Oscillation and non－oscillation of second－order half－linear differential equations ${ }^{1}$

Yong Zhou ${ }^{\dagger}$ and X．W．Chen
Department of Mathematics，Xiangtan University， Xiangtan，Hunan 411105，P．R．China
E－mail：yzhou＠xtu．edu．cn

Abstract

In this paper，we consider the oscillation and non－oscillation of second order half－linear differential equation．By using some new technique，we establish new oscillation and non－ oscillation criteria which extend and improve some known results of second order linear differential equation in the references．

Keywords：Half－linear differential equations，oscillation，non－oscillation．

1．Introduction

Consider the second order half－linear differential equation

$$
\begin{equation*}
\left(\left|u^{\prime}(t)\right|^{\alpha-1} u^{\prime}(t)\right)^{\prime}+p(t)|u(t)|^{\alpha-1} u(t)=0, \tag{1}
\end{equation*}
$$

where $\alpha>0$ is a constant，$p \in C([0,+\infty),[0,+\infty))$ is an integrable function．
During the last three decades，investigation of oscillation and non－oscillation of sec－ ond order half－linear differential equations has been attracting attention of numerous re－ searchers．The reader is referred to the monographs by Agarwal，Grace and O＇Regan［1，2］， Dosly and Rehak［3］，papers［5－17］and references therein．

By a solution of（1）is meant a function $u \in C^{1}\left[T_{u}, \infty\right), T_{u} \geq 0$ ，which has the property $\left|u^{\prime}\right|^{\alpha-1} u^{\prime} \in C^{1}\left[T_{u}, \infty\right)$ and satisfies the equation for all $t \geq T_{u}$ ．We consider only those solutions $u(t)$ of（1）which satisfy $\sup \{|u(t)|: t \geq T\}>0$ for all $T \geq T_{u}$ ．A nontrivial solution of（1）is called oscillatory if it has arbitrarily large zeros．Otherwise，it is said to be non－oscillatory．

[^0]The purpose of this paper is to establish new oscillation and non－oscillation criteria of Eq．（1）which extend and improve some criteria of linear differential equation in the references．

We can easily show that if for some $\lambda<\alpha$ the integral $\int^{+\infty} s^{\lambda} p(s) d s$ diverges，then equation（1）is oscillatory．Therefore，we shall always assume below that

$$
\int^{+\infty} s^{\lambda} p(s) d s<+\infty \text { for } \lambda<\alpha .
$$

2．Main results

Introduce the notations

$$
\begin{gather*}
h_{\lambda}(t)=t^{\alpha-\lambda} \int_{t}^{\infty} s^{\lambda} p(s) d s \text { for } t>0 \text { and } \lambda<\alpha . \\
h_{\lambda}(t)=t^{\alpha-\lambda} \int_{1}^{t} s^{\lambda} p(s) d s \text { for } t>0, \text { and } \lambda>\alpha \tag{2}\\
p_{*}(\lambda)=\liminf _{t \rightarrow+\infty} h_{\lambda}(t), \quad p^{*}(\lambda)=\limsup _{t \rightarrow+\infty} h_{\lambda}(t) .
\end{gather*}
$$

The following lemmas will be useful for establishing oscillation criteria for Eq．（1）．The first one is a well－known inequality which is due to Hardy et al．［4］．
Lemma 1．［4］If X and Y are nonnegative，then

$$
\begin{equation*}
X^{q}+(q-1) Y^{q} \geq q X Y^{q-1}, \text { for } q>1 \tag{3}
\end{equation*}
$$

where the equality holds if and only if $X=Y$ ．
Lemma 2．Let equation（1）be non－oscillatory．Then there exits $t_{0}>0$ such that the equation

$$
\begin{equation*}
\rho^{\prime}+p(t)+\alpha \rho^{1+1 / \alpha}=0 \tag{4}
\end{equation*}
$$

has a solution $\rho:\left[t_{0},+\infty\right) \rightarrow[0,+\infty)$ ；moreover，

