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The Standard Model Higgs boson with large non-minimal coupling to the gravitational curvature
can drive cosmological inflation. We study this type of inflationary scenario in the context of
supersymmetric grand unification and point out that it is naturally implemented in the minimal
supersymmetric SU(5) model, and hence virtually in any GUT models. It is shown that with an
appropriate Kähler potential the inflaton trajectory settles down to the Standard Model vacuum at
the end of the slow roll. The predicted cosmological parameters are also consistent with the 7-year
WMAP data.

Introduction.— Recently the idea that the Standard
Model (SM) Higgs field may be identified with an inflaton
field, has attracted much attention [1–9]. The major rôle
is played by the non-minimal coupling to gravity, which
renders the Higgs mass to be within the range of 126−194
GeV [1–4], while keeping the amplitude of the primordial
curvature perturbation at the scale of ∼ 10−5. The idea
of inflation by non-minimally coupled inflaton field it-
self is certainly not new [10]. Nevertheless, the striking
agreement with the present-day cosmological data, com-
bined with the minimalistic nature of the model, makes
this type of scenario very attractive. The predicted mass
range of the Higgs particles is also interesting for the
physics of the Large Hadron Collider.

The Higgs potential in the SM is unstable against
quantum corrections (the hierarchy problem) and it
therefore is reasonable to reconsider Higgs inflation in
supersymmetric theory [11, 12]. It is shown in [11] that
Higgs inflation cannot be implemented within the min-
imal supersymmetric Standard Model (MSSM), as the
field content of the latter is too restrictive. Instead, with
an extra field (i.e. in the next-to-minimal supersymmet-
ric Standard Model, NMSSM) a sensible scenario of Higgs
inflation is found to be possible. The NMSSM model has
tachyonic instability in the direction of the extra field,
but this can be cured by considering a non-canonical
Kähler potential [12].

In this Letter we discuss possibility of Higgs inflation
in supersymmetric grand unified theory (GUT). There
are several reasons to motivate this study. One obvious
reason is that the energy scale of inflation is typically
above the grand unification scale, and it is unnatural to
suppose that the SM Lagrangian is valid all the way up
to the scale of inflation; as the GUT scale destabilises the
electroweak scale without supersymmetry, it seems that
supersymmetric GUT is an appropriate theory to start
with. Another reason is the puzzling necessity of the
extra field besides the MSSM fields for successful Higgs
inflation, as alluded to above; going beyond the MSSM

is somewhat against the minimalistic guiding principle
of the original Higgs inflation, and as the NMSSM is
structurally similar to the SU(5) GUT model, it seems
natural to conjecture that the SU(5) GUT, rather than
the NMSSM, may be a more appropriate minimal su-
persymmetric theory that accommodates Higgs inflation.
Obvious questions are then whether it is possible to ob-
tain enough inflation (e-folding) somewhere between the
Planck scale and the GUT scale, and if so whether the
prediction of the cosmological parameters is consistent
with the present observation. We shall address these
issues below, and find that a viable Higgs inflationary
scenario nicely fits into the minimal SU(5) model. We
shall employ supergravity embedding of GUT [13], since
the non-minimal coupling of the Higgs field to gravity
naturally arises in that framework.
Supersymmetric SU(5) GUT.— The minimal super-

symmetric SU(5) model consists of a vector supermulti-
plet transforming as an adjoint 24 of the SU(5), as well
as 5 types of chiral supermultiplets, namely Nf (the num-
ber of flavours) multiplets in 5̄ (that include d̄ and L of
the MSSM), Nf multiplets in 10 (include Q, ū, and ē),
one each in 24 (denoted Σ), 5 (H) and 5̄ (H). Σ is the
Higgs multiplet responsible for breaking the GUT sym-
metry, while H and H respectively include the up- and
down-type MSSM Higgs multiplets. Among these, only
the three Higgs chiral multiplets Σ, H and H play rôles
in the dynamics of inflation. We shall hence disregard
the other fields. The superpotential of our model is,

W = H (µ+ ρΣ)H +
m

2
Tr(Σ2) +

λ

3
Tr(Σ3), (1)

and the Kähler potential is K = −3Φ, with

Φ = 1− 1

3

(

TrΣ†Σ + |H |2 + |H |2
)

