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Abstract
In this paper we consider the existence of homoclinic solutions for the following
second order non-autonomous Hamiltonian system

q̈ − L(t)q + Wq(t, q) = 0, (HS)

where L(t) ∈ C(R, Rn2
) is a symmetric and positive definite matrix for all

t ∈ R, W (t, q) = a(t)|q|γ such that a : R → R is a bounded continuous func-
tion and may change its sign and 1 ≤ γ < 2 is a constant. Assuming some
reasonable assumptions on L and W , we obtain the existence of nontrivial ho-
moclinic solutions of (HS) by using a standard minimizing argument in critical
point theory. Recent results in the literature are generalized and significantly
improved.

1 Introduction

The purpose of this work is to deal with the existence of homoclinic solutions for the following
second order non-autonomous Hamiltonian system

q̈ − L(t)q + Wq(t, q) = 0, (HS)

where L(t) ∈ C(R, Rn2
) is a symmetric and positive definite matrix for all t ∈ R, W (t, q) =

a(t)|q|γ such that a : R → R is a bounded continuous function and may change its sign
and 1 ≤ γ < 2 is a constant. We say that a solution q(t) of (HS) is homoclinic (to 0) if
q(t) ∈ C2(R, Rn) such that q(t) → 0 and q̇(t) → 0 as t → ±∞. If q(t) 6≡ 0, q(t) is called a
nontrivial homoclinic solution.

The existence of homoclinic solutions for Hamiltonian systems and their importance in the
study of the behavior of dynamical systems have been already recognized from Poincaré [15].
Only more recently such a problem has been studied by using variational methods. Assuming
that L(t) and W (t, q) (not necessarily of the kind W (t, q) = a(t)|q|γ) are independent of t
or T -periodic in t, many authors have studied the existence of homoclinic solutions for the
Hamiltonian system (HS) via critical point theory and variational methods, see for instance
[2, 5, 8, 14, 17] and the references therein and a more general case is considered in the
recent paper [10]. In this case, the existence of homoclinic solutions can be obtained by
going to the limit of periodic solutions of approximating problems. If L(t) and W (t, q)
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are neither autonomous nor periodic in t, this problem is quite different from the periodic
systems, because of the lack of compactness of the Sobolev embedding, see for instance
[1, 4, 6, 11, 13, 18] and the references listed therein for information on this subject. However,
it is worthy of pointing out that to establish the existence of homoclinic solutions of (HS),
all of the papers mentioned above assumed that the potential W (t, q) is positive.

In mathematical physics, it is of frequent occurrence in (HS) that the potential W (t, q)
can change its sign. As far as the authors know, for this case, the existence of homoclinic
solutions for (HS) was only considered in [3, 7, 9, 12]. Supposing that W (t, q) = a(t)V (q)
with a(t) changing sign, in [7], under the conditions that L(t) and a(t) are T -periodic, and
V is homogeneous of degree µ > 2 such that V (q) > 0 for q 6= 0, i.e.,

V (λq) = λµV (q), for all λ ≥ 0, q ∈ Rn,

the authors obtained the existence of one homoclinic solutions of (HS) via the convergence of
subharmonic solutions. In [3], Caldiroli and Montecchiari proved the existence of infinitely
many homoclinic solutions for general periodic potentials W (t, q) (not necessarily of the kind
W (t, q) = a(t)V (q)) under the further conditions that there is (t0, q0) ∈ R × Rn with q0 6= 0
such that

W (t0, q0)− (L(t0)q0, q0) ≥ 0,

and there are two constants θ > 2 and τ < θ
2 − 1 such that

θW (t, q)− (Wq(t, q), q) ≤ τ(L(t)q, q), for all (t, q) ∈ R× Rn.

Here and subsequently (·, ·) : Rn × Rn → R denotes the standard inner product in Rn and
| · | is the induced norm. For the non-periodic case, in [9], on the assumption that W (t, q) =
a(t)V (q) with a(t) changing sign such that there exist η > 2 and b1 > 0 such that

V (q) ≥ b1|q|η, for all q ∈ Rn,

and some other reasonable hypotheses on V , the author obtained the existence of homoclinic
solution for (HS). In [12], under the conditions that there exist ξ > 2, 1 ≤ δ < 2 and b2 ≥ 0
such that

|(Wq(t, ), q)− ξW (t, q)| ≤ b2|q|δ, for all (t, q) ∈ R× Rn,

and there exists a pair (t0, q0) such that |q0| = 1 and

W (t0, q0) >
b2

ξ − δ
,

the authors obtained the same result. However, we must point that all the assumptions
mentioned in the above papers implies that W (t, q) is superquadratic as |q| → ∞.

