
= C − ǫ, (31)

where, ǫ is very very small. For the small value of x and y, the terms x2+y2 will be negligible

compare to remaining terms on L.H.S. of (30) and therefore, the curves become very close

to an equipotential surface given bellow

2(1− µ)q1
√

(x+ µ)2 + y2
+

2µ
√

(x+ µ− 1)2 + y2
+

µA2

((x+ µ− 1)2 + y2)3/2
+

4chπ
(b− a)

ab

1
√

x2 + y2
− 7

4
chπ

log b
a

x2 + y2
= C − x2 − y2 = C − ǫ, (32)

where ǫ is very very small.

The surface is given in figure 3 where two singular regions are shown by conic shapes.

5. Stability of Equilibrium Points

For the stability of equilibrium points (xe, ye) let us assume a small change in its coor-

dinate as x = xe+ ξ, y = ye+η, where the displacements ξ = P1e
λt, η = P2e

λt are very small,

P1, P2 and λ are parameters to be determined. Putting these coordinates into equations (1)

and (2), we have the transformed equations of motion as follows[as in Murray and Dermott

(2000)]

ξ̈ − 2nη̇ = ξΩ0
xx + ηΩ0

xy, (33)

η̈ + 2nξ̇ = ξΩ0
yx + ηΩ0

yy, (34)

where superfix 0 denotes the corresponding value at equilibrium point. Now putting ξ =

P1e
λt, η = P2e

λt and simplifying we have

(λ2 − Ω0
xx)P1 + (−2nλ− Ω0

xy)P2 = 0, (35)

(2nλ− Ω0
yx)P1 + (λ2 − Ω0

yy)P2 = 0, (36)

for nontrivial solution we have
∣

∣

∣

∣

λ2 − Ω0
xx −2nλ− Ω0

xy

2nλ− Ω0
yx λ2 − Ω0

yy

∣

∣

∣

∣

= 0.
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Simplifying above we have characteristic equation as follows:

λ4 + (4n2 − Ω0
xx − Ω0

yy)λ
2 + (Ω0

xxΩ
0
yy − Ω02

xy) = 0. (37)

Now,

Ωxx = n2 − q1(1− µ)

r31
− µ

r32
− 3

2

µA2

r52
− 2chπ

(b− a)

ab

1

r3

−3

8
chπlog

b

a

1

r4
+

3q1(1− µ)(x+ µ)2

r51
+

3µ(x+ µ− 1)2

r52
+

15

2

µA2(x+ µ− 1)2

r72

+6chπ
(b− a)

ab

x2

r5
+

3

2
chπlog

b

a

x2

r6
, (38)

Ωyy = n2 − q1(1− µ)

r31
− µ

r32
− 3

2

µA2

r52
− 2chπ

(b− a)

ab

1

r3
− 3

8
chπlog

b

a

1

r4
+

3q1(1− µ)y2

r51
+

3µy2

r52
+

15

2

µA2y
2

r72
+ 6chπ

(b− a)

ab

y2

r5
+

3

2
chπlog

b

a

22

r6
, (39)

Ωxy = Ωyx =
3q1(1− µ)(x+ µ)y

r51
+

3µ(x+ µ− 1)y

r52
+

15

2

µA2(x+ µ− 1)y

r72

+6chπ
(b− a)

ab

xy

r5
+

3

2
chπlog

b

a

xy

r6
. (40)

In the following subsection we examine the stability of equilibrium points.

5.1. Stability of Collinear Equilibrium Points

For the stability of collinear points (y = 0), we have

Ωxx = n2 +
2q1(1− µ)

r31
+

2µ

r32
+

6µA2

r52
+ 4chπ

(b− a)

ab

1

r3

+
9

8
chπlog

b

a

1

r4
, (41)

Ωyy = n2 − q1(1− µ)

r31
− µ

r32
− 3

2

µA2

r52
− 2chπ

(b− a)

ab

1

r3

−3

8
chπlog

b

a

1

r4
, (42)

Ωxy = Ωyx = 0, (43)

also we have r1 = |x+µ|, r2 = |x+µ− 1| and r = |x|. To insure the stability of equilibrium

points, we must have ξ = P1e
λt, η = P2e

λt which can be expressed in a periodic functions.

In other words the four roots λ1, λ2, λ3 and λ4 of the characteristic equation (37) must be
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pure imaginary[as in Boccaletti and Pucacco (1996)] otherwise we have an unstable point.

