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Abstract

The exact solution for the shape and gravitational field of a rotating two-layer Maclaurin ellipsoid of

revolution is compared with predictions of the theory of figures up to third order in the small rotational

parameter of the theory of figures. An explicit formula is derived for the external gravitational coefficient

J2 of the exact solution. A new approach to the evaluation of the theory of figures based on numerical

integration of ordinary differential equations is presented. The classical Radau-Darwin formula is found

not to be valid for the rotational parameter ε2 = Ω2/(2πGρ2) ≥ 0.17 since the formula then predicts

a surface eccentricity that is smaller than the eccentricity of the core-envelope boundary. Interface

eccentricity must be smaller than surface eccentricity. In the formula for ε2, Ω is the angular velocity

of the two-layer body, ρ2 is the density of the outer layer, and G is the gravitational constant. For

an envelope density of 3000 kg m−3 the failure of the Radau-Darwin formula corresponds to a rotation

period of about 3 hr. Application of the exact solution and the theory of figures is made to models

of Earth, Mars, Uranus, and Neptune. The two-layer model with constant densities in the layers can

provide realistic approximations to terrestrial planets and icy outer planet satellites. The two-layer model

needs to be generalized to allow for a continuous envelope (outer layer) radial density profile in order to

realistically model a gas or ice giant planet.
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1 Introduction

Kong et al. (2010) have presented an exact theory for the rotational distortion of a rotating two-layer spherical

body with a constant density core surrounded by an envelope (outer layer) with a different constant density.

The solution for the case when the core and envelope have equal densities, the Maclaurin ellipsoids, was

obtained more than 250 years ago and attracted the attention of such notables as d’Alembert, Clairaut, Euler,

Laplace, Legendre, Poisson and Gauss. The solutions are discussed in Chandrasekhar (1969, Ellipsoidal

Figures of Equilibrium) and Lamb (1932, Hydrodynamics). Until the work of Kong et al. (2010), the classical

solution for the constant density Maclaurin ellipsoid had not been generalized to a body with non-uniform

density. Instead, approximate solutions, for bodies with density increasing from the surface to the center,

have been developed by geophysicists interested in the internal structures of the Earth and planets. The

approximate solutions fall under the umbrella of the theory of figures (Zharkov and Trubitsyn, 1978, Physics

of Planetary Interiors) and rely on the smallness of a rotational parameter that measures the distortion

of a rotating body. In this paper we refer to the theory developed by Zharkov and Trubitsyn (1978) for

the shapes of fluid bodies as the theory of figures. The rotational distortions of the Earth and planets are

indeed small, but it is important to accurately determine the small distortions to correctly infer the interior

structures of the bodies. Accordingly, the theory of figures has been developed to high order in the small

rotational parameter.

While the two-layer spherical body with constant core and envelope densities is too simple a model for

the careful study of most planets, the exact solution for the rotational distortion of such a body provides a

benchmark against which the accuracy and range of validity of approximate solutions and numerical models

can be evaluated. In this paper we compare results from the exact solution for the rotating two-layer

Maclaurin ellipsoids to those obtained using the Radau-Darwin approximation and other simplifications

based on the theory of figures. We derive formulae for the rotationally distorted two-layer sphere using the

theory of figures valid to third order in the small rotational parameter and assess these results against the

exact solution. Application of the exact theory is made to the Earth and planets while keeping in mind the

limitations of using a two-layer model to represent these bodies. Both the theory of figures and the exact

theory of Kong et al. (2010) assume hydrostatic equilibrium of the rotating body.

2 Exact Solution for a Rotating Two-Layer Spherical Body

We consider the distortion of a two-layer spherical body rotating with constant angular velocity Ω. The core

has radius r1 and constant density ρ1. The core is surrounded by a spherical shell envelope of outer radius

r2 and constant density ρ2. The exact solution for the distortion is presented in Kong et al. (2010). Here,

we summarize only a few things necessary for making use of the theory. The problem is completely specified
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by three dimensionless parameters, the core-envelope density ratio ρ1/ρ2, the fractional volume of the core

QV = (r1/r2)
3
, and the rotation parameter

ε2 =
Ω2

(2πGρ2)
, (1)

where G is the gravitational constant. Among the quantities derivable from the solution are the eccentricities

of the total (gravity) equipotential surfaces, and, in particular, the eccentricities of the core-envelope interface

and the surface, E1 and E2 , respectively. The total or gravity potential is the sum of the gravitational

potential and the rotational potential. Surfaces of constant total (gravity) potential are shown in Figure 1

for the cases (a) QV = 0.5, ρ1/ρ2 = 2, ε2 = 0.18 and (b) QV = 0.25, ρ1/ρ2 = 2, ε2 = 0.05. The eccentricity

of these total potential isosurfaces is plotted as a function of radius in Figure 2. The eccentricity of total

potential isosurfaces generally decreases inward except for the region of the interface where eccentricity

changes rapidly and non-monotonically. Eccentricity has a local maximum at the interface and a local

minimum in the envelope just above the interface. Eccentricity decreases monotonically with decreasing

radius inside the core; the decrease is very gradual until the center of the core is approached.

