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Abstract

We present a highly parallel implementation of the cross-correlation of time-
series data using graphics processing units (GPUs), which is scalable to hun-
dreds of independent inputs and suitable for the processing of signals from
“Large-N” arrays of many radio antennas. The computational part of the
algorithm, the X-engine, is implementated efficiently on Nvidia’s Fermi ar-
chitecture, sustaining up to 79% of the peak single precision floating-point
throughput. We compare performance obtained for hardware- and software-
managed caches, observing significantly better performance for the latter.
The high performance reported involves use of a multi-level data tiling strat-
egy in memory and use of a pipelined algorithm with simultaneous compu-
tation and transfer of data from host to device memory. The speed of code
development, flexibility, and low cost of the GPU implementations compared
to ASIC and FPGA implementations have the potential to greatly shorten
the cycle of correlator development and deployment, for cases where some
power consumption penalty can be tolerated.
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1. Introduction

We apply graphics processing units (GPUs) to the problem of signal pro-
cessing for radio astronomy. While not a classic high performance computing
(HPC) application, there are now many radio astronomy applications that re-
quire in excess of O(100) tera-floating-point operations per second (TFLOPS)
sustained performance. The Square Kilometer Array (SKA) due to be built
circa 2020, will raise the processing needs into the exascale regime [15, 4].

A typical processing pipeline consists of: digitization of the raw voltage
time-series from individual antennas; cross-correlatation; instrument elec-
tronics calibration and Fourier imaging reconstruction of the sky. The ex-
treme computational cost lies predominantly in the cross-correlation stage;
this requires that the signal from every antenna is correlated with every other,
and scales quadratically with the number of antenna.1 Science applications
that demand high dynamic range and sensitivity in imaging drive interest in
arrays of hundreds to tens of thousands of collectors (e.g., antennas). This
raises the processing needs from being modest and easily manageable, into
the HPC domain, e.g., the Murchison Widefield Array, currently in proto-
type stage in Australia will require O(10-100) TFLOPS sustained for cross-
correlation of configurations from 128 to 512 collectors [10].

The application of GPUs to cross-correlation is not uncharted territory:
there have been several works investigating GPUs use for this very purpose [7,
19, 12]. While these demonstrated that GPUs are suitable for this task, in
all cases only 10–30% of the GPU’s peak performance was obtained and the
problem was described as being bandwidth bound. This work presents an
approach to cross-correlation that is catered to the deep memory hierarchy
of Nvidia’s Fermi GPU. We compare the performance obtainable using both
hardware- and software-managed caches, the latter of which is more familiar
to GPU programmers. We find in favor of the software-managed cache,
achieving up to 79% of peak performance, equating to performance in excess
of 1 TFLOPS on the GeForce GTX 480. More significantly, our approach is
scalable to future architectures which will likely feature a greater disparity
between compute throughput and memory bandwidth.

This paper is split up as follows; in §2 we describe the cross-correlation

1Alternative approaches that scale as N logN have been proposed [17], but cross-
correlation, thus far the mainstay technique, enables greater generality in data calibration
and range of scientific application.
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process, specifically the FX algorithm. An overview of GPUs and previous
attempts at using GPUs for this problem is given in §3. We describe our
kernels in §4, where we contrast the hardware- and software-managed cache
implementations. In §5 we consider performance of the integrated system
where we include the overhead of PCIe transfers. We discuss the implications
of our results in §7 before concluding in §8.

2. Cross-Correlation

2.1. XF and FX Correlators

The Raleigh criterion θ = λ
d

states the angular resolution θ achievable
through direct observation from focusing optics of diameter d observing light
of wavelength λ. At the low-end, at radio frequencies, this would require
optics of improbable diameter. It is thus necessary to use interferometry,
in particular synthesis imaging, where a two-dimensional array of antennas
(or stations of many clustered antennas) act cooperatively as a single virtual
telescope, with the virtual diameter given by length of the farthest distance
between the antennas (see [1] for a review of synthesis imaging). This allows
an extension of the Raleigh criterion to larger physical scales.

The cross-power spectrum at frequency ν observed by the station pair i
and j (known as a baseline) is given by

Sij(ν) =

∫ ∞
−∞

(Ai ? Aj)(τ) e−i2πντdτ, (1)

where Ak is the signal at station k and (Ai ? Aj)(τ) is the cross-correlation.
With sufficient numbers of baselines, a detailed power spectrum representa-
tion can be obtained, from which fundamentally an image of the sky can be
obtained in turn through inverse Fourier transform in the spatial domain.
The above continuum formulation assumes a continuously sampled signal,
whereas in reality the voltage time-series from each antenna will be digitized
and sampled at a given total bandwidth B. Typical digitization precision is
between two and twelve bits stored in two’s complement form. The signal
is then divided into F frequency channels via Fourier techniques in the time
domain, where the number of channels is determined by the needs and goals
of the astronomy application. The maximum total bandwidth is determined
in accordance with the Nyquist-Shannon sampling theorem. The channel
width W = B/F is determined by the number of samples entering the time
domain Fourier transform.
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In radio astronomy, the processor that produces the power spectrum from
an array of stations is known as the correlator. Historically, this would
essentially compute equation 1 directly, i.e., the cross-correlation followed
by the Fourier transform. Such a correlator is known as a lag correlator, or
XF correlator (the X signifying cross-correlation, and the F signifying the
Fourier transform). For a correlator that processes F frequency channels
from N stations this scales as O(FN2).

Note, however, from the cross-correlation analogue of the convolution
theorem

F(A ? B) = (FA)× (FB), (2)

we can write the power spectrum as

Sij(ν) = Xi(ν)∗X†j (ν), (3)

where Xi(ν) =
∫∞
−∞Ai(τ)e−i2πντ is the Fourier transform of signal from sta-

tion i. Thus, we can calculate the power spectrum from first Fourier trans-
forming the digitized signal from each station, and then cross-multiplying the
result with every other station’s result at fixed frequency. Such a correlator
is known as an FX correlator, where the Fourier transforming component is
known as the F-engine and the cross-multiplying component is known as the
X-engine. This represents a more cost efficient approach to computing the
cross-power spectrum since the cost scales as O(N lnF )2 and O(N2) for the
F and X component,s respectively. Since the number of frequency channels
is essentially fixed, in the limit of large N the X-engine accounts for the bulk
of the computational budget. We note an additional step between the F-
and X-engines, the corner turn which is a reordering of data necessitated by
the station independence of the F-engine, and the frequency independence
of the X-engine. While this stage involves no computation, its bandwidth
requirements scale as O(BN) and can be a significant logisical challenge in
terms of the signal routing required.