Motivated by the works mentioned above, in this paper we deal with the case that W (t, q)
can change its sign and is of subquadratic growth as |q| → +∞. We are interested in the case
that (HS) is not periodic and give a new criterion to guarantee that (HS) has one nontrivial
homoclinic solution. Now we state the basic hypotheses on L and W . Suppose that the
symmetric matrix L(t) satisfies

(H1) L(t) ∈ C(R, Rn2
) is a symmetric and positive definite matrix for all t ∈ R and there is a

continuous function α : R → R such that α(t) > 0 for all t ∈ R and
(
L(t)q, q

)
≥ α(t)|q|2

and α(t) → +∞ as |t| → +∞;
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and the potential W (t, q) satisfies the following condition

(H2) W (t, q) = a(t)|q|γ where a : R → R is a continuous function satisfying a(t0) > 0 for

some t0 ∈ R and a(t) ∈ L2(R, R) ∩ L
2

2−γ (R, R), 1 ≤ γ < 2 is a constant.

Remark 1.1 From (H1), we see that there is a constant β > 0 such that(
L(t)q, q

)
≥ β|q|2, for all t ∈ R and q ∈ Rn, (1.1)

and by (H2), we have W is of subquadratic growth as |q| → +∞ and

Wq(t, q) = γa(t)|q|γ−2q. (1.2)

Up to now, we can state our main result.

Theorem 1.1 Suppose that the conditions (H1) and (H2) are satisfied, then (HS) possesses
at least one nontrivial homoclinic solution.

The remainder of this paper is organized as following. In section 2, some preliminary
results are presented. In section 3, we give the proof of Theorem 1.1.

2 Preliminary Results

In order to establish our result via the critical point theory, we firstly describe some properties
of the space on which the variational associated with (HS) is defined. Let

E =
{

q ∈ H1(R, Rn) :
∫

R

[
|q̇(t)|2 +

(
L(t)q(t), q(t)

)]
dt < +∞

}
.

Then the space E is a Hilbert space with the inner product

(x, y) =
∫

R

(
ẋ(t), ẏ(t)

)
+

(
L(t)x(t), y(t)

)
dt

and the corresponding norm ‖x‖2 = (x, x). Note that

E ⊂ H1(R, Rn) ⊂ Lp(R, Rn)

for all p ∈ [2,+∞] with the embedding being continuous. In particular, for p = +∞, there
exists a constant C > 0 such that

‖q‖∞ ≤ C‖q‖, ∀q ∈ E. (2.1)

Here Lp(R, Rn) (2 ≤ p < +∞) and H1(R, Rn) denote the Banach spaces of functions on R
with values in Rn under the norms

‖q‖p :=
(∫

R
|q(t)|pdt

)1/p
and ‖q‖H1 :=

(
‖q‖2

2 + ‖q̇‖2
2

)1/2

respectively. L∞(R, Rn) is the Banach space of essentially bounded functions from R into Rn

equipped with the norm
‖q‖∞ := ess sup {|q(t)| : t ∈ R} .
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Lemma 2.1 ([13], Lemma 1) Suppose that L satisfies (H1). Then the embedding of E in
L2(R, Rn) is compact.

Hereafter, we denote W (t, q) by a(t)|q|γ unless otherwise is specified, i.e., W (t, q) =
a(t)|q|γ . Similar to Lemma 2 of [13], we can get the following result.

Lemma 2.2 Suppose that (H1) and (H2) are satisfied. If qk ⇀ q (weakly) in E, then
Wq(t, qk) → Wq(t, q) in L2(R, Rn).

Proof Assume that qk ⇀ q in E. Then there exists a constant d1 > 0 such that, by
Banach-Steinhaus Theorem and (2.1),

sup
k∈N

‖qk‖∞ ≤ d1, ‖q‖∞ ≤ d1.

Since 1 ≤ γ < 2, by (1.2), there exists a constant d2 > 0 such that

|Wq(t, qk(t))| ≤ d2|a(t)|, |Wq(t, q(t))| ≤ d2|a(t)|

for all k ∈ N and t ∈ R. Hence,

|Wq(t, qk(t))−Wq(t, q(t))| ≤ 2d2|a(t)|.

