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Abstract: Using trigonometrical series theory and contraction mapping principle, This paper study

difference systems X(n + 1) =
+∞
∑

j=−∞

A(j)X(n − j) + f(n, x(n + ·)) and X(n + 1) =
+∞
∑

j=−∞

A(j)X(n − j) +

G(n, X(n + ·)), sufficient and necessary conditions on the existence of periodic solutions for the first equation

and sufficient conditions on the uniqueness of the second equation are obtained.
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1. Introduction

Paper[1] studied the existence of Periodic Solution of linear inhomogeneous differential equations

ẋ(t) =

∫ +∞

−∞

[dE(s)]x(t + s) + f(t), (A)

whereE : R → Cn×nis continue to the left and of bounded total variation on R, i.e., γ =
∫∞

−∞
|dE(s)| <

∞, f ∈ CT , and x ∈ BC(R;Cn) := {ψ ∈ C(R;Cn) : ψis bounded on R}. Paper[1] obtained some

sufficient and necessary conditions on the existence of periodic solutions for Eq. (A).

Paper[2] studied the uniqueness of Periodic Solution of quasilinear functional differential equations

ẋ(t) =

∫

R

[dE(s)]x(t + s) +G(t, x(t+ ·)), (B)

where x(t) ∈ Rn, E : R → Rn2

is continue to the left and of bounded total variation on R, i.e.,

γ =
∫∞

−∞
|dE(s)| < ∞, G : R × BC(R;Rn) → Rn is continue, G is T > 0 periodic with respect to

its first variable t, and G maps bounded set to bounded set .Paper[2] obtained some sufficient and

necessary conditions on the uniqueness of periodic solutions for Eq.(B).

Using trigonometrical series theory and contraction mapping principle, This paper study discrete

linear inhomogeneous difference systems and qunasilinear delay difference systems,and obtain sufficient
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and necessary conditions on the existence of periodic solutions for the discrete linear inhomogeneous

difference systems with sufficient conditions on the existence of periodic solutions for the qunasilinear

delay difference systems,morever,The main results in [1],[2]are extended and improved to difference

systems.

2. Main Results

In this paper ,we investigate the following linear inhomogeneous difference periodic systems

X(n+ 1) =

+∞
∑

j=−∞

A(j)X(n− j) + f(n). (1)

where A(j) ∈ Cn×n, X(n) ∈ Cn, f ∈ lN = {{φ(n)}| φ(n+N) = φ(n), }, N ≥ 1 is positive integer.

Lemma 1 Suppose that f(n) ∈ lN ,then f(n) can be uniquely expressed as f(n) =
N−1
∑

k=0

f̂(k)eµkn,

where f̂(k) = 1
N

N−1
∑

n=0
f(n)e−µkn, µk = 2kπi

N
, k ∈ ω := {0, 1, 2, ..., N − 1}.

Proof: Assume that

f(n) =

N−1
∑

k=0

a(k)eµkn (2)

hold,multiplying Eq.(2) by e−µjn and adding form 0 to N-1 ,we obtain

N−1
∑

n=0

f(n)e−µjn =
N−1
∑

n=0

N−1
∑

k=0

a(k)eukne−umn

=
N−1
∑

k=0

a(k)
N−1
∑

n=0
e(µk−µj )n.

Since

e(µk−µj )n =

{

N k = j

0 k 6= j,

We have
N−1
∑

n=0

f(n)e−µmn = Na(k),

Hence

a(k) =
1

N

N−1
∑

n=0

f(n)e−µmn = f̂(k),

This implies f(n) can be uniquely expressed as f(n) =
N−1
∑

k=0

f̂(k)eµkn.

Lemma 2 Assume that f(n) ∈ lN and f(n) can be expressed as f(n) =
N−1
∑

k=0

f̂(k)eµkn,then

N−1
∑

k=0

|f̂(k)|2 =
1

N

N−1
∑

n=0

|f(n)|2.
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Proof: Since f(n) =
N−1
∑

k=0

f̂(k)eµkn,we have

|f(n)|2 = < f(n), f(n) >

= <

N−1
∑

k=0

f̂(k)eµkn,

N−1
∑

l=0

f̂(l)e−µln >

=

N−1
∑

k,l=0

< f̂(k), f̂(k) > e(µk−µl)n,

Then

N−1
∑

n=0

|f(n)|2 =

N−1
∑

k,l=0

f̂(k)f̂(l)

N−1
∑

n=0

e(µk−µl)n

=

N−1
∑

k=l=0

|f̂(k)|2N,

So
N−1
∑

k=0

|f̂(k)|2 =
1

N

N−1
∑

n=0

|f(n)|2.

and the proof is complete.