If we consider all baselines, the X-engine evaluates the sum of a series of
self outer products,

Ŝ(ν) =
I∑
t=1

Xt(ν)⊗Xt(ν), (4)

2For complex-valued samples there are N (fast) Fourier transforms of length F per-
formed, but only once every F samples, so the total cost is O(N lnF ).
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where Ŝ(ν) is the correlation matrix and Xt(ν) is the vector of signals from
N stations signal at time t. This is evaluated independently for every fre-
quency ν and in order to improve the signal-to-noise ratio the outer product
is integrated in time over I samples.

Typically, each station records both the two orthogonal polarizations of
the input signal, which thus doubles the dimension of the input vectors,
hence quadrupling the cross-correlation cost. Given that the matrix Ŝ is
Hermitian, we need only calculate its lower triangular (or upper triangu-
lar) elements, corresponding to 1

2
N(N + 1) correlation pairs (including the

auto-correlation of self pairs along the diagonal). The rate at which this
computation must take place is determined by the total signal bandwidth B,
given by the product of the number of frequency channels and the channel
width. Written explicitly in terms of floating point operations per second
(FLOPS), the X-engine’s compute requirements are

FLOPS = 8×B × 1

2
2N(2N + 1), (5)

where the factor 8 arises from the complex-valued multiply-accumulate op-
eration and each of factors of 2 multiplying N arises from dual polarization.
Note that at fixed total bandwidth there is no explicit dependence on the
number of frequency channels.

2.2. Characterizing the X-engine

For any computational routine, the critical measure of performance ob-
tainable is the arithmetic intensity, or how many floating point operations
are performed per byte of information transferred. In evaluating Equation
4 we have to consider both the input and output bandwidth requirements
versus the amount of computation required. To calculate each baseline, we
must take the outer-product of two distinct complex-valued vectors of length
two and sum the result to an accumulator. Assuming 32-bit floating point
data, this requires 32 bytes of input, 32 flops (16 multiply-adds) and 64 bytes
for the read and write of the accumulator. The resulting arithmetic intensity
of 32/96 = 1/3 would be disastrous for performance on current architec-
tures, which typically have a ratio significantly greater than this to their
main-memory space. This ratio will only increase with time owing to the
increasing energy cost in moving data relative to operating on it [3]. Fortu-
nately, the situation can be improved by making some simple observations:
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1. If instead of considering a single baseline, we consider a “tile” of base-
lines of size m×n,3 there is significant data reuse between the baselines
and we need only load a “column” of length n and “row” of length m
to satisfy all input memory requirements.

2. The output memory traffic can be supressed by a factor of I if we do
not store the accumulated result until we have completed calculations
for all I samples.

This tiling strategy is illustrated in Figure 1. With these generalizations, the
arithmetic intensity is given by

Arithmetic Intensity =
32mnI

16(m+ n)I + 64mn
.

The value of I is determined by how long the time-series signals are integrated
for; values are application dependent, but for frequency channel widths of 1
to 100 kHz and accumulation times of 1 to 10 seconds, 104 < I < 106.
At such large I we see immediately that the output memory traffic becomes
negligible, and we can make the arithmetic intensity arbitrarily large through
increasing the tile size. This increases the resources (e.g., registers) required
as 8mn+4(m+n), which imposes a practical limit upon the size of the tile.4

We demonstrate in §4 that this limitation can be overcome on architectures
that feature a multi-level memory hierarchy, through employing a multi-level
tiling strategy, where only at the smallest tile size (register level) is the
matrix “filled in”, and the other levels are used to store the input vectors
only, thus requiring only 4(m + n) storage. Obtaining high performance is
thus a balancing act between maximizing arithmetic intensity and ensuring
that sufficient resources are available. The computation is similar to GEMM
(dense matrix multiplication) in this regard [6].

2.3. Hardware Correlators

Application Specific Integrated Circuits (ASICs) and Field Programmable
Gate Arrays (FPGAs) are commonplace computing engines for large correla-
tors. These platforms are well suited to the cross-correlation of radio astro-
nomical time-series data because they excel at limited precision fixed-point

3Note we adopt width×height ordering notation for referring to tiles and block sizes,
not the transpose (matrix notation) with the origin lying at the upper-left corner.

4This is actually an upper bound, since resources can be reclaimed and reused with
appropriate optimization [12].
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computations and (synchronous) signal routing, and because they enable fine-
grained optimization of resources. Typically four to eight bits of precision is
sufficient for both the Fourier transform and cross-multiplication operations,
with a larger number of bits used for the accumululator to prevent overflow.
ASICs offer greater power efficiency since all of the silicon is devoted specif-
ically to the problem at hand; however, they are expensive to develop and
produce. FPGAs strike a middle ground between general purpose commod-
ity processors (e.g., Intel x86) and ASICs, being much cheaper and easier to
apply in development phases than ASICs, because of their reconfigurability,
while being much more power efficient than commodity processors. Almost
all current radio telescopes under development plan to use FPGA correlators,
e.g., [2], and it is to this platform that GPUs should be compared.

3. Graphics Processing Units

3.1. Fermi Architecture Overview

There are a multitude of overviews of the CUDA architecture and pro-
gramming model, we refer the reader to the extensive literature available,
e.g., [13]. Here we focus on significant changes versus previous CUDA gener-
ations and specific architecture features that are critical for our application.
In the discussion that follows, we follow standard practice referring to the
CPU system controlling the GPU as the host, and the GPU as the device.
The program that executes on the device is the kernel.

Fermi provides up to 512 processing cores, arranged in units of 32, each of
which is known as a streaming multiprocessor (SM). For this work we used
the GeForce GTX 480, which features a Fermi GPU with 480 processing
cores for a peak performance of 1345 GFLOPS (counting two floating point
operations from a single fused-multiply-add operation) connected to 1.5 GiB
of off-chip on-card device memory (physically located on the card containing
the GPU).

The programming model is described as being SIMT – Single Instruction
Multiple Threads, where each group of threads acting cooperatively is known
as a thread block. The thread blocks have a 1-, 2- or 3-dimensional carte-
sian decomposition and themselves reside within a larger 1- or 2-dimensional
cartesian grid. Each thread block is assigned to an SM, and depending on
the resources available, multiple thread blocks can be assigned to each SM.
Each thread block is then subdivided into groups of 32 threads, a warp,
which can be treated as the SIMD (Single Instruction Multiple Data) width.
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While branching can take place within a warp, such execution is serialized,
and so should be avoided. The overhead for creating and destroying a thread
is extremely small, with context switching being essentially free. Latency is
hidden by having many more threads active than there are cores, so that any
threads that are stalled waiting for instructions to complete can be replaced
with threads that are ready to execute.