On the other hand, by Lemma 2.1, qk → q in L2, passing to subsequence if necessary,
which implies qk(t) → q(t) for almost every t ∈ R. Then, using the Lebesgue’s Convergence
Theorem, the lemma is proved. �

Now we introduce more notations and some necessary definitions. Let E be a real Banach
space, I ∈ C1(E, R), which means that I is a continuously Fréchet-differentiable functional
defined on E. Recall that I ∈ C1(E, R) is said to satisfy the (PS) condition if any sequence
{uj}j∈N ⊂ E, for which {I(uj)}j∈N is bounded and I

′
(uj) → 0 as j → +∞, possesses a

convergent subsequence in E.
We obtain the existence of homoclinic solution of (HS) by using a standard minimizing

argument, see Theorem 2.7 in [16].

Lemma 2.3 Let E be a real Banach space and I ∈ C1(E, R) satisfying the (PS) condition.
If I is bounded from below, then

c ≡ inf
E

I

is a critical point of I.

3 Proof of Theorem 1.1

Now we are going to establish the corresponding variational framework to obtain homoclinic
solutions of (HS). Define the functional I : E → R by

I(q) =
∫

R

[1
2
|q̇(t)|2 +

1
2

(
L(t)q(t), q(t)

)
−W (t, q(t))

]
dt

= 1
2‖q‖

2 −
∫

R
W (t, q(t))dt.

(3.1)
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Lemma 3.1 Under the conditions of Theorem 1.1, we have

I
′
(q)v =

∫
R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)
−

(
Wq(t, q(t)), v(t)

)]
dt (3.2)

for all q, v ∈ E, which yields that

I
′
(q)q = ‖q‖2 −

∫
R

(
Wq(t, q(t)), q(t)

)
dt. (3.3)

Moreover, I is a continuously Fréchet-differentiable functional defined on E, i.e., I ∈ C1(E, R)
and any critical point of I on E is a classical solution of (HS) with q(±∞) = 0 = q̇(±∞).

Proof We firstly show that I : E → R. Letting q ∈ E, by (H2) and the Hölder inequality,
we have

0 ≤
∫

R
|W (t, q(t))|dt ≤

∫
R
|a(t)||q(t)|γdt ≤ β

−γ
2 ‖a‖ 2

2−γ
‖q‖γ < +∞. (3.4)

Combining (3.1) with (3.4), we show that I : E → R.
Next we prove that I ∈ C1(E, R). Rewrite I as following

I = I1 − I2,

where
I1 :=

∫
R

[1
2
|q̇(t)|2 +

1
2

(
L(t)q(t), q(t)

)]
dt, I2 :=

∫
R

W (t, q(t))dt.

It is easy to check that I1 ∈ C1(E, R) and

I ′1(q)v =
∫

R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)]
dt. (3.5)

Thus it is sufficient to show that this is the case for I2. In the process we will see that

I ′2(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, (3.6)

which is defined for all q, v ∈ E. For any given q ∈ E, let us define J(q) : E → R as following

J(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, v ∈ E.

It is obvious that J(q) is linear. Now we show that J(q) is bounded. Indeed, for any given
q ∈ E, by (2.1) and (1.2), there exists a constant d3 > 0 (dependent on q) such that

|Wq(t, q(t))| ≤ d3|a(t)|, for all t ∈ R,

which yields that, by (1.1) and the Hölder inequality,

|J(q)v| =
∣∣∣∫

R

(
Wq(t, q(t)), v(t)

)
dt

∣∣∣ ≤ d3

∫
R
|a(t)||v(t)|dt

≤ d3‖a‖2 ‖v‖2 ≤ d3√
β
‖a‖2 ‖v‖.

(3.7)

Moreover, for q and v ∈ E, by the Mean Value Theorem, we have∫
R

W (t, q(t) + v(t))dt−
∫

R
W (t, q(t))dt =

∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt,
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where h(t) ∈ (0, 1). Therefore, by Lemma 2.2 and the Hölder inequality, we have∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt−

∫
R

(
Wq(t, q(t)), v(t)

)
dt

=
∫

R

(
Wq(t, q(t) + h(t)v(t))−Wq(t, q(t)), v(t)

)
dt → 0

(3.8)

as v → 0 in E. Combining (3.7) and (3.8), we see that (3.6) holds. It remains to prove that
I ′2 is continuous. Suppose that q → q0 in E and note that

I ′2(q)v − I ′2(q0)v =
∫

R

(
Wq(t, q(t))−Wq(t, q0(t)), v(t)

)
dt.