$$
\begin{gather*}
\rho\left(t_{0}+\right)=+\infty, \quad\left(t-t_{0}\right)(\rho(t))^{\frac{1}{\alpha}}<1 \text { for } t_{0}<t<+\infty \tag{5}\\
\lim _{t \rightarrow+\infty} t^{\lambda}(\rho(t))^{\frac{1}{\alpha}}=0, \text { for } \lambda<1 \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t^{\alpha} \rho(t) \geq A, \quad \limsup _{t \rightarrow+\infty} t^{\alpha} \rho(t) \leq B, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\min \left\{r \mid p_{*}(0)-r+r^{1+1 / \alpha} \leq 0\right\}, B=\max \left\{R \mid p_{*}(1+\alpha)-\alpha R+\alpha R^{1+1 / \alpha} \leq 0\right\} . \tag{8}
\end{equation*}
$$

Proof．Since equation（1）is non－oscillatory，there exists $t_{0}>0$ such that the solution $u(t)$ of equation（1）under the initial conditions $u\left(t_{0}\right)=0, u^{\prime}\left(t_{0}\right)=1$ satisfies the inequalities

$$
u(t)>0, u^{\prime}(t) \geq 0 \text { for } t_{0}<t<+\infty
$$

Clearly，the function $\rho(t)=\left(u^{\prime}(t) / u(t)\right)^{\alpha}$ for $t_{0}<t<+\infty$ is the solution of equation（4）， and $\lim _{t \rightarrow t_{0}+} \rho(t)=+\infty$ ．From（4）we have

$$
\frac{-\rho^{\prime}(t)}{\alpha(\rho(t))^{1+1 / \alpha}}>1 \text { for } t_{0}<t<+\infty
$$

Integrating the above inequality from t_{0} to t ，we obtain $\left(t-t_{0}\right)(\rho(t))^{1 / \alpha}<1$ for $t_{0}<t<$ $+\infty$ ．In particular，equality（6）holds for any $\lambda<1$ ．

We now show that inequalities（7）are valid．Assume $p_{*}(0) \neq 0$ and $p_{*}(1+\alpha) \neq 0$ （inequalities（7）are trivial，otherwise）．We introduce the notation

$$
r=\liminf _{t \rightarrow+\infty} t^{\alpha} \rho(t), \quad R=\limsup _{t \rightarrow+\infty} t^{\alpha} \rho(t)
$$

From（4）we easily find that for any $t_{1}>t_{0}$

$$
\begin{gather*}
t^{\alpha} \rho(t)=t^{\alpha} \int_{t}^{+\infty} p(t) d s+t^{\alpha} \int_{t}^{\infty}(\rho(t))^{1+\frac{1}{\alpha}} d s \tag{9}\\
t^{\alpha} \rho(t)=\frac{t_{1}^{1+\alpha} \rho\left(t_{1}\right)}{t}-\frac{1}{t} \int_{t_{1}}^{t} p(s) s^{1+\frac{1}{\alpha}} d s+\frac{1}{t} \int_{t_{1}}^{t} s^{\alpha} \rho(s)\left[1+\alpha-\alpha s(\rho(s))^{\frac{1}{\alpha}}\right] d s \tag{10}\\
\text { for } t_{1}<t<+\infty
\end{gather*}
$$

Using Lemma 1 with $X=1, Y=s(\rho(s))^{\frac{1}{\alpha}}$ ，we have that

$$
(1+\alpha) s^{\alpha} \rho(s)-\alpha s^{1+\alpha}(\rho(s))^{1+1 / \alpha} \leq 1
$$

Hence，for $t_{1}<t<+\infty$ ，

$$
t^{\alpha} \rho(t) \leq \frac{t_{1}^{1+\alpha} \rho\left(t_{1}\right)}{t}-\frac{1}{t} \int_{t_{1}}^{t} p(s) s^{1+\frac{1}{\alpha}} d s+\frac{t-t_{1}}{t}
$$