An overview of the Fermi memory hierarchy is provided in Figure 2. A
significant change from prior generations is the addition of traditional L1 and
L2 caches: the (768 KiB) L2 cache is shared by all SMs, and there is one L1
cache per SM. The shared memory, which is a software-managed cache, and
L1 cache are shared from a common 64 KiB memory, and can be configured
in 16/48 KiB or 48/16 KiB partitions, respectively. When a thread requests
data, the request goes through L1 cache, then L2 cache, and finally off chip to
the device memory. There is a pool of 32768 32-bit registers available, with
a maximum of 63 registers per thread (compared to 128 on pre-Fermi CUDA
GPUs). Fermi is a true load/store architecture with a unified address space,
with the result that threads can no longer access shared memory operands
directly, so all data must first be copied to the individual registers incurring
additional instructions. Additionally, threads may load data from the texture
unit cache in order to take advantage of array element interpolation or to
avoid polluting the L1 cache. A feature we make use of is the free conversion
(i.e., without impacting available cycles available for computation) from 8- or
16-bit integer format data to 32-bit floating point when the texture cache is
used. Although not relevant for this work, there exists another small cache,
local to each SM, the constant cache. This is a read-only cache, and is useful
for storing read-only parameters.

Moving to off-chip device memory, while much slower than on-chip cache,
its total read/write performance of 177 GB/s is much higher than current
typical CPU memory. Accesses to device memory are high latency opera-
tions, and typically require a high occupancy, e.g., many concurrent threads,
to hide this latency. Increasing the number of independent memory trans-
actions per thread can also hide the latency through instruction level paral-
lelism [18]. The L1 cache-line size is 128 bytes, and all memory transactions
greater than this are broken down into multiple memory requests. In order
to achieve close to peak performance, all memory accesses must be coalesced;
these are obtained when either a warp, half warp or quarter warp access
consecutive memory blocks of the cache line size. For sub-128 byte memory
access patterns, it can be advantageous to disable the L1 cache, or to read
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through the texture cache; here the L2 cache-line size of 32 bytes determines
transaction granularity. For many applications the main bottleneck is the
PCIe bus through which all transfers to the GPU must take place. While
the PCIe 2.0 x16 specification is quoted at 8 GB/s per direction this does not
account for the 8b/10b encoding used for all PCIe transfers: the actual peak
data rate is 6.4 GB/s per direction. Communication over this bus can take
place asynchronously, meaning that a kernel can be executing while memory
transfers are taking place.

Communication between threads within a thread block takes place through
the shared memory. Since the warp execution order cannot be controlled, race
conditions can develop if threads simultaneously attempt to read and write
to a given shared memory address. To prevent this, explicit thread synchro-
nization is necessary, introducing additional latency which can impair per-
formance. Shared memory addresses are divided into 32 memory banks in
round-robin fashion, and to enable maximum bandwidth each thread within
a warp must access a unique bank. The exception to this rule is if threads are
accessing the same address, in which case a broadcast is supported. Fermi
extends this to support multicast, so that multiple groups of threads can
access multiple addresses simultaneously without loss of bandwidth. This
functionality is critical to our kernel implementation as shall be discussed in
§4.4.

3.2. Overview of Previous Work

There have been three publications of note regarding the use of GPUs
for cross-correlation. The first such work [7] implemented the X-engine only,
and while the peformance obtained was reasonable compared to a CPU only
implementation, there was little consideration for how a fully integrated cor-
relator could be constructed, e.g., considering whether the performance could
be maintained with the PCIe bus constraint. The X-engine implementation
presented in [19] used similar strategies to those presented in [7] sustaining
around 120 GFLOPS at N = 32 on an Nvidia C1060. This work additionally
implemented the full FX correlator on a single GPU using the CUFFT library
(which comes as part of the CUDA toolkit) for the F-engine. This approach,
however, suffers from poor scalability at large N since it cannot be spread
simply across multiple GPUs because of the required corner turn between
the F- and X-engines. In an exhaustive comparison of X-engine performance
across various multi- and many-core processors (IBM Cell, IBM BG/P, Intel
Core i7, ATi Radeon 4870, Nvidia C1060) [12] found that a fully integrated
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GPU X-engine solution would be bound by PCIe bus transfers, restricting
performance to 243 GFLOPS (for N = 64) on the C1060. They found the
two IBM platforms achieved a very high peak performance percentage, with
the Cell the most power efficient.

All of the above implementations used memory tiling to improve arith-
metic intensity. Both [7] and [19] used shared memory tiling to reduce band-
width pressure to device memory, whereas [12] used register tiling only, re-
porting that shared memory tiling was detrimental to performance. In this
work we show that both tiling methods are critical to achieve high perfor-
mance.

4. X-engine Kernel Implementation

All performance results presented in the section and subsequently were
obtained using a 64-bit Linux workstation, running Ubuntu 10.04, CUDA
3.2 and Nvidia driver version 260.19.26. The flags passed to the compiler
included “-X abi=no -m32” which disables printf support in CUDA kernels
and uses 32-bit pointers, respectively. We found this reduced the number of
registers required, improving performance through higher occupancy .

4.1. Mapping the X-engine to the Fermi Memory Hierarchy

In Table 1 we consider the arithmetic intensity required to achieve peak
performance when transferring data from each of the memory spaces avail-
able. In order to model the X-engine we assume that the accumulator
operands are sourced from registers (and hence negligible), with the mul-
tiply operands sourced from the respective memory space. In this naive
analysis the required intensity is given by the ratio of the peak floating point
throughput (1345 GFLOPS) and the peak memory bandwidth achievable
from a given memory space. This model presumes that all computation and
communication can be overlapped, and neglects the overhead of actual in-
struction issue which cannot be overlapped, nor does it include any required
pointer arithmetic, etc. As we shall see in the following results, this analysis
fails to predict the required arithmetic intensity for shared memory loads;
nevertheless, it serves as a guide for how to design the kernels.