By Lemma 2.2 and the Hölder inequality, we obtain that

I ′2(q)v − I ′2(q0)v → 0, as q → q0,

which implies the continuity of I ′2 and I ∈ C1(E, R).
Lastly, we check that critical points of I are classical solutions of (HS) satisfying q(t) → 0

and q̇(t) → 0 as |t| → +∞. We have known that E ⊂ H1(R, Rn) ⊂ C0(R, Rn), the space of
continuous functions q on R such that q(t) → 0 as |t| → +∞ (see, e.g., [17]). Moreover, if q is
one critical point of I, by (3.2), we have that L(t)q(t)−Wq(t, q(t)) is the weak derivative of
q̇(t). Note that L(t) ∈ C(R, Rn2

) and Wq(t, q) = γa(t)|q|γ−2q, we obtain that q ∈ C2(R, Rn),
i.e., q is a classical solution of (HS). Hence, it is easy to check that q satisfies q̇(t) → 0 as
|t| → +∞. �

Lemma 3.2 Under the conditions of (H1) and (H2), I satisfies the (PS) condition.

Proof In fact, assume that {uj}j∈N ⊂ E is a sequence such that {I(uj)}j∈N is bounded and
I
′
(uj) → 0 as j → +∞. Then there exists a constant C1 > 0 such that

|I(uj)| ≤ C1, ‖I ′(uj)‖E∗ ≤ C1 (3.9)

for every j ∈ N.
We firstly prove that {uj}j∈N is bounded in E. By (3.1), (3.9) and (H2), we have

1
2‖uj‖2 = I(uj) +

∫
R

W (t, uj(t))dt

= I(uj) +
∫

R
a(t)|uj(t)|γdt

≤ β
−γ
2 ‖a‖ 2

2−γ
‖uj‖γ + C1.

(3.10)

Since 1 ≤ γ < 2, the inequality (3.10) shows that {uj}j∈N is bounded in E. By Lemma 2.1,
the sequence {uj}j∈N has a subsequence, again denoted by {uj}j∈N, and there exists u ∈ E
such that

uj ⇀ u, weakly in E,

uj → u, strongly in L2(R, Rn).

Hence (
I
′
(uj)− I

′
(u)

)
(uj − u) → 0,
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and by the Hölder inequality and Lemma 2.2, we have∫
R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt → 0

as j → +∞. On the other hand, an easy computation shows that(
I
′
(uj)− I

′
(u), uj − u

)
= ‖uj − u‖2

−
∫

R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt.

Consequently, ‖uj − u‖ → 0 as j → +∞, i.e., I satisfies the (PS) condition. �

Up to now, we can give the proof of Theorem 1.1
Proof of Theorem 1.1 By (3.1) we have, for every m ∈ R \ {0} and q ∈ E \ {0},

I(m q) = m2

2 ‖q‖2 −
∫

R
W (t, m q(t))dt

= m2

2 ‖q‖2 − |m|γ
∫

R
a(t)qγ(t)dt

≥ m2

2 ‖q‖2 − β
−γ
2 |m|γ‖a‖ 2−γ

2
‖q‖γ .

(3.11)

Since 1 ≤ γ < 2, (3.11) implies that I(m q) → +∞ as |m| → +∞. Consequently, I is
a functional bounded from below. By Lemmas 3.2 and 2.3, I possesses a critical value
c = infq∈E I(q), i.e., there is one critical point q ∈ E such that

I(q) = c, I
′
(q) = 0.

On the other hand, by (H2), there exist t1 and t2 such that t1 < t0 < t2 and a(t) > 0 for any
t ∈ [t1, t2]. Take c0 ∈ Rn with |c0| 6= 0, and let ϕ ∈ E be given by

ϕ(t) =

 c0 sin
[

2π
t2−t1

(t− t1)
]
, if t ∈ [t1, t2],

0, if t ∈ R \ [t1, t2],

where −∞ < t1 < t2 < +∞. Then we obtain that

I(m ϕ) =
m2

2
‖ϕ‖2 − |m|γ

∫ t2

t1

a(t)|ϕ(t)|γdt,

which yields that I(m ϕ) < 0 for |m| small enough since 1 ≤ γ < 2, i.e., the critical point
q ∈ E obtained above is nontrivial.

�
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