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Abstract

In this paper, we first give the related important Lemmas, and after discusses the non-symmetric
discrete Hamiltonian system, and obtain the limit-circle invariance theorem. The main results con-
tain corresponding contents of the symmetric discrete Hamiltonian system has been discussed in
much paper.
Key words difference operator, deficiency index, non-symmetric, limit-circle

1 Introduction

Discrete Hamiltonian systems originated from the discretization of continuous Hamiltonian sys-
tems and from discrete process acting in accordance with the Hamiltonian principle. They play an
important role in the practical applications. In spite of the similarity between the theories of contin-
uous and discrete Hamiltonian systems, there are many differences. For example, sometimes some
results on continuous Hamiltonian systems are dissimilar to related results on discrete Hamiltonian
systems; some results of continuous and discrete Hamiltonian systems are similar, but the method of
the proofs are dissimilar. So, study of discrete Hamiltonian systems is more difficult and challenging
in some way. In especially, the deficient index of discrete Hamiltonian systems is great significance,
which determines is generated by the system self-adjoint operators to add the required number of
boundary conditions, allowing the expansion of the system if the corresponding difference operator
is self-adjoint.

At present, for discrete Hamiltonian system studied by many scholars of its oscillation, Lyapunov
inequality, non-conjugated nature deficit index (see [1-4]). There are so many differences among
symmetric systems,non-symmetric systems, high dimension systems and scalar equations that the
study of singular and non-symmetric systems is very difficult. Many problems need to be solved,
such as the necessary and sufficient conditions of deficient index, the deficient index and spectrum
problems of non-symmetric discrete Hamiltonian systems and so on. Now, most deficient index
problems discussion of discrete Hamiltonian systems focused on the symmetric form, while the
result for the deficiency index of non-symmetric form is much fewer(see [5-10]).

This paper studies on the limit-circle invariance of non-symmetric discrete Hamiltonian systems.
Some related lemmas and the limit-circle invariance theorem are obtained. The rest parts are
arranged as following: the second part is preliminary knowledge, the third part is the proof of
limit-circle invariance theorem.

2 Preliminary knowledge

Consider the singular discrete Hamiltonian system

J△y(t) = [λW (t) + Q(t)]R(y(t)), t ∈ N, (2.1)
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where λ is a complex parameter, N = {0, 1, 2, · · · }, y(t) =

(

y1(t)
y2(t)

)

is a 2n×1 matrix, y1(t), y2(t) ∈

Cn for t ∈ N. ∆y(t) is the forward difference operator defined by

△y(t) = y(t + 1) − y(t), (2.2)

and J is the canonical symplectic matrix, i.e., J =

(

0 −In

In 0

)

with In the identity matrix,

W ∗(t) = W (t) ≥ 0 and Q(t) are 2n × 2n complex-valued matrices which be named with weighted
function and potential function, respectively. Here W ∗ is the complex conjugate transpose of W

and inequalities of Hermitian matrices are in the positive, non-negative sense. The discrete Hamil-
tonian system (2.1) called non-symmetric if Q∗(t) 6= Q(t), otherwise known as symmetric discrete
Hamiltonian system. Assume that the weighted function W (t) is of the block diagonal form

W (t) = diag{W1(t), W2(t)}, (2.3)

and satisfies the following definiteness condition, where Wj(t) is a n × n nonnegative Hermitian
matrix, j = 1, 2.

(I) There exists n0 ∈ N such that for all nontrivial solutions y(t) of (2.1), the following inequality
always holds

n
∑

t=0

R(y)∗(t)W (t)R(y)(t) > 0, n ≥ n0. (2.4)

Remark 2.1 The definiteness assumption for the weighted function in the continuous case was
first proposed by Atkinson(see [1, P253]), and was used by Hinton, Shaw and Shi(see [10, P455]).

Let Q(t) be blocked as

Q(t) =

(

−C(t) A∗(t)
A(t) B(t)

)

, (2.5)

where A(t), B(t), C(t) are n×n complex matrices. To ensure the existence, uniqueness of the solution
of any initial value problem for (2.1), we always assume that

(II) In − A(t) is invertible in N.