If all memory traffic were to be sourced from device memory, an 8×8
register tile size would be required if a simple one-level tiling strategy is
used. However, with a 63 register-per-thread limit, the maximum tile size
achievable is 2× 2. Thus a multi-level tiling strategy is vital. In the second
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Level Memory space AI Square tile size Resources
0 Registers 0.125 1 16 registers
1 Shared memory / L1 1 8 256 bytes
2 Device memory 7.6 210 6720 bytes
3 PCIe bus 210 -

Table 1: The arithmetic intensity (AI) supported by a given memory space and the re-
sulting required square tile size in a given memory space to achieve peak performance if
the multiply operands are serviced from the next slowest memory space (32 bits per real
word). The last column gives the amount of resources required in each of the memory
spaces to achieve this tile size (assuming 32-bit floating point storage).

and third columns of Table 1 we consider the required square tile size at level
i given that the memory traffic originates from level i+ 1, and the resulting
resources required to achieve this. At the registers, all data is sourced from
the shared memory / L1 cache requiring a minimum thread granularity of
one thread per baseline, or a register tiling of 1 × 1. Since a specific thread
block’s assignment is not exposed to the CUDA programmer, in moving data
to shared memory / L1 cache we ignore the L2 cache, and consider next the
device memory. The resulting 8 × 8 tile size requires 256 bytes of storage,
and so is easily achievable with high occupancy since we have a 48 KiB pool
of shared memory to draw upon.

To overcome the PCIe express bottleneck, the device memory tile size of
210 suggests that it will be impossible to feed the X-engine at a sustained
rate for N < 210. However, note that for considering the full matrix, the
required row is the conjugate of the column, halving the memory traffic. We
delay further discussion of PCIe transfers until §5.

In terms of data ordering, we have assumed that the corner turn has been
applied, i.e., the input signal “vectors” are ordered such that the station di-
mension runs faster than the frequency dimension, which in turn runs faster
than the time dimension. Each signal consists of two complex-valued polar-
izations, stored as a float4 (a vector of four consecutive 32-bit floats). Thus
if adjacent threads are responsible for loading signals from adjacent stations,
full memory bandwidth will be obtained subject to the constraints described
in §3.1.
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4.2. Thread Block Mapping

Since every station must be correlated with every other, there are 1
2
N(N+

1) distinct baselines that must be computed (including auto-correlations).
This corresponds to the lower triangular sub-matrix of S(ν) and makes the
mapping of thread index to global-baseline index less straightforward. Pre-
vious work deployed different strategies for dealing with this mapping: [7]
allocated a full 2-dimensional grid of thread blocks, and if a thread mapped
to the matrix strict upper diagonal the thread exited immediately, doing
no work; [19] only allocated the correct minimum number of thread blocks,
where the mapping was facilitated by a look up table stored in the GPU’s
constant cache. We deemed the former solution to be inelegant, since it re-
lies on the low overhead of creating and destroying threads, and the latter
approach cannot be scaled to large N because of the limited size of constant
cache.

We deployed an alternative strategy where we only launch the minimum
required number of thread blocks, i.e., those which lie within the lower
triangular part of the matrix and calculate the global-baseline index on
the fly by mapping the x-dimension of the grid index to a 2-dimensional
triangular-thread-block index: the correlation matrix is tiled with squares of
size (RxTx × RyTy), where

−→
T = (Tx, Ty) is the 2-dimensional thread block

size, and
−→
R = (Rx, Ry) is the 2-dimensional register tiling size. We impose

the constraint RxTx = RyTy = RT since this simplifies the triangular pack-

ing. The grid dimensions are set to
−→
G =

(
N

2RT
( N
RT

+ 1), F
)
, where Gx is

the number of required thread blocks per frequency channel and Gy is triv-
ially mapped to the frequency dimension. The mapping from the grid index
gx ∈ [0, Gx) to the 2-dimensional triangular block index

−→
b = (bx, by) is given

by

gx =
by(by + 1)

2
+ bx with by ∈ [0,

N

RT
), bx ∈ [0, by].

This can be inverted by solving the quadratic equation in by using integer
arithmetic,

by = b−1

2
+

√
1

4
+ 2gxc

bx = gx −
by(by + 1)

2
.

This can be evaluated efficiently on the device because of the presence of
the fast square-root intrinsic, and in any case need only be evaluated once
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prior to the time integration. The global-baseline coordinates are given by
(i, j) = (Rx(bxTx+ tx), Ry(byTy + ty)) where

−→
t = (tx, ty) is the 2-dimensional

thread block index. The thread block division strategy is illustrated in Figure
3.

4.3. Hardware-Managed Cache Implementation

The introduction of the traditional hardware-managed L1 cache to Fermi
rasies the possibility of not having to use an explicit software-managed cache,
which has been commonplace with CUDA applications prior to Fermi. Using
a hardware-manged cache is much easier since there is no need to be con-
cerned with explicit thread synchronization nor I/O load balancing between
the threads (see §4.4). In this implementation each thread iterates through
the time dimension, accumulating the result for an Rx×Ry tile of baselines in
the registers, and is responsible for loading all of the data it requires. For the
thread blocks which occur on the matrix diagonal, if the global thread index
is located in the super-diagonal the thread exits immediately doing no work.
Once the accumulation is complete the thread writes its result to device
memory. In order to achieve optimium bandwidth for device-memory writes,
the matrix elements are reordered into a struct of float4 arrays such that
consecutive threads write 16 bytes to contiguous blocks of device memory,
e.g., coalescing is achieved at the quarter-warp level. The number of float4
arrays in the struct is determined by the register tiling, e.g., for

−→
R = (1, 1)

there are eight numbers thus corresponding to two float4 arrays.
To satisfy the input memory requirements each thread must perform Rx

and Ry float4 (=16 bytes) loads for each row and column, respectively. Thus
the size of the row read in will equal 16RxTx bytes; this will occur at maxi-
mum bandwidth when a.) the row size is a multiple of the L1 cache line size
and b.) the memory transactions can be broken down into 128-byte requests
at the full-, half- or quarter-warp level. All subsequent requests from this
thread block for the same row will be fully cached assuming no evictions have
taken place, and thus the L1 cache should automatically enable tiling in the
y dimension of size Ty. When reading in the column, each warp will request
16Ry(32/Tx) bytes where 32/Tx is the number of rows that a given warp ex-
tends over. Again, these transactions will occur at full bandwidth only when
this is equal to the cache-line size at the full-, half- or quarter-warp level. For
almost all the tile sizes explored below the bytes requested per warp for the
column load is less than the L1 cache line size, thus one would expect a drop
in cache efficiency. However, other warps within the same thread block will
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likely request the unused fetched components increasing the cache efficiency.
Since all requests for a given column entry will originate from within the
same warp, tiling occurs through an L1 broadcast to the Tx threads along
the corresponding row, thus the effective tiling in the x dimension is Tx. Fi-
nally we note, that we also present results with the L1 cache disabled. We
do so to quantify the improvement due to data reuse in the L1 cache. We
note however, that while there is no sharing of data between warps, there
is a mechanism for cooperation by memory transactions satisfied by an L2
broadcast within the warp, thus the effective bandwidth per thread can be
significantly higher than the bandwidth to the L2 cache.