Theorem 1 Eq.(1) has a unique N-periodic solution if and only if eµk are not roots of the

characteristic equation

det ∆(µ) = 0. µk =
2kπ

N
i, k ∈ ω, ∆(µ) = µI −

+∞
∑

j=−∞

A(j)µ−j .

Proof Assume that Eq.(1) has a unique N-periodic solution x(n). Since x(n+N) = x(n), f(n+

N) = f(n),by Lemma 1,x(n), f(n) all can be uniquely expressed as x(n) = 1
N

N−1
∑

n=0

x̂(k)eµkn,and

f(n) = 1
N

N−1
∑

n=0
f̂(k)eµkn,

Multiplying Eq.(1) by e−µkn and summing from 0 to N-1 ,we obtain

N−1
∑

n=0

x(n+ 1)e−µkn =

N−1
∑

n=0

+∞
∑

j=−∞

A(j)x(n − j)e−µkn +

N−1
∑

n=0

f(n)e−µkn,

Then

N−1
∑

n=0

x(n+ 1)e−µk(n+1)eµk =
+∞
∑

j=−∞

A(j)
N−1
∑

n=0

x(n− j)e−µk(n−j)e−µkj +Nf̂(k),

Hence

(eµkI −

+∞
∑

j=−∞

A(j)e−µkj)Nx̂(k) = Nf̂(k),

That is

∆(eµk)x̂(k) = f̂(k). (3)
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Since linear equation

∆(eµk )y = f̂(k) (4)

has solutions,assume that Eq.(4) has a unique solution ,then

det ∆(eµk ) 6= 0. (5)

Assume that Eq.(4) has many solutions, let ŷ(k) is other solution of Eq.(4), It is immediate that

y(n) =
N−1
∑

k=0

ŷ(k)eµkn satisfy the following equation

y(n+ 1) =

+∞
∑

j=−∞

A(j)y(n− j) +

N−1
∑

k=0

f̂(k)eµkn. (6)

In addition, x(n) =
N−1
∑

k=0

x̂(k)eµkn also satisfy the following equation

x(n+ 1) =

+∞
∑

j=−∞

A(j)x(n − j) +

N−1
∑

k=0

f̂(k)eµkn. (7)

Let Eq.(6) subtract Eq.(7),we obtain

g(n+ 1) =

+∞
∑

j=−∞

A(j)g(n− j), (8)

where g(n) = x(n) − y(n).Since Eq.(1)has a unique solution ,then the corresponding homogeneous

linear Eq.(8) has a unique null solution, therefore Eq.(5) hold,that is , euk are not roots of the

characteristic equation det ∆(µ) = 0 .

On the other hand ,assume that det ∆(eµk ) 6= 0 hold to each k ∈ ω, then for every certain k ,linear

Eq.(4) has a unique solution.That is ,to each k ∈ ω,Eq.(4) uniquely define a c(k) such that

∆(eµk )c(k) = f̂(k). (9)

It is obvious that z(n) =
N−1
∑

k=0

c(k)eµkn satisfy Eq.(7). Let φ(n) =
N−1
∑

k=0

β(k)eµkn is other solu-

tion of Eq.(7),then φ(n) − z(n) is a solution of the corresponding homogeneous linear Eq.(8) ,Since

det ∆(eµk ) 6= 0, hence Eq.(8) has a unique null solution,then φ(n) = z(n), that is ,z(n) is the unique

N-periodic solution of Eq.(8).

By Lemma 1, it is easy to know that Eq.(7) is the equivalent equation of Eq.(1) , hence z(n) =
N−1
∑

k=0

c(k)eµkn is the unique N-periodic solution of Eq.(1). and the proof is complete.

Next,We prove a more general result giving a necessary and sufficient condition for the existence

of N-petiodic solutions also in the general case when det∆(eµk ) = 0 for some integers.That is,

Theorem 2 Eq.(1) has a N-periodic solution if and only if f(n) ∈ lN (E). where A(K) = {a ∈

Cn∗

|a∆(eµk ) = 0}, (k ∈ ω), Cn∗

is the space of n-dimension row vector , lN (E) = {f ∈ lN |af̂(k) = 0

for all a ∈ A(K), k ∈ ω}.

Proof First assume that x(n) is a N-periodic solution of Eq.(1). Multiplying Eq.(1) by e−µkn

and summing from 0 to N-1 ,we obtain

∆(eµk )x̂(k) = f̂(k),
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that is ,linear equation Eq.(4) has solutions.

