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0 Introduction

Let Q € R3 be a bounded domain with smooth boundary I'. We consider the following

nonisothermal Cahn-Hilliard system with inertial term (cf. [4])

0 +x):+V-qa=0, (0.1)
oq, +q=—V0, (0.2)
exst + x¢e — Ap =0, (0.3)
p=—Ax+ax:+¢(x) -0, (0.4)

subject to the boundary conditions
q-v=0,u=0,x=0, (x,t) € Q x (0,00), (0.5)
and the initial data

9|t:0 = 90(5@7 Q|t:0 = qo(ﬂﬂ): X|t=0 = Xo(l“), Xt’t:O = Xl(iﬂ), x € Q. (0‘6)

Here 6 denotes the (relative) temperature around a given critical one, x represents the order
parameter (or phase-field). ¢ > 0 is a small inertial parameter and o > 0 is a viscosity
coefficient, o € [0, 1]. v stands for the outward normal derivative on the boundary T

System (0.1)-(0.3) can be viewed as an evolution system which describes a two-phase
system subject to nonisothermal phase separation. The inertial term ey accounts for fast
phase separation processes (cf. [2]). (0.2) represents the so-called Maxwell-Cattaneo’s law of
heat conduction modeling thermal disturbance as wave-like pulses propagating at finite speed
(cf. [1]). The standard Fourier law is obtained when o = 0.

We recall that in the isothermal case, the singular perturbation/hyperbolic relaxation
of viscous/nonviscous Cahn-Hilliard equation has been investigated in several papers (see e.g.,
[3, 7,9, 10] and the references therein). As far as the nonisothermal case (0.1)-(0.3) is concerned,
the well-posedness of the initial and boundary value problem was obtained in the recent paper
[4]. Moreover, the authors proved that the corresponding dynamical system is dissipative and
possesses a global attractor. Besides, the convergence of each trajectory to a single steady state
was established, assuming that the nonlinear potential is real analytic. (We also refer to [6]
for a fully hyperbolic phase-field model that includes a damped hyperbolic equation of second
order with respect to the phase function, instead of the Cahn-Hilliard one (0.3)).

The aim of this short note is to improve the convergence rate obtained in [4] for system
(0.1)-(0.6). In the next section we first recall some known results in the literature. In Section

3, we provide the proof of our main result (see Theorem 2.1).
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1 Functional Settings and Known Results

Let H = L?(Q) and H = (L?*(©2))3. These spaces are endowed with the natural inner
product denoted by (-, ) and the induced norm || - || . For the sake of simplicity, we will assume
e = 1. Then, we set V = H'(Q),V = (H'(Q))? and W = H?(Q), both endowed with their
standard inner products, and we define the subspace of H of the null mean functions Hy = {v €
H : (v,1) = 0}. We also introduce the linear nonnegative operatorA = —A : D(A) C H — H,
with domain D(A) = {v € W : 9,v = 0|r}, and denote by Ay its restriction to Hy. Note that Ay
is a positive linear operator; hence, for any r € R, we can define its powers A” and, consequently,
set Vj' = D(AS/ *) endowed with the inner product (v, Vo) = <AOg vy, A§ v2). We also denote

the dual space of V by V* whose norm can be defined as ||v]|2. = [|Ay /(v — (v, 1))||2+ (v, 1)2.

Moreover, we denote
Vo={veV:v-vr=0}

and the product spaces
Ho,=HxHxVxV* V,=VxVyxD(A) xH,

with the following norms

2
Vs

(21, 22, 2320) 3, = l2a1® + ollz2l® + [[25]f3 + []24]
1(21, 22, 2z322) 1%, = 2 ll¥, + o llz2ll3y + [l23]1% + [|24ll?,
if 0 > 0. For 0 = 0 we can simply set
%OZHXVXV*, V():VXD(A)XH

The assumptions on the nonlinearity ¢ and its potential ®(y) = foy f(2)dz are
(H1) ® € C3(R) such that ®(y) > —cy, Vy € R,
(H2) [¢" ()] < ex(1+y]), Vy ER,
(H3) Ve > 0, there exists ¢, > 0 such that

lp(y)| < e@(y) +c., Vy€ER,

(H4) V¢ € R there exist co > 0 and ¢3 > 0 such that

(y —Q)o(y) > c2®(y) —c3, Yy eR,

(H5) For all y € R, ¢'(y) > —c4. Here ¢g, c1, ¢4 are positive constants.