GFLOPS GB/s
Kernel Rx ×Ry Tx × Ty L1 on L1 off L1 on L1 off
1 1× 1 8× 8 315 322 319 328
2 1× 1 16× 16 411 329 423 339
3 1× 1 32× 32 421 337 446 358
4 1× 2 16× 8 600 447 458 341
5 2× 1 8× 16 457 201 349 154
6 2× 2 8× 8 559 354 288 183
7 2× 2 16× 16 623 384 331 204

Table 2: Performance and effective bandwidth achieved using the hardware-managed
cache, both with and without the L1 cache enabled, for the range of register and thread
block sizes investigated (48 KiB L1 cache mode).

In Table 2 we present the performance results for the X-engine kernel both
with and without cache enabled.5 In generating these results we have applied
rudimentary optimizations such as loop unrolling, but we note that in using
the hardware-managed cache, there is little scope for optimization since we
are reliant on the hardware.6 The results for kernels 1, 2 and 3 demonstrate
performance where the register tile size is held fixed at

−→
R = (1, 1) and

5When designing the kernel implementation, we generally tested performance at N =
512, F = 6, and I = 1024. All results presented in this section correspond to these
parameters, with scaling results delayed until §6.

6Finer grained control of the cache can be obtained at the expense of using PTX
assembly, an option that has become much easier with CUDA 4.0 which allows inlined
assembly instructions.
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the inter-thread tile size is increased. While performance increases with
increasing tile size, the improvement is very small in moving from

−→
T =

(16, 16) to
−→
T = (32, 32) suggesting that the bottleneck at this point is not

the device-memory bandwidth. With the cache disabled, the performance is
essentially flat, showing that the improvement with increasing thread block
size is due to increased data reuse. The effective memory bandwidth reported
with the cache disabled is significantly higher than the L2 cache bandwidth,
which we conclude is due to L2 broadcasts within a warp. In the subsequent
two kernels, both rectangular register tiling and rectangular thread block
sizes are used, with kernel 5 corresponding to the transpose of the kernel
4. Kernel 4 shows that increasing the register tiling improves performance
to 600 GFLOPS; this shows that the L1 cache bandwidth is the limiting
factor in the

−→
R = (1, 1) kernels once the device-memory bottleneck has been

overcome. Its transpose, however, shows negligible improvement over the−→
R = (1, 1) kernels; this is because in reading the row values, each thread
now has to read in consecutive 32 bytes which equates to 256 bytes at the
quarter-warp level. Such memory transactions are not coalesced, and incur
double the number of memory transactions, vastly decreasing performance.
This reduced bandwidth is most evident with the L1 cache disabled. Finally
we have kernels 7 and 8, which use

−→
R = (2, 2), where it can be seen that

the performance is comprable with the kernel 4 kernel. Like kernel 5, the
row reads will not be coalesced since the transaction size is 256 bytes at the
quarter-warp level. Thus any improvement from increasing the register tiling
is offset by a reduction in device memory bandwidth.

4.4. Software-Managed Cache Implementations

We now turn our attention to using the shared memory to enable inter-
thread tiling. Since all memory is explicitly managed, programming for the
shared memory has the potential for much greater performance since full
memory coalescing can be obtained regardless of the register tile size used.
The approach can summarized as follows: all memory load requests are un-
dertaken cooperatively by all threads in the thread block, where some threads
will load the required row, and others will load the required column. These
numbers are then communicated through the shared memory before compu-
tation proceeds as before.

For a thread block of size Tx × Ty and register tiling of size Rx × Ry, we
require 4(RxTx + RyTy) real numbers. Each number should only be loaded
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once, and all TxTy threads should partake in memory transactions to maxi-
mize latency hiding. To satisfy this constraint we require that

4(RxTx +RyTy)

V
= TxTy,

where V is the number of floats loaded per thread, e.g., V = 2 equates
to each thread loading a float2. This constraint means that cannot test
software-managed cache variants of kernels 2 and 3.7

In this approach the first 4RxTx/V threads each load the required row
elements, and the remaining 4RyTy/V = TxTy − 4RxTx/V threads load in
the column elements. Warp divergence does not take place because warps
are never split between row and column loads. Although different warps
are used to load in row and column values, warp dependendent branching
does not occur in the accumulation because all memory address pointers
for each thread are computed prior to the accumulation loop, and are then
simply iterated by a constant amount at each iteration of the loop. Full
bandwidth to device memory on both row and column reads is obtained by
employing a different thread ordering scheme for the memory reads from
that used for the computation, this is facilitated by the shared memory to
distribute the fetched data to the required threads. When the writes to and
the subsequent reads from shared memory are performed, the access patterns
are chosen to avoid bank conflicts, e.g., adjacent threads store 32-bit words
in adjacent memory banks. When reading the required numbers back from
shared memory into registers the multicast ability of the Fermi architecture
is critical to ensure that full shared-memory bandwidth is achieved. As a
result, the inter-thread tile size is given simply by the product RxTx×RyTy.

Extra care must be taken for the thread blocks that lie on the matrix
diagonal. Since all threads cooperate for the element loading, any threads
that occur in the matrix super-diagonal must not exit prematurely. We
simply let all threads perform all computation, but only have the threads
corresponding to the diagonal and sub-diagonal actual write their result to
device memory. We return to this issue of wasted computation along the
matrix block diagonal in §6.1.

7It would be possible to admit the excluded
−→
T = (16, 16) and

−→
T = (32, 32), with

−→
R = (1, 1) parameters if we were willing to allow sub-32-bit memory transactions per
thread. Another option we did not explore was to allow V to vary for the row and column
loads, e.g., load in the row values using floats while loading the column values using float2s.

16



GFLOPS GB/s
Kernel Rx ×Ry Tx × Ty Initial Buf Tex Initial Buf Tex
8 1× 1 8× 8 414 562 510 53 72 65
9 1× 2 16× 8 771 837 818 49 54 53
10 2× 1 8× 16 783 852 834 50 55 54
11 2× 2 8× 8 801 944 1023 53 61 66
12 2× 2 16× 16 644 908 897 21 31 30

Table 3: Performance and bandwidth using the software-managed cache (Initial – initial
implementation, Buf – double buffered shared memory, Tex – memory reads performed
using texture cache, 48 KiB shared memory mode).

The performance and sustained memory bandwidth of the initial software
managed cache implementions are given in Table 3 (under the heading Ini-
tial). When compared to the hardware-managed cache implementations in
Table 2, we see that performance is alway better using the software-managed
cache for given

−→
R and

−→
T parameters (i.e., 1 & 8, 4 & 9, 5 & 10, 6 & 11 and

7 & 12). Note that the two rectangular tiling kernels (9 and 10) have very
similar performance unlike the case for the hardware-managed cache becuase
full memory coalescing is now obtained for both variants. Perhaps surpris-
ingly, the performance of kernel 12 is the second slowest, despite it having the
greatest inter-thread tile size and joint highest register tiling. This can be pri-
marily attributed to the required thread synchronization between reads from
and write to shared memory. Although all kernel variants require thread syn-
chronization, because of the larger thread block size, no other thread blocks
can run concurrently on the same SM, thus thread synchronization causes a
large performance stall.