Hence for this we examine here nature of roots which is easily done by finding the sign of

Ω0
xx and Ω0

yy as follows:

In case(1) when 1 − µ < x, we have Ω0
xx > 0 and Ω0

yy < 0 and hence the discriminant

D = (4n2 − Ω0
xx − Ω0

yy)
2 − 4Ω0

xxΩ
0
yy has positive sign. Therefore in this case, the two of the

four roots λ1, λ2, λ3 and λ4 of the characteristic equation (37) are complex conjugate pair

and remaining two are pure imaginary conjugate pair. That is

λ1 = −λ2 =

√

√

√

√
−
(

4n2 − Ω0
xx − Ω0

yy

)

+
√

(

4n2 − Ω0
xx − Ω0

yy

)2 − 4Ω0
xxΩ

0
yy

2

is a complex conjugate pair and

λ3 = −λ4 =

√

√

√

√
−
(

4n2 − Ω0
xx − Ω0

yy

)

−
√

(

4n2 − Ω0
xx − Ω0

yy

)2 − 4Ω0
xxΩ

0
yy

2

is a pure imaginary conjugate pair. Thus the condition of stability failed. Similarly, analyze

the case (2)(i) when 0 ≤ x < 1 − µ we have Ω0
xx > 0 and Ω0

yy > 0, in case (2)(ii) when,

−µ < x < 0 we have Ω0
xx > 0 and Ω0

yy < 0 and in case (3) when, x < −µ we have Ω0
xx > 0

and Ω0
yy > 0. That is in each case we have a positive discriminant. Therefore, we conclude

all the collinear equilibrium points are unstable. We examined the stability of collinear

equilibrium points with respect to same parametric values setting above and conclude that

generally L1, L2, L3 and l1(new point) are unstable points but L2 is stable for the disk’s

width (a = 1, 1.446 ≤ b ≤ 1.767) also L3 is stable for the disk’s width (a = 1, 1 ≤ b ≤ 1.08).

5.2. Stability of Equilibrium Point L4

In case of L4, we have

4n2 − Ω0
xx − Ω0

yy = n2 − 3µA2

r52,0
− 3

8
chπ log

b

a

1

r40
, (44)

Ω0
xxΩ

0
yy − Ω02

xy = 9µ(1− µ)γ0, (45)

where

γ0 = y20

[

q1
r51,0r

5
2,0

(

1 +
5A2

2r22,0

)

+
q1µ

r51,0r
5
0

(

2
b− a

ab
+

log b− log a

2r0

)

+
chπ(1− µ)

r50r
5
2,0

(

1 +
5A2

2r22,0

)(

2
b− a

ab
+

log b− log a

2r0

)]

(46)
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The superfix 0 indicate that values are at equilibrium points. Now, from the characteristic

equation ( 37) we have

λ2 =
−
(

4n2 − Ω0
xx − Ω0

yy

)

±
√

(

4n2 − Ω0
xx − Ω0

yy

)2 − 4
(

Ω0
xxΩ

0
yy − Ω02

xy

)

2
(47)

It is seen earlier that ξ = P1e
λt, η = P2e

λt will be periodic and bounded if λi ,i = 1, 2, 3, 4 is

pure imaginary, i.e. λ2 < 0. Therefore for stable solution we must have
(

4n2 − Ω0
xx − Ω0

yy

)2
>

4
(

Ω0
xxΩ

0
yy − Ω02

xy

)

. In other words
(

n2 − 3µA2

r5
2,0

− 3
8
chπ log b

a
1
r4
0

)2

> 36µ(1 − µ)γ0. For the

classical values i.e.(q1 = 1, A2 = 0, b = a, n = 1, x = 1
2
− µ, y = ±

√
3
2
, r1 = r2 = 1), the

above inequality reduces as 27µ(1− µ) < 1 which provides µ < 0.0385209 = µc the value of

critical mass in classical case. But in our case the value of critical mass for different values

of q1, A2, and b will be obtained by following graphs.

In figure 4, we plot µ Vs b, where (a) for q1 = 1 and (b) for q1 = 0.75 both containing

three curves (i) A2 = 0, (ii) A2 = 0.0025, (iii) A2 = 0.0050 have same nature i.e. as we

increases the value of disk’s width b, critical mass µc also increases. Initially these curves

increases slowly but when b > 1.6 they increase strictly as depicted in figure4. These shows

that when we increase the width of disk, stability region spans slowly then rapidly after

b = 1.6 upto µc = 0.5.

6. Conclusion

We have studied the dynamical properties of modified restricted three body problem

and found that there exists a new equilibrium point in addition to five equilibrium points
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Fig. 4.— Variation of critical mass: (i) A2 = 0, (ii) A2 = 0.0025, (iii) A2 = 0.0050. (a) at

q1 = 1, a = 1, r = 0.99, (b) at q1 = 0.75, a = 1, r = 0.99.
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in classical problem. The zero velocity surface have obtained and examined the stability

of equilibrium points. It is found that the L2 and L3 are stable for certain values of inner

and outer radius of the disk and other collinear points are unstable while L4 is conditionally

stable upto the Routh’s value of mass ratio. Thus stability region spans with the width of

the disk. Hence, we conclude that the shape and size of the disk are very significant for the

motion of the bodies in space.
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