Therefore，（9）and（10）imply that $r \geq p_{*}(0)$ and $R \leq 1-p_{*}(1+\alpha)$ respectively．
It is easily seen that for any $0<\varepsilon<\min \{r, 1-R\}$ there exists $t_{\varepsilon}>t_{1}$ such that for $t_{\varepsilon}<t<+\infty$,

$$
\begin{gathered}
r-\varepsilon<t^{\alpha} \rho(t)<R+\varepsilon \\
t^{\alpha} \int_{t}^{+\infty} p(s) d s>p_{*}(0)-\varepsilon
\end{gathered}
$$

and

$$
\frac{1}{t} \int_{t_{1}}^{t} s^{1+\alpha} p(s) d s>p_{*}(1+\alpha)-\varepsilon
$$

Taking into account the above argument，from（9）and（10）we have that for $t_{\varepsilon}<t<+\infty$ ，

$$
\begin{gathered}
t^{\alpha} p(t)>p_{*}(0)-\varepsilon+(r-\varepsilon)^{1+\frac{1}{\alpha}} \\
t^{\alpha} \rho(t)<\frac{t_{\varepsilon}^{1+\alpha} \rho\left(t_{\varepsilon}\right)}{t}-p_{*}(1+\rho)+\varepsilon\left[(1+\alpha)-\alpha(R+\varepsilon)^{\frac{1}{\alpha}}\right]
\end{gathered}
$$

Hence

$$
r \geq p_{*}(0)+r^{1+\frac{1}{\alpha}}, \quad R \leq-p_{*}(1+\alpha)+R\left[(1+\alpha)-\alpha R^{\frac{1}{\alpha}}\right]
$$

that is，$r \geq A$ and $R \leq B$ ，where A and B are defined by equalities（8）．Hence（7）holds．
For the completion of the picture we give a proposition，which is proved by Kusano， Naito and Ogata in［9］．
Proposition．［9］If $p_{*}(0)>\frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}$ ，then every solution of equation（1）is oscillatory．
Theorem 1．If $p_{*}(1+\alpha)>\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}$ ，then every solution of equation（1）is oscillatory．
Proof．Assume that equation（1）is non－oscillatory．From the proof of Lemma 1，we have

$$
p_{*}(1+\alpha) \leq \alpha R-\alpha R^{1+1 / \alpha} \leq\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}
$$

which contradicts the condition of Theorem 1 and so the proof is complete．
Theorem 2．Assume that $p_{*}(0) \leq \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}$ ．If for some $\lambda<\alpha$

$$
\begin{equation*}
p^{*}(\lambda)>\frac{\lambda^{1+\alpha}}{(1+\alpha)^{1+\alpha}(\alpha-\lambda)}+B \tag{11}
\end{equation*}
$$

then equation（1）is oscillatory．
Proof．Assume the contrary．Let equation（1）be non－oscillatory．Then，according to Lemma 2，equation（4）has a solution $\rho:\left[t_{0},+\infty\right) \rightarrow[0,+\infty)$ ，satisfying condition（5）－（7）． Suppose $\lambda<\alpha$ ．Because of（7）we have that for any $\varepsilon>0$ there exists $t_{\varepsilon}>t_{0}$ such that

$$
t^{\alpha} \rho(t)<B+\varepsilon, \text { for } t_{\varepsilon}<t<+\infty
$$

Multiplying equality（4）by t^{λ} ，integrating it from t to $+\infty$ ，and taking into account （5）－（7），we get

$$
\begin{aligned}
\int_{t}^{+\infty} s^{\lambda} p(s) d s & =-\int_{t}^{+\infty} s^{\lambda} \rho^{\prime}(s) d s-\int_{t}^{+\infty} s^{\lambda}(\rho(s))^{1+\frac{1}{\alpha}} d s \\
& =t^{\lambda} \rho(t)+\int_{t}^{+\infty} \frac{\lambda^{\alpha+1}}{(\alpha+1)^{\alpha+1}} s^{\lambda-\alpha-1} d s \\
& -\int_{t}^{+\infty}\left(\alpha s^{\lambda}(\rho(s))^{1+\frac{1}{\alpha}}+\frac{\lambda^{\alpha+1}}{(\alpha+1)^{\alpha+1}} s^{\lambda-\alpha-1}-\lambda s^{\lambda-1} \rho(s)\right) d s
\end{aligned}
$$

