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Detecting relic gravitational waves in the CMB: A statistical bias
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Analyzing the imprint of relic gravitational waves (RGWs) on the cosmic microwave background
(CMB) power spectra provides a way to determine the signal of RGWs. In this Letter, we discuss a
statistical bias, which could exist in the data analysis and has the tendency to overlook the RGWs.
We also explain why this bias exists, and how to avoid it.

I. INTRODUCTION

A stochastic background of relic gravitational waves
was produced in the very early stage of the Universe due
to the superadiabatic amplification of zero point quan-
tum fluctuations of the gravitational field [1, 2]. The
relic gravitational waves have a wide range of spreading
of the spectra, and their detection provides a direct way
to study the physics in the early Universe.

Recently, there have been several experimental efforts
to constrain the amplitude of relic gravitational waves
in different frequencies. Among various direct obser-
vations, LIGO S5 has experimentally obtained so far
the most stringent bound Ωgw(f) ≤ 6.9 × 10−6 around
f ∼ 100Hz [3], which will be much improved by fu-
ture observations, including the third-generation Ein-
stein Telescope [4]. The timing studies on the millisec-
ond pulsars by the PPTA and EPTA teams also re-
ported upper limits Ωgw(f) . 10−8 at f ∼ 1/yr [5, 6].
In addition, there are two bounds on the integration
∫

Ωgw(f)d ln f . 1.5 × 10−5, obtained by the big bang
nucleosynthesis observation [7] and the cosmic microwave
background radiation observation [8].

In this paper, we shall focus on the detection of relic
gravitational waves by the cosmic microwave background
(CMB) radiation observations. The RGWs leave well
understood imprints on the anisotropies in temperature
and polarization of CMB [9, 10]. The theoretical analysis
of these imprints along with the data (including T , C,
E, B) from CMB experiments allows one to determine
the RGW background by constraining the parameters:
the tensor-to-scalar ratio r and the spectral index nt.
The current observations of CMB by WMAP satellite
place an interesting bound r ≤ 0.20 [11] by assuming
nt = −r/8, which has been generalized in [12]. These
bounds are equivalent to the constraints on the energy
density Ωgw(f) of relic gravitational waves at the lowest
frequency range f ∼ 10−17Hz.

Detecting the relic gravitational waves remains one of
the most important tasks for the upcoming CMB obser-
vations (see [13] for reviews). Due to the various large
contaminations, in the near future, we can only expect
to detect a signal of RGWs in a relative low signal-to-
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noise ratio (S/N). This result would guide the far future
detections.
As for the whole data analysis, we expect that, the

maximum value of the parameters in the posterior pos-
sibility density function (pdf) is unbiased for the ‘true’
values of the parameters, which is auto-satisfied when
the S/N is high. However when S/N is low, the maxi-
mum values of the parameters sometimes lead to a biased
guide for the ‘true’ values, which can be generated either
by some systematics or by the statistics, and should be
avoided in any data analysis.
In this Letter, we will point out that, a statistical bias

could exist in the CMB data analysis for the detection
of RGWs. We also explain why the bias does exist, and
suggest the way to avoid it.

II. THE STATISTICAL BIAS

The primordial power spectrum of relic gravitational
waves can be simply described by the following power-law
formula:

Pt(k) = At(k0) (k/k0)
nt , (1)

where k0 is the pivot wavenumber, which can be arbi-
trarily chosen. At(k0) is the amplitude of RGWs, and nt

is the spectral index. The value of nt is quite close to
zero, predicted by the physical models of the early Uni-
verse. As usual, we can define the tensor-to-scalar ratio
r ≡ At(k0)/As(k0), where As(k0) is the amplitude of
the density perturbations. Obviously, assuming As(k0)
is known as in this Letter, r is just At(k0) normalized by
the constant As(k0).
In order to discuss the statistical bias for the detection

of RGWs in the data analysis, let us simulate the ob-
servable data for the Planck satellite, where we only con-
sider the Planck instrumental noises at the 143GHz fre-
quency channels [14]. We adopt the ‘input’ cosmological
models as Ωbh

2 = 0.02267, Ωch
2 = 0.1131, ΩΛ = 0.726,

τreion = 0.084, h = 0.705, As = 2.445× 10−9 and ns = 1.
The RGWs parameters are adopted as r = r̂ = 0.05,
nt = n̂t = 0. As we have discussed in the previous paper
[15], this small r is expected to be detected at 2σ for the
assumed noise level.
Based on this input cosmological model, and the as-

sumed noise level, we simulate 500 data samples. For
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FIG. 1: The distribution of rML, ntML and zML for the 500
simulated samples. The blue shadow shows the results by
adopting the free parameters r and nt and the flat prior of
them. The red column shows the results by adopting the free
parameters r and z and the flat prior of them.

every sample, we can probe the likelihood function by ap-
plying the Markov Chain Monte Carlo (MCMC) method.
In the data analysis, we assume all the parameters, ex-
cept for r and nt, are all fixed as their input values.
For the parameter nt, one always presumes the relation
nt = ns − 1 or nt = −r/8 in the data analysis [16][17].
However, this assumption does depend on the special cos-
mological models. If they are not the truth, but pre-
sumed, the finial conclusion of the data analysis would
deviate from the real physics.