Remark 2.2 From (2.3), (2.5), system (2.1) can be rewritten into the linear discrete Hamiltonian
system as

{

∆y1(t) = A(t)y1(t + 1) + [B(t) + λW2(t)]y2(t),

∆y2(t) = [C(t) − λW1(t)]y1(t + 1) − A∗(t)y2(t), t ∈ N.
(2.6)

In order to show the main results of this paper clearly, we first give the related definitions and
symbols. The sequential apace

l[0,∞) := {y : y = {y(t)}∞t=0 ⊂ C
2n} (2.7)

and let

L2
W [0,∞) := {y ∈ l[0,∞) :

∞
∑

t=0

R(y)∗(t)W (t)R(y)(t) < ∞} (2.8)

with inner product

〈y, z〉 :=

∞
∑

t=0

R(z)∗(t)W (t)R(y)(t), (2.9)

where the weighted function W (t) is a nonnegative Hermitian matrix. Let

L2
W [0, n + 1] := {y : y ∈ l[0, n + 1]} (2.10)

with inner product 〈·, ·〉n,

〈y, z〉n :=

n
∑

t=0

R(z)∗(t)W (t)R(y)(t). (2.11)
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Denote ‖y‖W = (〈y, y〉)
1

2 for y ∈ L2
W [0,∞) and ‖y‖n = (〈y, y〉n)

1

2 for y ∈ L2
W [0, n + 1]. Since

W (t) may be singular, the inner products for L2
W [0,∞) and L2

W [0, n + 1] may not be positive, so
we have to introduce the following quotient spaces. For y, z ∈ L2

W [0,∞), y is said to be equal z

if ‖y − z‖W = 0. In this sense, L2
W [0,∞) is an inner product space with the inner product 〈·, ·〉.

Similarly, for y, z ∈ L2
W [0, n + 1], y is said to be equal to z if ‖y − z‖ = 0 and thus L2

W [0, n + 1] is
an inner product space with the inner product 〈·, ·〉n.

For convenience, introduce the following natural operator corresponding to the non-symmetric
discrete Hamiltonian (2.1):

Ly(t) := J∆y(t) − Q(t)R(y)(t) = λW (t)R(y)(t), t ∈ N (2.12)

for y ∈ l[0, n + 1] := {y = {y(t)}n+1
t=0 ⊂ C2n}.

Lemma 2.1 (Shi, lemma2.5[10]) L2
W [0,∞) is a Hilbert space with inner product 〈·, ·〉 and L2

W [0, n+
1] is a Hilbert space with inner product 〈·, ·〉n. Furthermore, dimL2

W [0, n + 1] =
∑n

t=0
rankW (t).

Remark 2.3 From the proof of lemma 2.1, we see that the potential function not be used during the
proofing process, so the conclusion of lemma 2.1 suit to the non-symmetric discrete Hamiltonian.

3 Main results

In order to prove the main results of this paper, we give some lemmas firstly. By (II) and (2.6),
we get

y(t + 1) = S(t, λ)y(t), (3.1)

where E(t) := (In − A(t))−1,

S(t, λ) =

(

E E(B + λW2)
(C − λW1)E In − A∗ + (C − λW1)E(B + λW2)

)

, (3.2)

and all the matrix-valued functions on the right-hand side of (3.2) are evaluated at t. In addition,
it can be directly derived from the first relation in (2.6) that every solution y(·, λ) of non-symmetric
discrete Hamiltonian (2.1) satisfies

R(y)(t, λ) =

(

E(t) E(t)(B(t) + λW2(t))
0 In

)

y(t, λ), (3.3)

which will be repeatedly used in the sequel.

Lemma 3.1 (Liouville′sFormula) Assume (II) holds. Let Ψ(·, λ) be a fundamental solution matrix
of non-symmetric discrete Hamiltonian (2.1). Then, for all t ≥ 0,

detΨ(t + 1, λ) = detΨ(0, λ)
t
∏

s=0

{(det(In − A(s)))−1det(In − A∗(s))},

det(Ψ(t + 1, λ)Ψ∗(t + 1, λ) = det(Ψ(0, λ)Ψ∗(0, λ)),

|detΨ(t, λ)| = |detΨ(0, λ)|.

(3.4)

Proof. It suffices to show the first relation in (3.4) holds. From (3.2), we see that S(t, λ) can be
rewritten as

S(t, λ) =

(

E(t) 0
(C(t) − λW1(t))E(t) In − A∗(t)

)(

In B(t) + λW2(t))
0 In

)

(3.5)

which implies that

detS(t, λ) = detE(t)det(In − A∗(t)) = (det(In − A∗(t)))−1det(In − A∗(t)). (3.6)

In addition, it follows from (3.1) that

Ψ(t + 1, λ) = S(t, λ)Ψ(t, λ) = S(t, λ)S(t − 1, λ) · · ·S(0, λ)Ψ(0, λ), (3.7)

together with (3.6), yields the first relation in (3.4). This completes the proof. �

The following results play an important role in the rest discussions of the paper.
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Theorem 3.1 For all y, z ∈ l[0, n + 1],

n
∑

t=0

{R(y)∗(t)L(z)(t) − L(y)∗(t)R(z)(t)}

=y∗(t)Jz(t)|n+1

t=0 + i

n
∑

t=0

R(y)∗(t)

[

Q∗(t) − Q(t)

i

]

R(z)(t).