Using Lemma 1 with

$$
X=\frac{\lambda s^{\frac{\lambda}{1+\alpha}-1}}{1+\alpha}, \quad Y=s^{\frac{\lambda}{1+\alpha}}(\rho(s))^{\frac{1}{\alpha}}
$$

we have that

$$
\alpha s^{\lambda}(\rho(s))^{1+\frac{1}{\alpha}}+\frac{\lambda^{\alpha+1}}{(\alpha+1)^{\alpha+1}} s^{\lambda-\alpha-1}-\lambda s^{\lambda-1} \rho(s) \geq 0
$$

Hence，

$$
\begin{aligned}
\int_{t}^{+\infty} s^{\lambda} p(s) d s & <t^{\lambda-\alpha}\left(t^{\alpha} \rho(t)+t^{\alpha-\lambda} \int_{t}^{+\infty} \frac{\lambda^{\alpha+1}}{(\alpha+1)^{\alpha+1}} s^{\lambda-\alpha-1} d s\right) \\
& <t^{\lambda-\alpha}\left(B+\varepsilon+\frac{\lambda^{\alpha+1}}{(\alpha-\lambda)(\alpha+1)^{\alpha+1}}\right)
\end{aligned}
$$

hence we have $p^{*}(\lambda) \leq \frac{\lambda^{\alpha+1}}{(\alpha-\lambda)(\alpha+1)^{\alpha+1}}+B$ ，which contradicts equality（11）．The proof is complete．
Theorem 3．Assume that $p_{*}(1+\alpha) \leq\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}$ ．If for some $\lambda>\alpha$

$$
\begin{equation*}
p^{*}(\lambda)>\frac{\lambda^{1+\alpha}}{(1+\alpha)^{1+\alpha}(\lambda-\alpha)}-A \tag{12}
\end{equation*}
$$

then equation（1）is oscillatory．
Proof．Assume the contrary．Let equation（1）be non－oscillatory．Then，according to Lemma 2，equation（4）has a solution $\rho:\left(t_{0},+\infty\right) \rightarrow[0,+\infty)$ ，satisfying condition（5）and （7）．Suppose $\lambda>\alpha$ ．Because of（7）we have that for any $\varepsilon>0$ there exists $t_{\varepsilon}>t_{0}$ such that

$$
t^{\alpha} \rho(t)>A-\varepsilon, \text { for } t_{\varepsilon}<t<+\infty
$$

Multiplying equality（4）by t^{λ} ，integrating it from t_{ε} to t ，and taking into account（5）and （7），we get

$$
\begin{aligned}
\int_{t_{\varepsilon}}^{t} s^{\lambda} p(s) d s & <t^{\lambda-\alpha}\left(-t^{\alpha} \rho(t)+t^{\alpha-\lambda} t_{\varepsilon}^{\lambda} \rho\left(t_{\varepsilon}\right)+t^{\alpha-\lambda} \int_{t_{\varepsilon}}^{t} \frac{\lambda^{\alpha+1}}{(\alpha+1)^{\alpha+1}} s^{\lambda-\alpha-1} d s\right) \\
& <t^{\lambda-\alpha}\left(-A+\varepsilon+\frac{\lambda^{\alpha+1}}{(\lambda-\alpha)(\alpha+1)^{\alpha+1}}+\frac{t_{\varepsilon}^{\lambda} \rho\left(t_{\varepsilon}\right)}{t^{\lambda-\alpha}}\right)
\end{aligned}
$$

hence we have $p^{*}(\lambda) \leq \frac{\lambda^{\alpha+1}}{(\lambda-\alpha)(\alpha+1)^{\alpha+1}}-A$ ，which contradicts equality（12）．
Corollary 1．Let either

$$
\begin{align*}
& \lim _{\lambda \rightarrow \alpha-}(\alpha-\lambda) p^{*}(\lambda)>\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \tag{13}\\
& \lim _{\lambda \rightarrow \alpha+}(\lambda-\alpha) p^{*}(\lambda)>\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \tag{14}
\end{align*}
$$