Remark 1.1. Although assumptions (H1)—(H5) look complicated, one can verify that the double
well potential ®(y) = (y?> — 1)? and the corresponding function ¢(y) = y* —y satisfy all the

assumptions stated above.
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The wellposedness of problem (0.1)—(0.3) has been proved in [4], in particular, we have

Proposition 1.1. Assume o > 0 and (H1)-(H5) hold. For any initial data (6o, 0qy, X0, X1) €
Hy, system (0.1)-(0.6) admits a unique global solution

0 € C([0,00),H), oge C([0,00), H), q¢< L*(0,00; H),
x € C([0,0),V), x: € C([0,00),V*)N L*(0, 00, H).

Then they proceeded to prove the convergence to equilibrium of the global solution with

an estimate on the convergence rate provided that the function ¢ is real analytic.

Proposition 1.2. Let o > 0, o0 > 0 be fized, ¢ be real analytic and (H1)-(H5) hold. For any
(6o, 04y, X0, X1) € He, the w-limit set of the trajectory (0(t), q(t), x(t), x+(t)) consists of a single
point such that
w(bo, 49> X0, X1) = (B0, 0, Xoo, 0)

where (O, Xoo) Salisfies

Ooo = wio - Xl)d%

Jo X0 = Jo (X0 + x1)da, (1.1)

A(Axo + ¢(x)) = 0.
Moreover,

Jim [ x(t) = Xoollv =0,

and there exist t* > 0 and a positive constant C' such that
16() = Oocllv+ + [IX(£) = Xacllv+ < CET5, V> 1 (1.2)
If 0 =0 a similar result holds.

In the subsequent proof, we shall make use of the following uniform estimates of global
solutions to (0.1)-(0.6) (cf. [4]):

Lemma 1.1. Assume a > 0 and (H1)-(H5) hold. For any (8,04, X0, X1) € Ho, there exists
a constant C' depending only on the H, norm of initial data and ¢ such that for t > 0,

10(t), a(t), x(1), x()II3,, < C. (1.3)
and -
/0 (0(r) = @), DI + lla®)|I* + lIxe]*)dr < C. (1.4)
Moreover, for the case o0 = 0,
10#), x(®) xeW)llve <C, t >t =t:(R) >0, (1.5)

provided that ||(0o, x0, X1)||n, < R.
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2 Improved Convergence Rate

The main result of this paper is as follows.

Theorem 2.1. Under the same assumptions as in Proposition 1.2,

(1) If 0 > 0, for any (0o, 04qy, X0, X1) € He, there holds
16(8) = Ouc | + @) + IX(E) = xoollv + ey < CA+ 8=, Vi>0.
(2) If o =0, for any (0o, X0, X1) € Ho, there holds
16() = Oocllv + [1X(1) = Xoollmz + [Ixe ()| < C(A+8)" T, Vi>1.

Proof of Theorem 2.1.
First we consider the case ¢ > 0 and for the sake of simplicity we take 0 = 1. Notice
that in the assumption of Proposition 1.2, o > 0 is fixed. This fact will provide us a better

lower-order estimate on the convergence rate. Set

é:H_<9’1>, X:X_<X71>’ (2'1)

h(X) = o(x) — d(X — (x1,¢7")).
Let
L(t) = % (Hé(t)ll2 +lla®)l? + IVR@)® +2(@(x (1), 1) + ||>~<t(t)||3/*> :

A direct computation shows that

d L~ B B ~
= (L) + e, VAT D)) + lal® + [1%ell3- + all %l + )]

= —{a, VAG0) — pla, VATR) + pl Ay PV a2 + (B(R), %) (2.2)

where 1 > 0 is some constant to be chosen later. The R.H.S. of (2.2) can be estimated as

follows
—pld, VAT'8) — pula, VAT %) < Crulllall® + 1101° + 145 5%0)1%),
(h(0): %) < Cae™ + S5l
As a result,
G () + e, VA5 8)) +llal + 1%l3- + S + ]2
< Culllall® + 1617 + 145" %el®) + pll 45>V - qlf* + Cae™™. (2.3)
Denote