The coefficient J2 of the external gravitational field is an important quantity to determine because it

can be measured by a spacecraft flying by or orbiting a planet. For the rotating two-layer body, J2 can be

found from the exact solution by proceeding as follows. In a spherical coordinate system, the axisymmetric

gravitational potential Vg outside a uniformly rotating body can be expanded as

Vg(r, θ) = −GM

r

[
1 − J2

(
Re

r

)2

P2(cos θ) + · · ·

]
, (2)

where M is the mass of the body, P2n are the Legendre polynomials, Re is the equatorial radius of the body,

r is the radial distance from the center of the body (r > Re), and θ is the colatitude of the observation point

with respect to the rotation axis. On the spherical surface r = Re, the expansion becomes

Vg(r = Re, θ) = −GM

Re
[1 − J2P2(cos θ) + · · · ] . (3)

By determining Vg(r = Re, θ) from the exact solution, J2 can be calculated from the projection of the

potential onto the expansion (3).

The gravitational potential expansion in the spheroidal coordinate system employed in the exact solution

is

Vg(ξ, η) = −2πGc22

∞∑
l=0

i(2l + 1)Pl(η)

×
[
Ql(iξ)

∫ ξ

0

∫ 1

−1
[(ξ′)2 + (η′)2]Pl(η

′)Pl(iξ
′)ρ′dη′dξ′

+ Pl(iξ)

∫ ξo

ξ

∫ 1

−1
[(ξ′)2 + (η′)2]Pl(η

′)Ql(iξ
′)ρ′dη′dξ′

]
(4)
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(Kong et al., 2010). In (4), ξ, η are spheroidal coordinates with focal length c2, Pl and Ql are Legendre

functions of the first and second kind, respectively, and i is the square root of −1. In addition ρ′ is the

density as a function of ξ′, η′, and ξo is the value of ξ at the outer free surface. Evidently, we need to make

the transformation from spheroidal coordinates to spherical coordinates before computing Vg(r, θ) from (4).

The relationship between the spherical and spheroidal coordinates is (Kong et al., 2010).

r cos θ = c2
√

(1 + ξ2)(1 − η2), (5)

r sin θ = c2ξη (6)

Taking r = Re and using the fact that c2 = ReE2, we find the transformation in the form

cos θ = E2

√
(1 + ξ2)(1 − η2), (7)

sin θ = E2ξη (8)

Equations (7) and (8) enable us to derive ξ and η as functions of θ

η2 =

√
(1 − E2

2)2 + 4E2
2 cos2 θ − (1 − E2

2)

2E2
2

(9)

ξ2 = η2 +
1

E2
2

− 1 (10)

With (9) and (10), we are able to derive the gravitational potential as a function of the spherical coordinate

θ.

When Vg(r = Re, θ) is available, we project it onto the spherical harmonic expansion to obtain J2. We

expect the expansion in the form

Vg (r = Re, θ) =
∑
l

√
2l + 1

2
ClPl(cos θ), (11)

where

Cl =

√
2l + 1

2

∫ π

0

Vg (r = Re, θ)Pl(cos θ) sin θdθ. (12)

By comparing (11) and (3), we find

1

2
C0 = −GM

Re
(13)

5

2
C2 =

GM

Re
J2, (14)

from which J2 can be simply calculated as

J2 =
−5C2

C0
. (15)
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3 Comparison with the Radau-Darwin Approximation

The Radau-Darwin approximate formula can be used to predict the flattening or eccentricity of the outer

surface of a rotating body (Radau, 1885; Darwin, 1900). The formula relates the normalized axial moment

of inertia C/Ma22 (C is the axial moment of inertia around the rotation axis, M is the total mass of the

body, and a2 is the equatorial radius) to the second degree Love number h2

C

Ma22
=

2

3

[
1 − 2

5

(5 − h2)
1/2

h
1/2
2

]
(16)

(Zharkov and Trubitsyn, 1978). The Love number gives the flattening of the surface f2 = (a2 − c2) /a2 by

f2 =
qh2
2

(17)

(Zharkov and Trubitsyn, 1978), where q is the small rotational parameter

q =
Ω2a32
GM

(18)

The flattening and eccentricity of the surface of the body are related by

f2 = 1 −
(
1 − E2

2

)1/2
(19)

Equations (16)-19) are often used in planetary physics to determine the moment of inertia of a body

whose shape (flattening), rotation rate, mass, and equatorial radius are known. With f2 and q known, (17)

gives h2 and (16) gives C/Ma22. Alternative to the flattening, the gravitational coefficient J2 can be used to

infer the axial moment of inertia since to a first approximation J2 and f2 are related by

f2 =
3

2
J2 +

1

2
m (20)

(Zharkov and Trubitsyn, 1978), where m is the small rotational parameter given by

m =
Ω2s32
GM

(21)

and s2 is the mean radius of the body (the radius of a spherical body with the same volume as the rotationally-

distorted body). The Radau-Darwin formula can be rewritten in terms of J2 and m by using (17) and (21)

to eliminate h2.