Then equation（1）is oscillatory．
Corollary 2．For some $\lambda \neq \alpha$ let

$$
\begin{equation*}
|\lambda-\alpha| p_{*}(\lambda)>\frac{\alpha^{\alpha+1}}{(\alpha+1)^{\alpha+1}} \tag{15}
\end{equation*}
$$

Then equation（1）is oscillatory．
To convince ourselves that corollary 1 is valid，let us note that（13）（（14））implies

$$
\begin{gathered}
\lim _{\lambda \rightarrow \alpha+}\left\{(\alpha-\lambda) p^{*}(\lambda)-\frac{\lambda^{\alpha+1}}{(1+\alpha)^{1+\alpha}}-(\alpha-\lambda) B\right\}>0 \\
\left(\lim _{\lambda \rightarrow \alpha-}\left\{(\lambda-\alpha) p^{*}(\lambda)-\frac{\lambda^{\alpha+1}}{(1+\alpha)^{1+\alpha}}-(\lambda-\alpha) A\right\}>0\right) .
\end{gathered}
$$

Consequently，（11）（（12））is fulfilled for some $\lambda<\alpha(\lambda>\alpha)$ ．Thus，according to Theorem 1 ，equation（1）is oscillatory．As for Corollary 2，taking into account that the mapping $\lambda \mapsto(\alpha-\lambda) p_{*}$ for $\lambda<\alpha\left(\lambda \mapsto(\lambda-\alpha) p_{*}\right.$ for $\left.\lambda>\alpha\right)$ is non－decreasing（non－increasing）， we easily find from（15）that（13）（（14））is fulfilled for some λ ．
Theorem 4．Assume that $p_{*}(0) \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}}$ and $p_{*}(1+\alpha) \leq\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}$ ．Moreover，let either

$$
\begin{equation*}
p_{*}(0)>\frac{\lambda\left(1+\alpha-\lambda^{\frac{1}{\alpha}}\right)}{(\alpha+1)^{\alpha+1}} \text { and } p_{*}(\lambda)>\frac{p_{*}(0)}{\alpha-\lambda}+B-A \tag{16}
\end{equation*}
$$

for some $\lambda<\alpha$ ，or

$$
\begin{equation*}
p_{*}(1+\alpha)>\alpha \frac{\lambda\left(1+\alpha-\lambda^{\frac{1}{\alpha}}\right)}{(\alpha+1)^{\alpha+1}} \text { and } p_{*}(\lambda)>\frac{p_{*}(1+\alpha)}{\lambda-\alpha}+B-A \tag{17}
\end{equation*}
$$

for some $\lambda>\alpha$ ．Then equation（1）is oscillatory．
Proof．Assume the contrary．Let equation（1）be non－oscillatory．Then according to Lemma 2，equation（4）has the solution $\rho:\left(t_{0},+\infty\right) \rightarrow[0,+\infty)$ satisfying conditions（5）－ （7）．Suppose $\lambda>\alpha(\alpha>\lambda)$ ．By the conditions of the theorem，$p_{*}(0)>\frac{\lambda\left(1+\alpha-\lambda \frac{1}{\alpha}\right)}{(\alpha+1)^{\alpha+1}}\left(p_{*}(1+\right.$ $\left.\alpha)>\alpha \frac{\lambda\left(1+\alpha-\lambda^{\frac{1}{\alpha}}\right)}{(\alpha+1)^{\alpha+1}}\right)$ ，which implies that $A>\frac{\lambda}{(1+\alpha)^{\alpha}}\left(B<\frac{\lambda}{(1+\alpha)^{\alpha}}\right)$ ．On account of（7），for any $0<\varepsilon<A-\frac{\lambda}{(1+\alpha)^{\alpha}}\left(0<\varepsilon<\frac{\lambda}{(1+\alpha)^{\alpha}}-B\right)$ there exists $t_{\varepsilon}>t_{0}$ such that

$$
A-\varepsilon<t^{\alpha} \rho(t)<B+\varepsilon \quad \text { for } \quad t_{\varepsilon}<t<+\infty
$$