− γ

2

(

HH +H†H
†)

+
ω̃

3

(

TrΣ†Σ2 +TrΣ†2Σ
)

+
ζ

3

(

TrΣ†Σ
)2

, (2)

where µ, ρ, m, λ, γ, ζ, ω̃ are constant parameters (for
simplicity we assume them to be real). The cubic and
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FIG. 1: The scalar potential VE in the Einstein frame (left), the inflaton trajectory in the contour plot of the same potential
(middle), and the minima of the scalar potential V (s(h), h) plotted against h (right). In the middle panel the thick red curve
is the inflaton trajectory. We have chosen ρ = 0.5, λ = 0.5, ω = −100, ζ = 10000. The non-minimal coupling γ = 1.86× 104 is
fixed by the amplitude of the curvature perturbation, evaluated for e-folding Ne = 60.

the quartic terms have been included in the Kähler po-
tential, for reasons to be discussed shortly. We shall set
the reduced Planck scale MP = 2.44×1018 GeV to unity.
For the model to be phenomenologically consistent, the

SU(5) symmetry needs to be broken down to the SM
gauge group SU(3)×SU(2)×U(1). This is accomplished
as usual by setting,

Σ =

√

2

15
S diag

(

1, 1, 1,−3

2
,−3

2

)

, (3)

with S a chiral superfield. The MSSM Higgs doubletsHu,
Hd and the Higgs colour triplets Hc, Hc are embedded
in H and H as

H =

(

Hc

Hu

)

, H =

(

Hc

Hd

)

. (4)

The superpotential now reads

W =

(

µ+

√

2

15
ρS

)

HcHc +

(

µ−
√

3

10
ρS

)

HuHd

+
m

2
S2 − λ

3
√
30

S3. (5)

The masses of Hu and Hd are in the electroweak scale,
which is negligibly smaller than the typical scale MP of
the inflationary dynamics. Thus the expectation value
of the second term in (5) must vanish, µ =

√

3/10 ρ〈S〉,
where 〈S〉 = v ≡ 2 × 1016 GeV is the GUT scale. The
first term of (5) indicates that Hc and Hc have GUT
scale masses. For the colour symmetry to be unbroken we
require that they are already stabilised at 〈Hc〉 = 〈Hc〉 =
0, from the onset of the inflation. During inflation the
dominant rôle is played by the MSSM Higgs fields Hu

and Hd, which settle down to the present values after
the inflation. When Hu, Hd ≪ 1 (i.e. close to the end
of inflation) the stationarity condition δW/δS = 0 with

Hc = Hc = 0 yields S(m−λS/
√
30) = 0. Since the GUT

symmetry must be broken, 〈S〉 = v 6= 0 and we must have
m = λ√

30
v. The charged Higgs can be consistently set to

be zero,

Hu =

(

0
H0

u

)

, Hd =

(

H0
d

0

)

, (6)

and parametrizing S = seiα, H0
u = 1√

2
h1e

iα1 , H0
d =

1√
2
h2e

iα2 , with s, h1, h2, α, α1, α2 ∈ R, and further set-

ting h1 = h sinβ and h2 = h cosβ, the model depends
on five parameters ρ, λ, γ, ω̃, ζ, and six real scalar fields
s, h, α, β, α1, α2. Note that ρ and λ are parameters
appearing in the GUT superpotential and are typically
of order one, while there is no such restriction for γ, ω̃,
and ζ. Analysing the scalar potential, we find stability at
α = α1 = α2 = 0. Furthermore, the D-flat condition sets
the value of β to be π/4. Thus the model reduces to a
system of two real scalars h and s, with the scalar-gravity
part of the Jordan frame Lagrangian (cf. [12]),

LJ =
√
−gJ

[1

2
ΦRJ −

1

2
gµνJ ∂µh∂νh− κgµνJ ∂µs∂νs− VJ

]

.