(3.8)

Proof. Note y(t) = (yT
1 (t), yT

2 (t))T , z(t) = (zT
1 (t), zT

2 (t))T , where yj(t), zj(t) ∈ Cn. Using (2.12) we
obtain

R(y)∗(t)L(z)(t) − L(y)∗(t)R(z)(t)

=R(y)∗(t)[J△z(t) − Q(t)R(z)(t)] − [(△y(t))∗(−J) − R(y)∗(t)Q∗(t)]R(z)(t)

=[y∗
2(t + 1)z1(t + 1) − y∗

1(t + 1)z2(t + 1)] − [y∗
2(t)z1(t) − y∗

1(t)z2(t)]

+ iR(y)∗(t)

[

Q∗(t) − Q(t)

i

]

R(z)(t)

=y∗(t)Jz(t)|t+1
t + iR(y)∗(t)

[

Q∗(t) − Q(t)

i

]

R(z)(t).

(3.9)

AS a direct conclusion of Lemma 3.2, we have

Lemma 3.2 Assume (II) holds. For all λ, µ ∈ C, let y(·, λ), z(·, µ) be any solutions of non-
symmetric discrete Hamiltonian systems (2.1λ) and (2.1µ), respectively. Then, for n ≥ 1,

(µ − λ)

n
∑

t=0

R(y)∗(t, λ)W (t)R(z)(t, µ)

=y∗(t, λ)Jz(t, µ)|n+1

t=0 + i

n
∑

t=0

R(y)∗(t, λ)

[

Q∗(t) − Q(t)

i

]

R(z)(t, µ).

(3.10)

Lemma 3.3 Let A be an m × n matrix and B be an n × d matrix. Then

(1) ‖ AB ‖≤‖ A ‖‖ B ‖ and ‖ AB ‖1≤‖ A ‖1‖ B ‖1;

(2) ‖ A ‖1≤‖ A ‖≤ n
1

2 ‖ A ‖1 in the case of m = n, where

‖ A ‖=







m
∑

i=1

n
∑

j=1

|aij |
2







1

2

, ‖ A ‖1= sup‖ξ‖=1 ‖ Aξ ‖,

and ‖ ξ ‖=





n
∑

j=1

|ξj |
2





1

2

for ξ = (ξ1, · · · , ξd) ∈ C
n.

(3.11)

Theorem 3.2 (The Limit − circle Invariance Theorem). Assume the non-symmetric discrete Hamil-
tonian system (2.1) satisfies

−KW (t) ≤
Q(t) − Q∗(t)

i
≤ KW (t), K > 0. (3.12)

If there exists λ0 ∈ C such that the solutions of (2.1λ0
) are in L2

W [0,∞), then this is true for all
λ ∈ C.

Proof. Suppose that all the solutions of (2.1λ0
) are in L2

W [0,∞) for some λ0 ∈ C. For any given
λ ∈ C, let Φ(·, λ) be the normal fundamental solution matrix of (2.1λ) (i.e., Φ(0, λ) = I2n). Since
Φ(t, λ), Φ(t, λ0) are invertible, there exists an invertible matrix X(t, λ) ∈ C2n×2n such that

Φ(t, λ) = Φ(t, λ0)X(t, λ). (3.13)

As the theorem proving process is relatively complex, we divide it into two major steps as
following.
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The first part: X(t, λ) is bounded on [0,∞).
(1) : From (3.13) we have that

△Φ(t, λ) = Φ(t + 1, λ0)△X(t, λ) + (△Φ(t, λ0))X(t, λ),

R(Φ)(t, λ) = R(Φ)(t, λ0)X(t, λ) + diag{In, 0}Φ(t + 1, λ0)△X(t, λ).
(3.14)

Using the fact Φ(t, λ) and Φ(t, λ0) are the fundamental solution matrices of (2.1λ) and (2.1λ0
),

respectively. Together with (3.14) we get

[J − (Q(t) + λW (t))diag{In, 0}]Φ(t + 1, λ0)△X(t, λ)

=(λ − λ0)W (t)R(Φ)(t, λ0)X(t, λ),
(3.15)

i.e.,
(

C(t) − λW1(t) −In

E−1(t) 0

)

Φ(t + 1, λ0)△X(t, λ)

=(λ − λ0)W (t)R(Φ)(t, λ0)X(t, λ),

(3.16)

so we have
△X(t, λ) = P (t)X(t, λ), (3.17)

where
P (t, λ) = (λ − λ0)Z

−1(t, λ)R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0),

Z(t, λ) = R(Φ)∗(t, λ0)

(

C(t) − λW1(t) −In

E−1(t) 0

)

Φ(t + 1, λ0).
(3.18)

We remark that the multiplier R(Φ)∗(t, λ0) is added to (3.18) in order to study the property of
P (t, λ) more conveniently later on.