G(t) = (A3 % Ay (40X + 3(0) ~ 6(0)) )

_5_



|I| E ﬂ H iE x E ﬁ http://www.paper.edu.cn

where

$(X) = ($(X), 1).
We introduce

M(t) = L(t) = E(Xoo) + p{a, VAG'0) + 1 G(t) + Ce™™
and

N2(E) = [la®)]? + 10013 + %@ + 1012 + |45 (A% + $(X) — (X))

We can take p, uy > 0 sufficiently small that there exists v > 0 depending on u, 11, o such that
(cf. [4, (4.16)])

%M(t) +N3(t) <0,  t>0. (2.4)

For our system (0.1)-(0.6), a special type of Lojasiewicz-Simon inequality has been obtained in
[4] (cf. [4, Lemma 4.1]),

Lemma 2.1 (Lojasiewicz-Simon type inequality). Let
- - L
50) =8l + (o + 1), and ()= [ a(Od VyeR
0

B) = SIVol? + (B(0), 1).
Suppose that ¢ is real analytic and (H2), (H5) hold. Let vo, € Vi be a function satisfying
A(Agvo + ¢(vs0)) = 0.
Then there exist p € (0, %), 1n > 0 and a positive constant L such that
|E(v) = E(v0)|' ™" < Ll Agv + ¢(v) = ($(0), 1) [ly1, (2.5)
for allv € Vi such that |[v — veollyy <.

From Proposition 1.2, we can see that there exists ¢, > 0 such that for all ¢ > ¢, the
condition in Lemma 2.1 is satisfied. Namely, for the constant 77 > 0 in Lemma 2.1, there holds
1% = Foollve <7 for ¢ > 1,

It is well-known that the Lojasiewicz-Simon type inequality can be used to obtain (lower-
order) convergence rate of global solutions to equilibrium (cf. e.g., [5]). Actually, after a

refinement of the argument in [4], we can show that
/ N(n)dr <Ct v%,  Vi>t,.
0
By Proposition 1.1, after adjusting C' properly, we have

/ N(D)dr <CA+t)" ™%,  Vi>0, (2.6)
0

- 6-
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which entails that (since now a > 0)
/oo IXe(P)|ldr < C(A+t) T,  Vit>0. (2.7)
¢
On the other hand, from the boundary condition we have
(0 +x)(),1) = (6o + x0, 1),

(x@®),1) = (xo+x1.1) — (x1, e, (), 1) = (x1,1)e "

As a result,

A\

= ool € ) = Zooll = 108, 1) = Cxoes 1]
/ ||>zt<T>||dT+c] [t =i

/ x1dx
Q

CA+t)"T%, Vt>0. (2.8)

IN

IN

C(1+1t)" 7% +Ce™!

IA

Here Yoo = Xoo — (X0, 1)-
Remark 2.1. We notice that estimate (2.8) is better than Proposition 1.2 (cf. (1.2)).

Next, we proceed to get further estimates on convergence rate in higher-order norms. The
calculations are performed in a formal way, but they can be justified by a standard density
argument.

Under changes of variable (2.1), system (0.1)—(0.3) can be written as

((0 +X)i,v) — (a4, Vv) =0, (2.9)
(cq, +q,v) = (0,V V), (2.10)
(et + Xor w) + (AX + d(x) + Xy — 0, Aw) = 0, (2.11)

forallv eV, ve Vyand w € D(A). On the other hand, we can write the stationary problem
(1.1) in the following form
0o = fg(90 - Xl)dl’,
JaXoo = Jo(xo + x1)d, (2.12)
(AXoo + 0(x), Aw) =0,
for all w € D(A).
Subtracting the third equation in (2.12) from (2.11), we get

(et + Xes ) + (A(X — Xoo) + 0(X) — d(xo0) + Xt — 0, Aw) = 0, (2.13)

for all w € D(A).
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Take v = 6 in (2.9), v = q in (2.10) and w = A5 (X + B(X — Xoo)). Adding together the

resultants, we get

% (1612 + ollall® + 1145 %l + 9 (% — Foo) I

+2(R(x) = B(Xo0)X — P(Xoo) + B(Xoo)Xoos 1) + 2B(Ag >0, A2 (X = Xoo)
+B145 V(% = oo |2 + @BIIX — Xec )