Multiplying equality（4）by t^{λ} ，integrating it from t to $+\infty$（from t_{ε} to t ），and taking into account（5）－（7），we easily find that

$$
\begin{aligned}
& t^{\alpha-\lambda} \int_{t}^{+\infty} s^{\lambda} p(s) d s=t^{\alpha} \rho(t)+t^{\alpha-\lambda} \int_{t}^{+\infty} s^{\lambda-\alpha-1} s^{\alpha} \rho(s)\left(\lambda-(\rho(s))^{\frac{1}{\alpha}}\right) d s \\
&< B+\varepsilon+\frac{1}{\alpha-\lambda}(A-\varepsilon)\left(\lambda-(A-\varepsilon)^{\frac{1}{\alpha}}\right) \quad \text { for } t_{\varepsilon}<t<+\infty \\
&\left(t^{\alpha-\lambda} \int_{t_{\varepsilon}}^{t} s^{\lambda} p(s) d s<\varepsilon-A+\frac{1}{\lambda-\alpha}(B+\varepsilon)\left(\lambda-(B+\varepsilon)^{\frac{1}{\alpha}}\right)+t^{\alpha-\lambda} t_{\varepsilon}^{\alpha} \rho\left(t_{\varepsilon}\right) \text { for } t_{\varepsilon}<t<+\infty\right)
\end{aligned}
$$

This implies

$$
p^{*}(\lambda) \leq \frac{p_{*}(0)}{\alpha-\lambda}+B-A
$$

$$
\left(p^{*}(\lambda) \leq \frac{p_{*}(0)}{\lambda-\alpha}+B-A\right)
$$

which contradicts condition $(16)((17))$ ．
Theorem 5．Assume that $0<p_{*}(0) \leq \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}$ and $p_{*}(1+\alpha) \leq\left(\frac{\alpha}{1+\alpha}\right)^{1+\alpha}$ ．Moreover， for some $0<\lambda<\alpha$ let $p_{*}(\lambda)<\frac{\alpha^{\alpha}-\lambda^{1+\alpha}}{(1+\alpha)^{1+\alpha}}$ and either

$$
p_{*}(\lambda)>\frac{p_{*}(0)}{\alpha-\lambda}+\frac{\lambda}{\alpha-\lambda}(B-A)
$$

and

$$
p^{*}(\lambda)>p_{*}(\lambda)+B-r_{1},
$$

or

$$
p_{*}(\lambda)<\frac{p_{*}(0)}{\alpha-\lambda}+\frac{\lambda}{\alpha-\lambda}(B-A)
$$

and

$$
\begin{equation*}
p^{*}(\lambda)>\frac{p_{*}(0)}{\alpha-\lambda}+\frac{1}{\alpha-\lambda}(B-A) \tag{18}
\end{equation*}
$$

where r_{1} is the least root of the equation $\frac{1}{\alpha-\lambda} x^{1+\frac{1}{\alpha}}-x+p_{*}(\lambda)-\frac{\lambda}{\alpha-\lambda} B=0$ ．Then equation （1）is oscillatory．

Theorem 5＇．Assume that $p_{*}(0) \leq \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}$ and $p_{*}(1+\alpha) \leq\left(\frac{\alpha}{1+\alpha}\right)^{1+\alpha}$ ．Moreover，for some $0<\lambda<\alpha$ let condition（18）be fulfilled，and let $p_{*}(0)>\frac{\alpha^{\alpha}-\lambda^{1+\alpha}}{(1+\alpha)^{1+\alpha}}$ ．Then equation （1）is oscillatory．