In looking at the achieved bandwidth by all of the software-managed ker-
nels, we see that less than 50% of deivce-memory bandwidth is sustained.
Since all the memory transactions should be fully coalesced, we conclude
that none of the kernels are device-memory bandwidth bound at these pa-
rameters, and are either shared memory bandwidth bound, latency bound
or instruction bound. Note that this measure of bandwidth measures ac-
tual bandwidth obtained into the registers and cannot be compared with
that reported in Table 2 which measures the effective bandwidth due to the
cache.

Each iteration of the accumulation loop requires two thread synchroniza-
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tions because we must ensure that threads a.) do not write into shared
memory before threads still in the previous iteration have finished reading
from shared memory, and b.) do not read from shared memory until all
threads have written their data into shared memory. We note that while
these two conditions cannot be avoided, we can half the number of thread
synchronization points by double buffering the shared memory: on even it-
erations of the accumulation loop we will read from buffer 0, but write to
buffer 1, and vice versa for odd iterations. This double buffering combined
with an additional by-hand loop unrolling by two corresponds to the perfor-
mance figures presented in Table 3 entitled “Buf”. In making this change, we
see a significant performance improvement for all kernels, but especially so
for kernel 12, which we hypothesized previously was most bound by thread
synchronization.

The final performance reported in Table 3, entitled “Tex”, is where the
all memory reads are performed using the texture unit. The rationale here
was not to gain benefit using the primitive cache offered through texture
reads, which is generally slower than the L1 cache, but rather to use the lin-
ear interpolation unit to perform the global array indexing for free, removing
the explicit pointer arithmetic from the kernel. Making this change gener-
ally proved detrimental, with the important exception of kernel 11, which
increased performance to in excess of 1 TFLOPS.

In this section we have shown that using a multi-level tiling algorithm
together with a software managed cache is critical for achieving maximum
performance. All subsequent results will exclusively use kernel 11, since this
has the best performance.

5. Bus transfers

The communication over the bus can be overlapped with kernel execution
using CUDA’s asynchronous API. As long as the total time spent in commu-
nication is less than that spent in computation, the communication can in
principle be hidden allowing the X-engine to operate at peak. A subtle point
that has not been explicitly treated in previous work on similar applications
is that the total bandwidth to device memory must be shared between the
kernel and the asynchronous PCIe memory transfers [11]. This may be partly
the reason that the performance reported in [12] declined when the overlap-
ping of kernel execution and bus transfers were employed. In the present
case, since the kernel is not bandwidth bound, sustaining around 37% of
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peak memory bandwidth to device memory, the expectation is that there
should be ample memory bandwidth to sustain both the kernel and concur-
rent PCIe bus transfers at maximum rate. Note this is distinct from the
question as to whether the achievable PCIe bus transfer rate is fast enough
to meet the data requirements of the kernel.

input : input h[Np][I
′FN ] // input signal vector

output : matrix h[1
2
FN(N + 1)] // packed correlation matrix

allocate: buffer d[2][I ′FN ] // signal vector buffers

allocate: matrix d[1
2
FN(N + 1)] // packed correlation matrix

// Execution pipeline

buffer d[0] ← input h[0];
for p← 1 to Np do

matrix d ← X-engine(matrix d, buffer d[(p+ 1) mod 2]);
buffer d[p mod 2] ← input h[p];
Synchronization;

end
matrix d ← X-engine(matrix d, buffer d[(Np + 1) mod 2]);

// Transfer result back to host

matrix h ← matrix d;

Algorithm 1: Integrated X-engine communications pipeline pseu-
docode. The suffixes h and d denotes memory buffers allocated on
the host and device respectively. For convenience we adopt a two-
dimensional array notation for the input signal vectors.

To allow overlapping of communicaton and computation, these opera-
tions must operate on independent data. The X-engine execution consists
of a three stage pipeline: 1.) host→device transfer of data, 2.) kernel ex-
ecution, and 3.) device→host transfer of the final correlation matrix. For
a large enough integration length I the final transfer back to the host is a
negligible contribution to the total time. Additionally we expect for many
applications, it would be desirable to retain the correlation matrix on the
device for further post-processing, e.g., for real-time imaging and callibra-
tion [5] or scrubbing of man-made radio interference [9]. We thus aim to
overlap only the host→device transfer with the kernel execution. To this
end, we break the input sample vector of length IFN into Np sample vectors
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of length I ′FN with I = NpI
′. We then loop over the Np sample vectors,

at each iteration calculating the outer-product sum and summing the result
to the correlation matrix. This allows the overlap of communication and
computation, since the (p+ 1)th sample vector can be transferred to the de-
vice while the pth sample vector’s contribution to the correlation matrix is
computed. At each iteration, explicit synchronization is enforced to prevent
a race condition between the memory transfer and kernel execution. The
execution pipeline is illustrated in Algorithm 1.

Figure 4 is a plot comparing the execution time of the X-engine with
the host→device transfer time over the PCIe bus as a function of number
of stations. (We defer the discussion of how actual performance varies as
the number of stations until §6.) For a large number of stations (N > 128),
the quadratic scaling of the X-engine ensures that the communication can be
completely overlapped with computation, and the kernel can operate at peak
performance. However, at small N the host→device communication time
dominates the computation time resulting in severely impaired performance.
This plot agrees with the prediction made in §4.1 regarding the minimum
tile size N = 105 required to overcome the PCIe bottleneck. Without data
flow reduction, the X-engine would appear to be severely bound by the PCIe
bandwidth.

However, use of 32-bit floating point data is unnecessary for the X-engine.
The precision of data input to the X-engine typically depends on the incidence
of impulsive manmade interference. Strong interference militates for more
bits (e.g., 12 bits can represent a dynamic range of ∼ 107), but truncation
to 8 bits is usually safe (§2.3). The kernel is easily adapted to accomodate
this using the texture read mode cudaReadModeNormalizedFloat: 8-bit data
is read through the texture cache, and is converted to the native 32-bit
floating point format using the texturing hardware, i.e., without subtracting
the number of cycles available for computation. Since the kernel is not device-
memory bandwidth bound, this change has no effect upon the raw-kernel
performance.8 However, it reduces by a factor of four the transfer time over
the PCIe bus for the input data. The result is that communication can
be hidden for N > 16 stations. A desirable side effect is the reduction in

8Such reduction in memory bandwidth requirements does potentially improve the scal-
ability of the current algorithm (i.e., two levels of tiling) to future possible architectures
where the required arithmetic intensities to achieve near peak peformance would be ex-
pected to be considerably higher than current GPUs.
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memory footprint allowing many more frequency channels or a longer time
integration to be performed. Note the ratio of the kernel execution time to the
host→device transfer time is independent of both the number of frequency
channels and the integration length and so this conclusion is universal (this
is only approximately true – see §6).