(7)
The subscript J denotes quantities in the Jordan frame,
κ ≡ KSS† = 1− 4ωs− 4ζs2 is the non-trivial component
of the Kähler metric, ω ≡ −ω̃/

√
30, and

Φ = 1− 1

3
s2 +

2ω

3
s3 +

ζ

3
s4 +

(

γ

4
− 1

6

)

h2. (8)

VJ is the F-term scalar potential in the Jordan frame,
computed in the standard way [14], as

VJ =
3

10

{

ρ2

2
(s− v)2h2 +

1

κ

[

ρ

4
h2 − λ

3
s(s− v)

]2
}

−

{

2ζs+ω
κ

[

ρh2

4 − λs(s−v)
3

]

s2+ ρvh2

4 − λvs2

6 − 3γρh2(s−v)
4

}2

10
[

1 + γ
4 (

3
2γ − 1)h2 + ζ+ω2

3κ s4
] . (9)
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The inflation dynamics.— The dynamics of inflation is
encoded in the scalar potential VE = Φ−2VJ in the Ein-
stein frame. If we take the canonical form of the Kähler
potential (i.e. ω = ζ = 0), the potential exhibits tachy-
onic instability in the direction of the s-field. Just as in
the case of the NMSSM Higgs inflation [11, 12] the insta-
bility is controlled by introducing a quartic term (ζ 6= 0)
in the Kähler potential. In the GUT model, however,
this is not the whole story, as the quartic term has a seri-
ous side effect: the SM vacuum becomes disfavoured and
the SU(5) symmetry tends to be restored at the end of
inflation. This problem is resolved by allowing a cubic
term1, ω 6= 0. Note that these terms are perfectly consis-
tent with the supergravity embedding. The bottom line
is that for a wide range of the parameter space with up
to quartic order terms in the Kähler potential, there ex-
ist reasonable trajectories of the inflaton field. In Fig.1
we show the shape of the scalar potential VE (the left
panel), the inflaton trajectory (centre), and the values
of VE at local minima (bottom of the valley) for given
h (right). In this example we have taken ρ = λ = 0.5,
ω = −100, ζ = 10000, and γ = 1.86 × 104 (this value
of γ is determined for the e-folding number Ne = 60,
as discussed below). The plateau of the potential at the
large h values is a characteristic feature of Higgs inflation.
As the field s controls breaking of the GUT symmetry,
the trajectory shows that SU(5) is broken from the on-
set, indicating that problematic topological defects are
not produced during inflation. For this parameter set
the dynamics of the slow roll inflation is dominated by
the h field, as the displacement of s is negligibly small
(∆s̃/∆h . 2%, with suitabe normalisation ds̃ =

√
2κds).

Assuming that s is nearly constant2, the model simpli-
fies to single field inflation. The Lagrangian (7) can then
be written in a form similar to the SM Higgs inflation
[1–4, 6–9],

LJ =
√−gJ

[

M2 + ξh2

2
R− 1

2
gµνJ ∂µh∂νh− VJ

]

, (10)

with M2 = 1− 1
3s

2 + 2
3ωs

3 + 1
3ζs

4 and ξ = 1
4γ − 1

6 .
Cosmological parameters.— The slow roll parameters,

ǫ =
1

2

(

1

VE

dVE

dĥ

)2

, η =
1

VE

d2VE

dĥ2
, (11)

are defined for the scalar potential VE and the canonically
normalised inflaton field ĥ in the Einstein frame. The
latter is related to h by

dĥ =

√

M2 + ξh2 + 6ξ2h2

M2 + ξh2
dh. (12)

1 Higher (say sextic) terms in the Kähler potential can also solve
this problem.

2 The value of s = s(h) is taken at the local minimum of VE for a
given h, and derivatives of s are set to be zero.
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FIG. 2: The tensor-to-scalar ratio r and the scalar spectral in-
dex ns, with the 68% and 95% confidence level contours from
the WMAP7+BAO+H0 data [15]. The Harrison-Zel’dovich
(HZ) values as well as the predictions of the φ4 and φ2 chaotic
inflation models are also shown for comparison.

For given values of λ, ρ, ω and ζ we have used the
power spectrum of the curvature perturbation PR =
VE/24π

2ǫM4
P to obtain the non-minimal coupling ξ. The

slow roll terminates when either of the slow roll parame-
ters (ǫ in the present case) becomes O(1). The values of
the inflaton h = h∗ at the end of the slow roll and h = hk

at the horizon exit of the comoving CMB scale k, are re-

lated by the e-folding number Ne =
∫ hk

h∗
dhVE/(dVE/dĥ).