Hlall? + (1 = B)[ 45 2% 1” + all %> + BIV (X = Xoo)I”

N | —

= (0(x): (Xe, 1)) = (A(xo0)s (X, 1)) — B{d(X) — d(Xoe)s X — Xoo)

+B(0, X — Xoo)- (2.14)

The R.H.S. can be estimated as follows

[{o(X) = D(xoo), Oxas 1) < et < Ce. (2.15)

/Q (600) — d(xee))de

/ X1dx
Q

Bl Iz 1x = Xoollze X — Xooll

S CﬁHX_XooHHlH)Z_)ZooH

< OBIIVIX = X)X = Xoo |l + CBlIX = Xooll X — Xool
1 L o

< SBIVIX = Xeo)I” + CBIX = Xeol* + CBIIx = xec|?
1 o %

< SBIVER = Xeo)lIP + CB(1+1) 7

Y ~ Ty n 1 ~ o~ 1 A _2 1 ~
B0, X = Xoo) | < BIIX=XeolllIONl < SBIX=Xool* + 5811611 < CHA+)" 2 + S 8[16]°. (2.16)
On the other hand, we have (cf. [4, (2.29)])

d

15 1 15 1, = 1. _
VAT = ——(a. VA7) — 0] — (0. VAT 'Re) + 14,V -

IN

1 = -
=5 101 145 25l 4 1 (142 )l (217)

Multiplying (2.17) by v; and adding it to (2.14), we infer from (2.15)—(2.16) that

IN

d ~

L0 + ol + 145 %l + IV~ Tl

+2(2(x) — $(Xae)x ~ D (te0) + S (xo0)Xoe 1) +28(Ag " Ker 45 (X — Xa0))

145 (% = T + 0B = Xl + (0 VA5 18)) + (1= B — 7)1 45 el
1 1

# 1= (14 2)] Nl + alel? + 35090 %P+ (2 - 2) 1612

Ce™' +CB(1+1) T%. (2.18)

N | —
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Denote
1/ - —1/9 . _
Tty = 5 (1812 +ollal + 145 Rl + 1V — R IP + B4 (% — o)l

F2(B(X) — (Xoo)X — P(Xoo) + D(Xoo)Xoor 1)+ 28(A5 2 %s, Ay 2 (X — Xoo))
+aBl% — Koo + 71(a, VA7) ) -

By the Taylor’s expansion, we have

D(x) = P(Xoo) + A(Xoo) (X — Xoo) + F/(€) (X — X0)?, (2.19)

where £ = ax + (1 — a)x~ with a € [0, 1].
Then we deduce that

= P(Xoo)X — P(Xoo) + A(Xoo)Xoor 1)
‘/ ¢ X Xoo) dx

< 1" (ONzsllx = Xooll7s

< CO|IV(X = X)X = Xooll + ClIx = Xool?
1,

< ZHV(X_XOO)||2+C||X_XOOH2'

26(45 "% 452 — xee))| < 26145 2017 + 38145 (R - %)

(e, VAG 10| < allal® + oy 6]

As a result, if 3,7, are chosen sufficiently small that

1 7 1 o o 1
0<fB< 0<m < 7 72 2.20
= mln{4 % } m mm{4 21(o+ 1) 2" ks } (2.20)

then there exist constants Cy,Cy > 0 such that
(1) + Crllx = xeol 2 G (01 + 1l + 145 2Rl + IV R = %)) . (221)

Moreover, we can deduce from (2.18) that

d
dt

where C3 > 0 is a constant depending on /3,71, «, || as well as the initial data.

Y(t)+ C3Y(t) < Ce '+ CB(1+t) T2 (2.22)

Solving the differential inequality (2.22) (cf. e.g., [8]), we get

Y(t) <C(1+1)"T%, V>0 (2.23)

Here we use the fact that e~* decays faster than (1+ t)fliigﬁ for large t and adjust the constant
C properly. It follows from (2.21) that

165 — 0]l < 8] + [O(8), )] < CA+6) 75 4+ Ce™t < C1L+ )P,

9.
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lal < C(1+1) 5,

ve S IAT 2@ + 0, D] < CA+ 1) 7% + Ce™ < C(1+1) 77,

I (£)]
IX(8) = Xoollrt < IV(R(E) = Koo)ll + [1X(8) = Xocl| < C(L+ 1) =20,

We have finished the proof for the case ¢ > 0. The case ¢ = 0 is easier and can be obtained in
a similar way. In summary, the proof of Theorem 2.1 is complete.