6. Performance Results

As stated previously all performance results utilize kernel 11, and here we
additionally restrict ourselves to 8-bit input data and we shall only consider
cases where the the number of stations is a power of two.

6.1. Kernel Performance

Performance versus Number of Stations. Performance increases significantly
as we increase N (at fixed F ), plateauing to a peak of 1058 GFLOPS, which
equates to 79% of the theoretical peak performance of the GTX 480 (Figure
5). When we include the additional overhead of required auxillary instruc-
tions; e.g., load/store, thread synchronization; we find the kernel is actu-
ally operating at 91% of peak performance. To our knowledge, no other
non-trivial application reaches this level of performance. At small N perfor-
mance is impaired because: 1.) the correlation matrix is smaller, hence fewer
threads are active; and 2.) there is a proportional increase in the amount
of wasted computation perfomed by the thread blocks distributed along the
matrix diagonal. The first of these effects can be offset by increasing the
number of frequency channels to increase the number of thread blocks. This
is demonstrated on Figure 5 where we see that increasing the number of fre-
quency channels drastically improves performance at low N , while having a
negligible effect at large N .

Beyond this, reduced performance at small N results from the wasted
computation performed on the threads blocks which appear along the diag-
onal of the correlation matrix. The total or “normalized” performance is
the sum of the desired and wasted computation. Here we use the largest F
available at a given N to eliminate the effect of low thread occupancy. There
are N/RT thread blocks along the matrix diagonal, with each thread block
corresponding to RT × RT matrix elements. Thus, the additional wasted
work scales as ∼ (N/RT )2RT (2RT − 1) (i.e., the strictly upper diagonal of
the diagonal thread blocks). Since the total desired computation scales as
∼ 2N(2N + 1), the total computation rate including the wasted operations
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is found from multiplying by 2(N+RT )
2N+1

.9 Using this normalized metric the
performance is independent on the number of stations. For N < 256 the
difference between actual and the normalized performance is appreciable,
suggesting that a kernel specfically optimized for the diagonal thread blocks
at small N may be worth considering.

Integration length versus Number of Frequency Channels. As described in
§2.2 the effect of the integration length I upon performance is expected to
become significant at small I since the output memory traffic is supressed
as I−1. We illustrate this in Figure 6 where we vary F and I subject to
keeping the product FI constant. This corresponds to a fixed amount of
computation per input, equivalent to Equation 5 at fixed bandwdith B. The
increase in F necessarily results in a shortening of the integration length,
thus at some point the resulting increase in memory traffic reduces perfor-
mance. Where output memory traffic is ignored we observe, owing to data
parallelism, expected high performance without roll off as F is increased (I
is decreased). The difference is most evident at small N since many more
frequency channels are achievable.

Obtaining high performance can thus be a balancing act between increas-
ing the concurrency for computation against the resulting increase in memory
bandwidth requirements. The parameter space of our demonstration is lim-
ited by the parameters of the GTX 480. While this is not a problem for that
platform at large N and supportable ranges of F , GPUs with larger memory
than the GTX 480 and greater required parallelism, i.e., more cores, will
exhibit pronounced roll off for larger F (smaller I) at these values of N .

Even for a fully optimized X-engine kernel, there is still further parameter
tuning that must take place in order to obtain maximum performance. The
locus in parameter space that results in near maximum performance would be
one of many prominent factors in specification and basic system engineering
of a radio telescope.

9This correction factor is only exact in the limit of infinite arithmetic intensity because
it is only unecessary floating point operations that are performed, no additional memory
traffic is incurred. Thus at finite, but large, arithmetic intensity we expect the correction
factor to be a small overcorrection.
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6.2. Integrated Performance

The performance of the integrated X-engine is not affected by host→device
transfer overhead for a fixed input of 1 GiB, which corresponds to around 0.2
seconds of PCIe transfer time (Figure 7). As described in Algorithm 1, the
input vector of length IFN is split into Np vectors of length I ′FN , where
we chose the kernel integration length I ′ to maximize performance based
on the results obtained in §6.1, i.e., we chose I ′ = 256, 1024, 2048, 2048 for
N = 32, 128, 512, 2048, respectively. In fact performance is actually higher
here at N = 32 than in Figure 6 because the vector of data is larger, i.e.,
with a larger number of frequencies and a longer integration length. Only for
short integration lengths, i.e., a large number of frequency channels, does the
overhead of the device→host transfer become apparent. The overall shape
of the curves in Figures 6 and 7 are similar because both convey the im-
pact of bandwidth constraints (albeit from different source) for output of the
correlation matrix on performance.

To interpret performance figures in the context of radio telescope system
design, we have estimated the achievable correlated dual-polarization signal
bandwidth as a function of the number of the stations (Figure 8). This can
be used to estimate the number of GPUs required to process a total signal
bandwidth given a number of stations, assuming that data for difference fre-
quency channels can be trivially distributed among different GPUs in the
context of a cluster. For example, in the case of a 128-station MWA config-
uration with 30.72 MHz instantaneous bandpass the X-engine processes 3.5
MHz of signal bandwidth, thus requiring 9 GPUs (GTX 480s).