Proof of Theorems 5 and 5＇．Assume the contrary．Let equation（1）be non－oscillatory． Then according to Lemma 2，equation（4）has the solution $\rho:\left(t_{0},+\infty\right) \rightarrow[0,+\infty)$ satis－ fying conditions（5）－（7），Multiplying equation（4）by t^{λ} ，integrating it from t to $+\infty$ ，and taking into account（6），we easily obtain

$$
\begin{equation*}
t^{\alpha} \rho(t)=h_{\lambda}(t)-\lambda t^{\alpha-\lambda} \int_{t}^{+\infty} s^{\lambda-1} \rho(s) d s+t^{\alpha-\lambda} \int_{t}^{+\infty} s^{\lambda}(\rho(s))^{1+\frac{1}{\alpha}} d s \text { for } t_{0}<t<+\infty \tag{19}
\end{equation*}
$$

where $h(\lambda)$ is the function defined by（2）．
Introduce the notation

$$
r=\lim _{t \rightarrow+\infty} t^{\alpha} \rho(t)
$$

On account of（7）we have $r>0$ ．Therefore for any $0<\varepsilon<\max \left\{r, p_{*}(\lambda)\right\}$ there exists $t_{\varepsilon}>t_{0}$ such that

$$
r-\varepsilon<t^{\alpha} \rho(t)<B+\varepsilon, h_{\lambda}>p_{*}(\lambda)-\varepsilon \text { for } t_{\varepsilon}<t<+\infty
$$

Owing to the above arguments，we find from（19）that

$$
(\alpha-\lambda) h_{\lambda}<B-\varepsilon-(r-\varepsilon)^{1+\frac{1}{\alpha}} \quad \text { for } t_{\varepsilon}<t<+\infty
$$

$$
t^{\alpha} \rho(t)>p_{*}(\lambda)-\varepsilon-\frac{\lambda}{\alpha-\lambda}(B+\varepsilon)+\frac{1}{\alpha-\lambda}(r-\varepsilon)^{1+\frac{1}{\alpha}} \text { for } t_{\varepsilon}<t<+\infty
$$

which implies

$$
\begin{equation*}
p^{*}(\lambda) \leq \frac{B-r^{1+\frac{1}{\alpha}}}{\alpha-\lambda}, \quad r \geq p_{*}(\lambda)-\frac{\lambda}{\alpha-\lambda} B+\frac{r^{1+\frac{1}{\alpha}}}{\alpha-\lambda} \tag{20}
\end{equation*}
$$

The latter inequality results in $r \geq r_{1}$ ，where r_{1} is the least root of the equation

$$
\frac{1}{\alpha-\lambda} x^{1+\frac{1}{\alpha}}-x+p_{*}(\lambda)-\frac{\lambda}{\alpha-\lambda} B=0
$$

Thus $r \geq \max \left\{A, x_{1}\right\}$ ，From（20）we have that if $A<r_{1}$ ，then

$$
\begin{equation*}
p^{*}(\lambda) \leq B+p_{*}(\lambda)-r_{1} \tag{21}
\end{equation*}
$$

but if $A \geq x_{1}$ ，then

$$
p^{*}(\lambda) \leq \frac{1}{\alpha-\lambda} B-\frac{1}{\alpha-\lambda} A^{1+\frac{1}{\alpha}}
$$

which implies

$$
\begin{equation*}
p^{*}(\lambda) \leq \frac{B}{\alpha-\lambda}-\frac{A}{\alpha-\lambda}+\frac{p_{*}(0)}{\alpha-\lambda} \tag{22}
\end{equation*}
$$

inequalities（21），（22）contradicts the conditions of the theorem．
Corollary 3．Assume that $p_{*}(0) \leq \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}, p_{*}(1+\alpha) \leq\left(\frac{\alpha}{1+\alpha}\right)^{1+\alpha}$ and