Actually, we can say more about the convergence rate. When the authors tried to prove
precompactness of trajectories in [4], a decomposition technique was used. Thanks to the
assumptions of ¢, there is a constant ¢ > 2¢4 which also depends on the norms of initial data
such that

1
SIV2IP + (= 2ea)|l2)° = (&' (x(1))z, 2) = 0,
for all z € V and t > 0. Consequently, set
P(r)=¢(r)+w, YVreR. (2.24)

Then one can split the solution in the following way

(6,a,x) = (0%,a%, x*) + (6°, 4% x°),
where
(04 +xD1,v) = (@, Vv) =0,
(oaf +q%,v) = (09, V - v),
(X + xi, w) + (Ax? + 9 (x) — »(x°) + axf — 0%, Aw) = 0,
04(0) = X0, 0q?(0) = 0qy, x“(0) = X0, x{(0) = X1,

(2.25)

and

(0 + X, v) = (q%, V) =0,

{oaf +4q°,v) = (0% V- v),

(XGi + x5 w) + {(AX" +P(X°) + axi — 0%, Aw) = (e, Aw),

0°(0) = (6o, 1), 0q°(0) =0, Xx“(0) = {x0,1), X7(0) = (x1,1)
forallveV,veVand we D(A).

It has been proven in [4, Section 3] that (8¢(t), q?(t), x¢(t), x%(t)) decays to 0 exponentially

fast in #H, as time goes to infinity while (6°(t), q(t), x°(¢), x£(¢)) is uniformly bounded in V,.

(2.26)

Namely,

Lemma 2.2. If ||(0o, gy, X0, X1) ||, < R, then for any t > 0 we have

107 (1), g (8), X" (1), X7 (1) 3¢, < C(R)e™ ", (2.27)

and

10°(2), g°(£), x“(£), xi (D) lv, < C(R). (2.28)

- 10 -
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We notice that (2.27) provides a faster convergence rate for the decay part than the whole
trajectory. In what follows, we shall show that the uniform bound (2.28) will enable us to
obtain the same convergence rate for the compact part as for the whole trajectory but in the

higher order norm in V,. More precisely, we have

Theorem 2.2. Under the same assumptions as in Proposition 1.2, if o > 0,

for any (0o, 0qy, X0, X1) € Ho, there holds
10°(t) = Ooollv + 1€ ()| v + IX°(8) = Xoollmz + IXF)| < CA+8)" ™%,  Vt>0. (2.29)

Proof. We take v = Af° in the first equation of (2.26) and v = —VV-q° in the second equation.
Adding together the resulting identities, we obtain

d (1 o
— SV + IV -l ) + IV - afl* + (x5, A9°) = 0. (2.30)
dt \ 2 2

Subtracting the third equation in (2.12) from (2.26), we have

(e + X5 w) + (AXT = Xoo) +(X°) — ¥(Xoo) + axi — 0°, Aw) = (1(X — Xoo), Aw).

Taking w = xj + B(X° — X0 ), We get

d 1 cn2 1 P 2 c c 6 c 2
dt(zmn + SIAGE = X0 I2 + BOGH X7 = Xoo) + SN = Xoe

FPIT0E = ) IP) + al VIR + (- BT + B4 = )P

_<967AX§>
= —((X°) = ¥(Xoo)s AXE) + tIX = Xoo» AXE) + B0, A(X” — X))
=B (X)) = Y (Xoo)s AX = Xoo)) + t{X = Xoos A(X — Xoo))- (2.31)

By the uniform bound (2.28) for (0°(t),q°(t), x°(t), x5(¢t)) and the uniform bound (1.3) for
(0(t),a(t), x(t), xt(t)), we can estimate the R.H.S. of (2.31) as follows.