7. Discussion

7.1. Comparison against other architectures

In comparison to previous GPU implementations of the cross-correlator [7,
19, 12], we have improved upon the performance by at least a factor of four.
Half of this improvement can be attributed to the Fermi architecture, with
the rest attributed to the multi-level tiling strategy and other fine tuned
optimizations. A comparison with the wide range of platforms presented in
[12], reveals that the GeForce GTX 480 running our implementation is a
significant improvement over all other commodity processors, both in terms
of absolute performance and performance per watt. This statement stands
even in factoring improvements due to Moore’s law on other platforms since
this prior work was published.
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A more subtle comparison is required in consideration of FPGAs. A di-
rect comparison against current FPGAs for cross-correlation is difficult, and
one must really consider the integrated system design and engineering for
a specific instrument. We take for example the correlator for a 128-station
MWA, whose detailed specifications are described in [2] in the context of
dual-use application to the SKAMP telescope. This uses a Virtex 4 FPGA
architecture, which can process the required 30.72 MHz MWA bandwidth
per signal for a power budget of 0.75 kW (X-engine only).10 In comparison,
if we were to deploy a GTX 480 based X-engine, we have at a minimum 250
W × 9 = 2.25 kW neglecting the overhead of the host system power, which
further favors FPGAs. When one factors in that this FPGA correlator repre-
sents at least two-generations-old technology relative to the GTX 480,11 we
see that GPUs struggle to compete based on only the power metric. How-
ever, there may be longer-term factors that differ, such non-recurring costs,
in development time and procurement. Radio telescope design and construc-
tion can extend over years, and engineering risk management may motivate
staying at one generation behind the FPGA development curve. As well,
unit costs for newly introduced FPGAs are high, and successfully develop-
ing optimized, robust bit code requires specialized engineering training and
experience. In contrast, maintaining parity with the bleeding edge is more
readily achievable with GPUs, where hardware unit costs are lower, hard-
ware is intended to be commodity driven, programming leverages high-level
environments (CUDA and OpenCL) that abstract much of the hardware
architecture and are individually forward-backward compatible (release to
release and generation to generation), and successful coding has a strong
link to relatively generic parallel programming practices. Indeed, since this
research was undertaken, Nvidia has launched a successor card, the GeForce
GTX 580 which is 20% more power efficient in executing the X-engine. The
Kepler series due at the end of 2011, and subsequent generations are ex-
pected to improve upon this metric significantly [8]. The X-engine will run
efficiently on these architectures because of software compatibility, and more
importantly algorithm scalability. Thus, an open question remains, that be-
ing whether GPUs can surplant FPGAs for cross-correlation, much as GPUs

10Here we have estimated the power consumption for a 128-station MWA by scaling the
power consumption from the 512-station MWA correlator [10].

11Fabrication process technology shrinks by roughly 70% every two–three years. Virtex
4 FPGAs were fabricated at 90 nm and all Fermi GPUs are fabricated at 40 nm.
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have replaced GRAPE for N-body computations [16]. In this case, although
the fixed-function GRAPE is more power efficient for the problem, economies
of scale and high peak efficiencies obtained using GPUs essentially have made
GRAPE redundent.

7.2. Future Machines

Although we have shown that current generation GPUs are extremely
competitive for cross-correlation, the question that arises is whether this will
hold in the future. Future GPUs will likely continue to have an exponentially
increasing number of cores, with only a linear increase in memory bandwidth.
The prototypical exascale machines that are currently envisaged feature a
very deep memory hierarchy; obtaining high performance on such machines
will require increasing the algorithmic arithmetic intensity as one moves away
from the processing cores. For cross-correlation, the increased arithmetic
intensity requirements can be met by employing an increased number of
tiling levels. Thus, cross-correlation is likely to be one of a handful of real
scientific applications of interest that will be able to harness fully at least
early generation exascale machines.

8. Conclusion

We have presented an implementation of the cross-correlation algorithm
using Nvidia’s Fermi architecture. This application is very well matched to
the architecture, and sustains in excess of 1 TFLOPS for a large number of
stations (79% of theoretical peak). Key to obtaining this performance was
the use of a software-managed cache and a multi-level tiling strategy. This
performance can be sustained when streaming the input data over the PCIe
bus. This represents a significant improvement over previous work on GPUs
and comparison to other commodity platforms. While not power competitive
compared to FPGA solutions, its increased flexibility and lower development
costs make it an attractive solution.

With a fully optimized GPU X-engine implemented, the next step is to
develop this into a full FX correlator. The design we are pursuing is a hybrid
approach, utilizing an FPGA solution for the F-engine and likely a packetized
switch approach for the corner turn [14].

Beyond this, future work will include increasing the efficiency of the X-
engine in the small N regime. Although the work here primarily targetted
the large N regime for which there are significant science drivers [10], most
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current radio telescope array installations are of the small N type. By max-
imizing the efficiency at low N , e.g., 32 stations, this would increase the
applicability of GPU computing for signal correlation today, giving a viable
alternative to the usual FPGA solutions.
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Figure 2: A schematic of the memory hierarchy of the Nvidia Fermi architecture with
the peak bandwidth between each layer. All numbers quoted correspond to the aggregate
bi-directional rate, with the exception of the PCIe rate which is per direction. Shared
memory (Sh Mem) and L1 cache (L1) are split between a common 64 KiB cache (GeForce
GTX 480, Tex = texture cache).
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Figure 3: Schematic description of the how threads are mapped to the correlation matrix.
The linear grid index gx is mapped to the triangular block index (bx, by). Each thread
(tx, ty) within the thread block is then responsible for calculating an Rx × Ry tile of the
correlation matrix (indexed by (rx, ry)). The grid index gy maps trivially to the frequency
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Figure 4: Kernel-only execution time, and host→device transfer time for 32-bit and 8-bit
data as a function of number of stations (F = 128, I = 1024). With 32-bit precision, there
is not enough device memory to accomodate N = 512 at these parameters.
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Figure 5: Performance of the X-engine as a function of the number of stations (N) and
frequency channels (F ) and fixed integration length I = 1024. Memory limitations prevent
large F and N simultaneously. The magenta curve is the normalized GFLOPS including
the wasted compution performed on the matrix diagonal. The slight decline in performance
of the normalized values with increasing N is likely due to the quadratically increasing
output memory traffic not being completely supressed at this value of I.
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Figure 6: Performance of the X-engine kernel for a fixed volume of data (16384) per
input and different numbers of stations (N). The solid curves indicate actual X-engine
performance, whereas the dashed curves indicate performance with the output of the
correlation matrix disabled. Memory limitations prevent the use of a shorter integration
length for N = 512 and 2048 curves since this increases F and with it the number of
correlation matrices to be output. In general as we increase the volume of data to be
processed (i.e., FI), the initial increase in performance with increasing F will remain
fixed, but the performance plateau and subsequent drop in performance will stretch since
I−1 memory output supression and F enhancement will cancel each other out.
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Figure 7: Performance of the integrated X-engine as a function of number of frequency
channels and number of stations (N) for a fixed 1 GiB of 8-bit input data. The GPU
integration length I ′ = 256, 1024, 2048, 2048 for N = 32, 128, 512, 2048, respectively. The
solid curves indicate performance when the correlation matrix is transferred to the host,
whereas the dashed curves are for when it is kept on the device.
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Figure 8: Bandwidth per station (assuming dual polarization) for the integrated X-engine
as a function of number of stations for F = 1, 16, 256, 4096 with 1 GiB of 8-bit input data.
The curves indicate achievable bandwidth including all PCIe bus transfers.
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