(2) : Consider Z(t, λ). First, we want to show that Z(t, λ) converges as t → ∞. From (2.1λ0
)

that

Φ(t + 1, λ0) =

(

In 0
C(t) − λ0W1(t) In − A∗(t)

)

R(Φ)(t, λ0). (3.19)

Inserting (3.19) into (3.18), we get

Z(t, λ) = R(Φ)∗(t, λ0)

(

(λ0 − λ)W1(t) −In + A∗(t)
E−1(t) 0

)

R(Φ)(t, λ0)

= R(Φ)∗(t, λ0)

(

0 −In + A∗(t)
E−1(t) 0

)

R(Φ)(t, λ0)

+ (λ0 − λ)R(Φ)∗(t, λ0)diag{W1(t), 0}R(Φ)(t, λ0).

(3.20)

Note

L(t) = R(Φ)∗(t, λ0)

(

0 −In + A∗(t)
E−1(t) 0

)

R(Φ)(t, λ0). (3.21)

Since all the solutions of (2.1λ0
) are in L2

W [0,∞), Φ(·, λ0) ∈ L2
W [0,∞), that is

V (λ0) :=

∞
∑

t=0

R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) < +∞. (3.22)

From (3.19), we get

Φ∗(t + 1, λ0) = R(Φ)∗(t, λ0)

(

In C∗ − λ0W1(t)
0 In − A(t)

)

, (3.23)

hence
Φ∗(t + 1, λ0)JΦ(t + 1, λ0)

=R(Φ)∗(t, λ0)

(

(C∗ − C)(t) + 2iImλ0W1(t) −In + A∗(t)
In − A(t) 0

)

R(Φ)(t, λ0)

=R(Φ)∗(t, λ0)

(

(C∗ − C)(t) + 2iImλ0W1(t) −In + A∗(t)
E−1(t) 0

)

R(Φ)(t, λ0)

=L(t) + R(Φ)∗(t, λ0)diag{(C∗ − C)(t) + 2iImλ0W1(t), 0}R(Φ)(t, λ0),

(3.24)
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so we have

L(t) = Φ∗(t + 1, λ0)JΦ(t + 1, λ0) − 2iImλ0R(Φ)∗(t, λ0)diag{W1(t), 0}R(Φ)(t, λ0)

− R(Φ)∗(t, λ0)diag{(C∗ − C)(t), 0}R(Φ)(t, λ0).
(3.25)

As a direct conclusion of Lemma 3.2, we have

2iImλ0

t
∑

s=0

R(Φ)∗(s, λ0)W (s)R(Φ)(s, λ0)

=Φ∗(s, λ0)JΦ(s, λ0)|
t+1
0 + i

t
∑

t=0

{

R(Φ)∗(s, λ0)

[

Q∗(s) − Q(s)

i

]

R(Φ)(s, λ0)

}

.

(3.26)

Together with Φ(0, λ0) = I2n, then

Φ∗(t + 1, λ0)JΦ(t + 1, λ0)

=J + 2iImλ0

t
∑

s=0

R(Φ)∗(s, λ0)W (s)R(Φ)(s, λ0)

− i

t
∑

s=0

{

R(Φ)∗(t, λ0)

[

Q∗(s) − Q(s)

i

]

R(Φ)(s, λ0)

}

.

(3.27)

(3) : Determine the limitation of Z(t, λ) as t → ∞.
From (3.12) and (3.22), we know that the second term and the third term of (3.25) tend to zero

as t → ∞. Hence

lim
t→∞

L(t) = J + 2iImλ0V (λ0) − i

∞
∑

s=0

{

R(Φ)∗(t, λ0)

[

Q∗(s) − Q(s)

i

]

R(Φ)(s, λ0)

}

, (3.28)

and with (3.20), so limt→∞ Z(t, λ) = limt→∞ L(t).
(4) : We show that Z−1(t, λ) is bounded on [0,∞).
First, consider detZ(t, λ). From (3.19), we have detR(Φ)(t, λ0) = detE∗(t)detΦ(t+1, λ0). Again

from (3.18) and the above relation as well as Liouville’s formula, i.e., Lemma 3.1, it follows that for
t ∈ [0,∞),

detZ(t, λ) = detR(Φ)∗(t, λ0)det(In − A(t))detΦ(t + 1, λ0)

= detΦ∗(t + 1, λ0)detΦ(t + 1, λ0)

= detΦ∗(0, λ0)detΦ(0, λ0)

= 1.