In order to avoid this danger, the natural way is setting
r and nt as free parameters. We choose the flat priors of
them in the range r ∈ [0, 1] and nt ∈ [−3, 3]. We adopt
the best-pivot wavenumber, which is k0 = 0.0006Mpc−1

for the input model and the assumed noise level [18].

The most interesting final result is the maximum value
in the 1-dimensional posterior pdf for the parameters r
and nt. In this paper, we denote them by rML and ntML.
Of course, their values do depend on the simulated data.
For different data samples, they have different values.
We expect the distribution of these 500 rML and ntML

are around their input values. However, it may be not
the truth in the real analysis. In Fig.1, we plot the distri-
bution of rML and ntML with blue shadows. This figure
shows that, the distribution of ntML is peaked at zero,
the input value. However, the distribution of rML obvi-
ously approaches to r = 0, and biased the input value
at r = 0.05. This suggests that, if we deal with the
data analysis in this way, the resulting conclusion has
the tendency to deviate from the ‘true’ value of r, and to
overlook the RGWs.

III. UNDERSTANDING THE STATISTICAL

BIAS

It is important to understand why this statistical bias
does exist. In order to realize it, let us proceed the follow-
ing analytical approximation for the likelihood analysis.
The primordial power spectrum of RGW in (1) can be

rewritten as,

Pt(k) = At(k0) (k/k0)
nt = As(k0)r exp [nt ln (k/k0)] , (2)

which can be approximated as

Pt(k) ≃ As(k0) [r + rnt ln (k/k0)] . (3)

In this approximation, we have used |nt| ≪ 1.
The total CMB power spectra CY

ℓ (Y = T,C,E,B)
include the contributions of density perturbations and
gravitational waves, i.e.

CY
ℓ = CY

ℓ,s + CY
ℓ,t, (4)

where CY
ℓ,s and CY

ℓ,t are the contributions of density per-
turbations and gravitational waves, separately. Note that
CB

ℓ,s = 0. By considering |nt| ≪ 1, the spectra CY
ℓ,t, as a

function of r and nt, can be approximated as [18]

CY
ℓ,t ≃ CY

ℓ,t [r + rnt ln (ℓ/ℓ0)] . (5)

Here CY
ℓ,t ≡ CY

ℓ,t(r = 1, nt = 0), and best-pivot multipole

ℓ0 = k0×104Mpc [18]. So Pt(k) and CY
ℓ,t are all the linear

combinations of the parameters r and rnt.
Now, let us turn to the likelihood function. The exact

form can be found in the previous works [19][15, 16, 18].
In the analytical approximation, it can be well approxi-
mated by [18]

− 2 lnL =
∑

ℓ

∑

Y

(

DY
ℓ − CY

ℓ

σ̂DY

ℓ

)2

. (6)

DY
ℓ is the observable data, and σ̂DY

ℓ

is standard deviation

of DY
ℓ . The likelihood function (6) can be rewritten as

[18]

− 2 lnL =
∑

ℓ

∑

Y

[

dYℓ − (r + rntbℓ)a
Y
ℓ

]2
(7)

where we have defined the quantities

dYℓ ≡
DY

ℓ − CY
ℓ,s

σ̂DY

ℓ

, aYℓ ≡
CY
ℓ,t

σ̂DY

ℓ

, bYℓ ≡ ln(ℓ/ℓ0), (8)

which are all independent of the variables r and nt.
Obviously, the value of dYℓ depends on the data. For
a larger number of different sample, the average value
of dYℓ is 〈dYℓ 〉 = aYℓ (r̂ + r̂n̂tbℓ), due to the facts of
〈DY

ℓ 〉 = CY
ℓ,s + CY

ℓ,t(r = r̂, nt = n̂t) and CY
ℓ,t(r = r̂, nt =

n̂t) ≃ CY
ℓ (r̂ + r̂n̂tbℓ).
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Since we have adopted the best-pivot multipole ℓ0,
which is defined by requiring [18]

∑

ℓ

∑

Y (a
Y
ℓ )

2bℓ = 0,
the likelihood (7) can be rewritten as [18]