At h = hk the shape of VE is constrained by the power
spectrum PR. We have used the maximum likelihood
value ∆2

R(k0) = 2.42×10−9 from the 7-year WMAP data

[15], where ∆2
R(k) =

k3

2π2PR(k) and the normalisation is

fixed at k0 = 0.002 Mpc−1. With λ = ρ = 0.5, ω = −100
and ζ = 10000, we find h∗ = 0.0146, hk = 0.128
and ξ = 4646 for Ne = 60. For Ne = 50 we obtain
h∗ = 0.0160, hk = 0.130 and ξ = 3895. With these
parameters the prediction of the scalar spectral index
ns ≡ d lnPR/d ln k = 1−6ǫ+2η and the tensor-to-scalar
ratio r ≡ Pgw/PR = 16ǫ can be evaluated. We find
ns = 0.968, r = 0.00296 for Ne = 60, and ns = 0.962,
r = 0.00419 for Ne = 50. These results are shown in
Fig.2 with observational constraints [15]. The prediction
for ns and r is insensitive to the change of λ and ρ, as
long as they are of O(1).

Discussion.— In this Letter we have discussed Higgs
inflation in supersymmetric GUT, taking the minimal
SU(5) model as a concrete example. In the early days
the proposals of cosmological inflation were made for the
Higgs field in the GUT models [16]. It is intriguing to
see that the prediction based on the simplest GUT, with
the help of non-minimal coupling to gravity, is in perfect
fit with today’s observational constraints.

The non-minimal coupling is consistent with the sym-
metries of general relativity and the SM, and it naturally
arises in quantum field theory in curved spacetime [17].
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The value of the coupling ξ ∼ 104, however, is rather
large. This is a generic feature of Higgs inflation, since
successful slow-roll requires h2 . M2

P . ξh2 [1, 2]. It has
been argued that such large non-minimal coupling could
lead to violation of the unitarity bound, since the cut-off
scale evaluated as MP/ξ is considerably lower than the
Planck scale [6–9]. Others contend that such a criticism
is not valid, arguing that at large field values & MP/ξ the
cut-off scale is actually field-dependent [5, 12]. The large
non-minimal coupling is, at any rate, a key feature of the
Higgs inflation and it is certainly worthwhile understand-
ing possible dangers arising from this. Another type of
criticism concerns the quantum stability of the classical
potential [3]. More recently, this problem was studied us-
ing renormalisation group analysis [2] (see also [4]), and
the effects of renormalisation are found to be small ex-
cept for some extreme values of parameters. In our GUT
model, the effects are expected to be even smaller than
the SM case, since inflation takes place in a narrower en-
ergy range of 1016 − 1018 GeV. Our preliminary results
suggest that the RG effects are within a few percent.
A closer look at the potential VE shows that its mini-

mum is at a small negative value, ∼ −2 × 10−16M4
P, for

our parameter choices. This is offset by a contribution
from the supersymmetry breaking sector and the scenario
does not suffer from the cosmological constant problem.
In our scenario the energy scale of inflation is in the GUT
scale and the Higgs fields are directly coupled to the SM
particles. This indicates that the reheating temperature
is high, typically from the intermediate to the GUT scale.
It would be interesting to discuss further phenomeno-
logical implications, such as the gravitino problem and
baryogenesis.
In this Letter we considered a single-field Higgs in-

flation model appropriate for our parameter choice ζ =
10000, ω = −100 of the Kähler potential. These values
are not too exotic, as 〈Φ〉 is still very close to 1 and the
Planck scale after inflation is nearly MP. For smaller val-
ues of ζ and |ω|, the displacement of s during inflation
becomes large. This leads to a two-field inflation model,
which is also of interest, in particular, due to possible
generation of detectable large non-Gaussianity.
Finally, the scenario can also be extended to other

GUT models whose gauge group contains SU(5) as a
subgroup. When the Higgs multiplets of the GUT model
contain 5, 5̄ and 24 of the minimal SU(5) GUT, a su-
perpotential like (1) can be introduced. Then a viable
model of Higgs inflation is implemented, as described in
this Letter. One simple example of such a model is the
SO(10) GUT with Higgs multiplets in 10 and 54 repre-
sentations.
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