From elementary linear algebra ,Eq.(4) has solutions if and only if af̂(k) = 0 for all a ∈ A(K)

such that a∆(µk) = 0. Thus ,the existence of a N-periodic solution of Eq.(1) implies fn ∈ lN (E).

On the other hand,Now assume that f(n) ∈ lN (E), then Eq.(4) has solutions. Choose c(k) such

that

∆(eµk )c(k) = f̂(k).

It is obvious that z(n) =
N−1
∑

k=0

c(k)eµkn is the N-periodic solution of

x(n + 1) =

+∞
∑

j=−∞

A(j)x(n − j) +

N−1
∑

k=0

f̂(k)eµkn.

By Lemma 1,Eq.(1) and Eq.(7) have same solutions,hence
N−1
∑

k=0

c(k)eµkn is N-periodic solution of

Eq.(1).Therefore if fn ∈ lN(E),then Eq.(1) has at least one N-periodic solution. and the proof is

complete.

Finally,we consider the quasilinear delay difference equations

X(n+ 1) =

+∞
∑

j=−∞

A(j)X(n− j) +G(n,X(n+ ·)), (10)

where A(j) ∈ Cn×n, X(n) ∈ Cn, G is N-periodic with respect to its first variable n,and G maps

bounded set to bounded set. Let | · | denote any norm of Cn, for any matrix D ∈ Cn×n,|D| denotes

operator norm induced by the norm in Cn. From theorem 1,we know that Equation(1) has a unique

N-periodic solution if and only if det∆(eµk ) 6= 0 for all k ∈ ω, at the same time , x(n) can be expressed

as following

x(n) =

N−1
∑

k=0

∆−1(eµk )f̂(k)eµkn. (11)

On Eq.(10),we have

Theorem 3 Assume that det∆(eµk) 6= 0, for each k ∈ ω, G(n, ϕ) satisflies Lipschitz condition for

ϕ ∈ lN ,and Lipschitz constant L such that

L2
N−1
∑

k=0

|∆−1(eµk)|2 < 1, (12)

Then Eq.(10) has a unique N-periodic solution .

Considering the operator E : lN → lN defined by

Ef(n) =

N−1
∑

k=0

∆−1(eµk)f̂(k)eµkn. (13)

Then it is easy to know Ef(n) is the unique N-periodic solution od Eq.(1).

Lemma 3 Assume that E : lN → lN is the operator defined by Eq.(13),then E is a linear operator

,and

‖E‖ ≤ (
N−1
∑

k=0

|∆−1(eµk )|2)
1

2 ,
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where ‖E‖ is the norm of the operator E.

Proof It is obvious that the operator E is linear operator.

By lemma 2 and Cauchy inequality, we have

1

N

N−1
∑

n=0

|Ef(n)|2 =
N−1
∑

k=0

∣

∣

∣
∆−1(eµk )f̂(k)

∣

∣

∣

2

≤

(

N−1
∑

k=0

|∆−1(eµk )|2

)(

N−1
∑

k=0

|f̂(k)|2

)

=

(

1

N

N−1
∑

n=0

|f(n)|2

)(

N−1
∑

k=0

|∆−1(eµk )|2

)

.

Hence
N−1
∑

n=0

|Ef(n)|2 ≤

(

N−1
∑

n=0

|f(n)|2

)(

N−1
∑

k=0

|∆−1(eµk )|2

)

.

Since

‖E‖ = sup
f 6=0

|Ef |

‖f‖
= sup

‖f‖6=0

(

N−1
∑

n=0
|Ef(n)|2

)

1

2

(

N−1
∑

n=0
|f(n)|2

)

1

2

,

Then ‖E‖ ≤

(

N−1
∑

k=0

|∆−1(eµk )|2
)

1

2

.

here |Ef | denote the norm of the function Ef(n).

The proof of theorem 3:

Considering the operator T : lN → lN defined by

(TF )(n) = G(n,Ef(n+ ·)). (14)

By thoorem 1,f ∈ lN is the fixed point of T if and only if Ef(n) is a N-periodic solution of Eq.(1).

So ,it suffices to prove that T has a unique fixed point in lN .

For f1, f2 ∈ lN , since

|Tf1(n) − Tf2(n)| = |G(n,Ef1(n+ ·)) −G(n,Ef2(n+ ·))|

≤ L‖Ef1 −Ef2‖

≤ L

(

N−1
∑

k=0

|∆−1(euk)|2

)

1

2

‖f1 − f2‖,

Then ,by (12),T : lN → lN is a contraction mapping. By contraction mapping principle,T has a

unique fixed point f∗ in lN . Hence ,Ef∗ is the unique N-periodic solution of Eq.(10). and the proof

is complete.
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