− 2 lnL =

(

r − rp
rs

)2

+

(

rnt − zp
zs

)2

+ C, (9)

where C is a constant, and the other quantities are de-
fined by

rp ≡

∑

ℓ

∑

Y aYℓ d
Y
ℓ

∑

ℓ

∑

Y (a
Y
ℓ )

2
, rs ≡

1
√

∑

ℓ

∑

Y (a
Y
ℓ )

2

, (10)

zp ≡

∑

ℓ

∑

Y aYℓ d
Y
ℓ bℓ

∑

ℓ

∑

Y (a
Y
ℓ bℓ)

2
, zs ≡

1
√

∑

ℓ

∑

Y (a
Y
ℓ bℓ)

2

. (11)

The posterior pdf relates to the likelihood by the prior.
Here, let us adopt the flat prior for the parameters r and
nt, the 2-dimensional posterior pdf for the variables is

− 2 lnP (r, nt) =

(

r − rp
rs

)2

+

(

rnt − zp
zs

)2

, (12)

which follows the 1-dimensional posterior pdf for r as
follows,

P (r) =
1

r
exp

[

−
1

2

(

r − rp
rs

)2
]

+ C′. (13)

We notice that, when rp ≫ rs, corresponding to
S/N ≫ 1 (see [18] for details), this pdf can be reduced
that

P (r) ≃
1

rp
exp

[

−
1

2

(

r − rp
rs

)2
]

+ C′. (14)

This is gaussian function for r, and peaks at r = rp with
spread rs. From the expression of rp, we know that, the
value of rp depends on the data DY

ℓ by the quantity dYℓ .
However, the average value of rp for a larger number of
sample is r̄p = r̂, i.e. rp is an unbiased estimator for r̂.
This has been mentioned in the previous paper [18].
But here, we want to emphasize that, when rp is not

much larger than rs, the peak of the posterior pdf in (13)
is smaller than rp, due to the term 1/r. Especially when
rp < 3rs, the peak of the pdf is very close to zero, which
is never an unbiased estimator for the input value r̂. This
explains what we have found in the left panel of Fig.1.

IV. AVOIDING THE STATISTICAL BIAS

Now, let us consider the possible way to avoid this
bias in the data analysis. Let us return to the likelihood
function in (9). We find that, if considering r and z ≡ rnt

as two independent parameters, this likelihood is a simple
gaussian function for the uncorrected parameters r and
z.

Now, we adopt the flat prior for the variables r and z,
and the posterior pdf for r and z becomes

− 2 lnP (r, z) =

(

r − rp
rs

)2

+

(

z − zp
zs

)2

, (15)

from which follows that the 1-dimensional posterior pdf
for r is

P (r) = exp

[

−
1

2

(

r − rp
rs

)2
]

+ C′. (16)

This pdf peaks at r = rp, which is an unbiased estimator
for the input value r̂. Similarly, we can also find that,
the 1-dimensional posterior pdf for z peaks at z = zp,
which is also an unbiased estimator for ẑ ≡ r̂n̂t. So the
statistical bias in data analysis is elegantly avoided.
In order to clearly show this result, we have analyzed

the same 500 samples, by adopting the flat prior on r
and z. In Fig.1, we plot the distribution of the rML and
zML with the solid columns. As expected, we find that,
these rML and zML are all distributed around at their
input values r̂ = 0.05 and ẑ = 0, and the bias for the
tensor-to-scalar ratio is naturally avoided. In this figure,
we also plot the distribution of ntML, which also unbiased
distributed around its input value n̂t = 0.
It is interesting to compare the difference between the

prior f(r, z) and the general prior f(r, nt). They can be
related by the Jacobi, i.e.

f(r, nt) =

∣

∣

∣

∣

∂(r, z)

∂(r, nt)

∣

∣

∣

∣

f(r, z) = rf(r, z). (17)

This relation shows that, the flat prior f(r, z) = 1 exactly
corresponds to f(r, nt) = r. So, comparing with the
analysis with flat prior f(r, nt) = 1, the new flat prior
f(r, z) induces a larger value of the variable r.

V. CONCLUSION

In this Letter, we find a statistical bias in the CMB
data analysis for the detection of RGWs, when the signal-
to-noise ratio is not very high. This could overlook the
signal of RGWs in the CMB data analysis. We explain
why this bias does exist by the analytical approximation
of the likelihood function, and also find this bias can be
elegantly avoided by adopting the orthogonalized param-
eters r and z ≡ rnt, instead of the general parameters r
and nt.
In the end, we should emphasize that a similar statis-

tical bias might exist for any data analysis [20], which
should be carefully treated.
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