(3.29)

in which Φ(0, λ) = I2n is used. Hence

Z−1(t, λ) = [detZ(t, λ)]−1AdjZ(t, λ) = AdjZ(t, λ), t ∈ [0,∞), (3.30)

where AdjZ(t, λ) is the adjoint matrix of Z(t, λ). In addition, from (3.12), Z(t, λ) is bounded on
[0,∞), conclude that AdjZ(t, λ) is bounded on [0,∞), so is it for Z−1(t, λ) by (3.30); that is, there
exists a constant M > 0 such that

‖Z−1(t, λ)‖ ≤ M, t ∈ [0,∞), (3.31)

where the norm ‖ · ‖ is defined as in Lemma 3.3.
(5) : Here, we want to show that

∞
∑

t=0

‖P (t, λ)‖1 < ∞, (3.32)

where the norm ‖ · ‖1 is defined as in Lemma 3.3.
It follows from (3.22) that all the diagonal entries of R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) are nonnegative

and absolutely summable over [0,∞), and |tr(R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0))| < +∞. Meanwhile, the
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diagonal entries and the non-diagonal entries satisfy |aij | ≤ aii+ajj , i 6= j. Hence, each non-diagonal
entry of R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) is also absolutely summable over [0,∞) and consequently, it
follows that

∞
∑

t=0

‖R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0)‖ < +∞. (3.33)

so we get from the first term of (3.18)

∞
∑

t=0

|| P (t, λ) || = |λ − λ0|

∞
∑

t=0

‖ Z−1(t, λ)R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) ‖

≤

∞
∑

t=0

‖ Z−1(t, λ) ‖‖ R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) ‖

≤ M

∞
∑

t=0

‖ R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0) ‖

< +∞.

(3.34)

By (2) in Lemma 3.3, (3.32) follows.
(6) : We show that X(t, λ) is bounded on [0,∞). From (3.17) we haveX(t + 1, λ) = [I2n +

P (t, λ)]X(t, λ), which implies that

‖ X(t + 1, λ) ‖1 ≤ (1+ ‖ P (t, λ) ‖1) ‖ X(t, λ) ‖1

≤ (1+ ‖ P (t, λ) ‖1)(1+ ‖ P (t − 1, λ) ‖1) · · · (1+ ‖ P (0, λ) ‖1) ‖ X(0, λ) ‖1

≤ exp

(

t
∑

s=0

‖ P (s, λ) ‖1

)

‖ X(0, λ) ‖1 .

(3.35)

Together with (3.32), implies that ‖ X(t, λ) ‖1 is bounded on [0,∞).
The second part: We show that all solutions of non-symmetric discrete Hamiltonian system

(2.1λ) are in L2
W [0,∞). From the second relation in (3.14) and (3.19), we get

R(Φ)∗(t, λ)W (t)R(Φ)(t, λ)

= X∗(t, λ)R(Φ)∗(t, λ0)W (t)R(Φ)(t, λ0)X(t, λ)

+ X∗(t, λ)R(Φ)∗(t, λ0)diag{W1(t), 0}R(Φ)(t, λ0)△X(t, λ)

+ △X∗(t, λ)R(Φ)∗(t, λ0)diag{W1(t), 0}R(Φ)(t, λ0)X(t, λ)

+ △X∗(t, λ)R(Φ)∗(t, λ0)diag{W1(t), 0}R(Φ)(t, λ0)△X(t, λ).

(3.36)

So, using the boundedness of ‖ X(t, λ) ‖1 and (3.33), we have

∞
∑

t=0

‖ R(Φ)∗(t, λ)W (t)R(Φ)(t, λ) ‖< +∞, (3.37)

consequently, Φ(·, λ) ∈ L2
W [0,∞). Hence, all the solutions of (2.1λ) are in L2

W [0,∞). This completes
the proof. �

Until now, no one is given the limit-circle definition of non-symmetric discrete Hamiltonian
systems. So, we give the definition from the results of this paper as following:

Definition 3.1 Let (3.12) holds in non-symmetric discrete Hamiltonian (2.1). If all the solutions
of (2.1) are in L2

W [0,∞) (in the sense of linear independence), then this system called in limit-circle
case, otherwise called in non-limit-circle case.
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