$$
p^{*}(0)>p_{*}(0)+B-A .
$$

Then equation（1）is oscillatory．
Corollary 4．Assume that for some $\lambda \in\left[0, \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}\right)$ ，

$$
\frac{\lambda}{\alpha-\lambda}<p_{*}(\lambda)<\frac{\alpha^{\alpha}}{(\alpha-\lambda)(\alpha+1)^{\alpha+1}}
$$

and

$$
p^{*}>1+p_{*}(\lambda)-r_{1}^{\prime}
$$

where r_{1}^{\prime} is the least root of the equation $\frac{1}{\alpha-\lambda} x^{1+\frac{1}{\alpha}}-x+p_{*}(\lambda)-\frac{\lambda}{\alpha-\lambda}=0$ ．Then equation （1）is oscillatory．

References

［1］R．P．Agarwal，S．R．Grace and D．O＇Regan，Oscillation Theory for Second Order Linear， Half－linear，Superlinear and Sublinear Dynamic Equations，Kluwer Academic Publish－ ers， 2002.
［2］R．P．Agarwal，S．R．Grace and D．O＇Regan，Oscillation Theory for Second Order Dy－ namic Equations，Taylor \＆Francis， 2003.
［3］O．Dosly and P．Rehak，Half－Linear Differential Equations，North－Holland， 2005.
［4］G．H．Hardy，J．E．Littlewood and G．Polya，Inequalities，second ed．，Cambridge Univ． Press，Cambridge， 1988.
［5］H．B．Hus and C．C．Yeh，Oscillation theorems for second－order half－linear differential equations，Appl．Math．Lett．，9（6）（1996），71－77．
［6］H．L．Hong，W．C．Lian and C．C．Yeh，The oscillation of half－linear differential equations with an oscillatory coefficient，Mathl．Comput．Modelling，24（7）（1996），77－86．
［7］N．kandelaki，A．Lomtatidze and D．Ugulava，On oscillation and non－oscillation of a second order half－linear equation，Georgian Math．J．，7（2）（2000），329－346．
［8］T．Kusano and Y．Norio，Non－oscillation theorems for a class of quasilinear differential equations second order，J．Math．Anal．Appl．，198（1995），115－127．
［9］T．Kusano，Y．Naito and A．Ogata，Strong oscillation and non－oscillation of quasilinear differential equations of second order，Diff．Equs．Dynamical Systems，2（1994），1－10．
［10］J．V．Manojlović，Oscillation criteria for second－order half－linear differential equations， Mathl．Comput．Modelling，30（1999），109－119．
［11］A．Lomtatidze，Oscillation and non－oscillation criteria for second－order linear differen－ tial equations，Georgian Math．J．，4（2）（1997），129－138．
［12］H．J．Li and C．C．Yeh，Non－oscillatio criteria for second－order half－linear differential equations，Appl．Math．Lett．，8（5）（1995），63－70．
［13］W．T．Li，Interval oscillation of second－order half－linear functional differential equa－ tions，Applied Math．Comput．，155（2）（2004），451－468．
［14］James S．W．Wong，A non－oscillation theorem for Emden－Fowler equations，J．Math． Anal．Appl．，274（2）（2002），746－754．
［15］James S．W．Wong，Second order nonlinear forced oscillations，SIAM J．Math．Anal．， 19（1988），667－675．
［16］Q．R．Wang，Oscillation and asymptiotics for second－order half－linear differential equa－ tions ，Applied Math．Comput．，122（2001）253－266．
［17］X．J．Yang，Oscillation results for second－order half－linear differential equations，Mathl． Comput．Modelling，36（4－5）（2002），503－507．
［18］Yong Zhou，Oscillation and non－oscillation criteria for second order quasilinear differ－ ence equations，J．Math．Anal．Appl．，303（2005），365－375．

[^0]: ${ }^{1}$ Supported by Specialized Research Fund for the Doctoral Program of Higher Education （20060530001）．
 \dagger Corresponding author．