—(¥(x°) = ¥(Xoo) AXE)
(W' (XIVXT =" (Xoo) VXoor VX)

< IO VIXE = X ITVXEIT+ (" (X) = %' (X)) VX TV XE

< Y O IV = Xa) ITVXEN + 197 (2o X = Xoo 26 [V Xoo |26 VXTI

< CA+IIXNEIVE = XD IVXEN + CQ+ 1€l ) xoo a2 X = Xoollm VX
< SIVXEIP + Cllx = xelln,

- 11 -
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where £ = ax® + (1 — a)Xoo With a € [0,1] and X is bounded in H2. Similarly, we have

—B(X) — ¥ (X)) AX® = Xoo))

B (X)VXT =1 (Xoo) Voo, V(X = Xoo))

19" (X )V (X = X VX = xoo ) + (%' (X7) = ¥ (Xoo)) VX [V (X = Xo0)
ClIx® = Xooll -

IA

IN

B0, A(X" — X)) = B0 — boo, AX° — Xoo))
LHAGE Xl + 167 — B,

IN

where we use the fact that 6 is a constant and as a result (0., A(X® — X)) = 0.

N

L(X = Xoor AXS) + 1{X = Xoor AX — X)) < —t{V (X — Xo0)> VX§) — ¢/ V(X — Xoo) I
a C
gIIVXtIIQJrCIIx—xooH?p- (2.32)

IN

It follows from (2.31)—(2.32) that

d 1 (& 1 c (& c B C
& (BN + S1AGE = Xl + 806 = ) + 51 = el

dt
af . 3a . . 35 .

+ 22V —xoo>||2) + 229960 + (- I + A~ xl?

(6, AXS)
< I = X2 + Cllx = o2 + B16° — 62 (2.33)

We also have (cf. (2.17))

Lo very+ Lveer = —Lige ver) — (@, v £ IV - @l
dt q 9 o - o q bl q 9 Xt q

1 1 o}
< s c||2 s cl||2 c||2 e c 2. 2 4
< oIV oI+ o Vil + e (289
Multiplying (2.34) by 72 > 0 and adding it to the sum of (2.30) (2.31), it follows from (2.32)—
(2.33) that
d (1 s O 5 1 5 1 9
. - C _ . c - c - A c _ c c _
a1 (G901 + S0 alP 4 Sl + SHAGC = X+ B0 = )
6 C a/B C c c 3 (6]
+5 X = Xooll” + IV = xeo) P + 2@, VE) ) + (5 =2 ) @l VXEI?

C ’y C C 35 C
(1= B)INEIP + 22V + 19 - o) + NG — xeo) 2
1 o
< Ol ~ Xeollin + Cllx = Xoollin + 8167 — 6] + (20 - 4) wlal?. (235)
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Denote
1 c||2 o cl|12 1 cl|12 1 c 2 c c
Tu(t) = SIVON+ SIV @™+ SN + SIANT = xeo) I + B0 X" = xeo)
5 c a/B c c c
+5IIX = XeolP + S IV = xeo)I* +72(a%, V). (2.36)

Taking vs, 81 € (0, %), there exists positive constants Cy, Cs, Cs such that
T1(t) + Calllal* + [1x° = xoclI?) = C(IVOI* + IV - @|I* + [[XEIP + 1A = xoo) 1), (2.37)

and

d C C c
21110+ G (1) < CIX = Xooll i + I = Xoollzrs + 107 = O I” + lla°[1*)- (2.38)

We infer from Theorem 2.1 and (2.27) that

() = Xoollmr < X = Xoollmr + X[ < C(L+18)" 7% + Ce™ "
< C(l+41t) ™=,

and in the same manner,
la°ll < llall + lla| < C(1 + 1)~ ==,
169 = Booll <116 = Ol + 16°]] < C(1+ 1)

As a result, (2.38) yields

d o
S Tt) + CeTa(t) < C+ )75,

which implies

Yt <C(1+1t) 7%,
The above estimate together with (2.37) indicates that
IVOl+ 1V - @l + I+ AGE = o)l < C(1+1) 75 (2.39)
The equation for q¢ can be written in the strong form such that
oq; +q° = —Ve",

and consequently
o(Vxq9)+Vxq =0.

Besides, the initial data V x q“(0) = 0. As a result, V x q° = 0 for all time. It this case,
IV - q|| + ||q°|| defines an equivalent norm on Vy. Combining (2.39), Theorem 2.1 and (2.27),
we can conclude (2.29). The proof of Theorem 2.2 is complete. O
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