The Radau-Darwin formula can be used to predict the flattening or eccentricity of the surface of the

rotating two-layer spherical body and the result compared with the value of the eccentricity from the exact

solution of Kong et al. (2010). The normalized moment of inertia of a two-layer sphere is

C

Mr22
=

2

5

[
ρ1
ρ

+
(ρ1 − ρ2)

ρ

(
r1
r2

)5
]

(22)
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This can be rewritten in terms of the dimensionless variables that characterize the solution of Kong et al.

(2010) as

C

Mr22
=

2

5

[(
1 +Q

5/3
V

){
QV +

(1 −QV)

ρ1/ρ2

}−1
−Q

5/3
V

{
1 −QV +

(
ρ1
ρ2

)
QV

}−1]
(23)

Given QV and ρ1/ρ2, the dimensionless moment of inertia is calculated from (23), and h2 follows from (16).

The flattening and eccentricity of the model surface is then obtained from (17) and (19).

Table 1 compares the exact solution for the eccentricities of the interface E1 and surface E2 (evaluated

using the theory of Kong et al. (2010)) with the eccentricity of the surface from the Radau-Darwin formula

ER−D2 for the case QV = 0.5 and ρ1/ρ2 = 2 for different values of the rotation parameter ε2. The agreement

between the approximate and exact solutions is quite good in this case for all the rotation rates considered.

Strictly speaking, the Radau-Darwin approximation can be said to be invalid for values of ε2 > 0.17 since

the Radau-Darwin formula predicts surface eccentricities less than the interface eccentricities, when in fact,

the interface eccentricity should be less than the surface eccentricity. That this is the case can be quali-

tatively understood by considering the flattening of a rotating sphere of uniform density ρ. The flattening

is proportional to ρ−1. In a body that has density increasing with depth, the flattening or eccentricity of

equipotential surfaces should accordingly decrease with depth.

4 Comparison with the Theory of Figures for the Generalized

Roche Model

The generalized Roche model is a special case of the two-layer model of this paper in which the envelope

density ρ2 = 0 . An analytic formula for the flattening of total potential isosurfaces, correct to second order

in the rotational parameter m, is given in Zharkov and Trubitsyn (1978). (We also derive this formula later

in Section 5.8.1, which discusses the generalized Roche model from our perspective on the theory of figures.)

The flattening of the surface according to this formula fToF2 is given by

fToF2 =
1

2
m

(
1 +

3

2
β5
C

)
+

1

8
m2

(
β5
C +

20

7
β8
C − 33

28
β10
C

)
(24)

where βC = r1/r2 = Q
1/3
V . The rotation parameter m is defined in (21)for s2 = r2. It is related to the

parameters of the exact theory by

m =
3 (ε2ρ2)

2QVρ1
(25)

where ε2ρ2 is independent of ρ2 (see (1)). The flattening of the interface according to the second order theory

of figures ToF is

fToF1 =
5

4
mβ3

c +
75

224
m2β6

c (26)

Equation (26) follows from (58) and (87) and (91) with β = βc in the expressions for F1 and F2.
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Table 2 compares the eccentricity of the surface and the interface of several models computed using the

exact theory with values obtained from (24) and (26) for the generalized Roche model with the help of (19)

to convert to the eccentricity EToF
2 . For the exact theory we consider the sequence of values of ρ2/ρ1 equal

to 10−2, 10−3, and 10−4 to compare with the Roche model result that takes ρ2 = 0. For the cases considered

in the table the theory of figures to second order in m only slightly underestimates the surface and interface

eccentricities.

A formula for the surface flattening correct to third order in m is given by combining f (βc) from (26)

with F31 given by (92).

5 First-Order Theory of Figures for Synchronous Rotation and

Tides

The theory of figures dates back to Clairaut, who in 1743 derived an integrodifferential equation for the

flattening of a rotating body in hydrostatic equilibrium (HE), but with a non-uniform density distribution

in the interior (Kaula, 1968). Clairaut’s theory represents a first order perturbation theory to a non-rotating

spherical configuration with arbitrary density distribution in layers, the level surfaces, or the surfaces of

constant total potential, the sum of the gravitational potential and the non-inertial centrifugal potential

(zero in the spherical configuration). The small rotational parameter m for the perturbation theory is

related to the body’s rotation period P , its mean radius R, and its total mass M by

m =

(
2π

P

)2(
R3

GM

)
(compare (21)) (27)

where G is the gravitational constant given by (6.674215 ± 0.000092) × 10−11 m3 kg−1 s−2 (Gundlach and

Merkowitz, 2000). Often, the combination GM is known from orbital dynamics to greater accuracy than G

itself, and the total mass is a derived parameter given by GM/G, accurate to essentially the same fractional

error as G, or 14 parts per million. The mean radius R (also denoted by s2 in (21)) is the radius of a uniform

sphere equal in density to the planet’s mean density ρ0 or,

ρ0 =
3 (GM)

4πGR3
(28)

The flattening f is defined in terms of the equatorial radius a and polar radius c by,

f =
a− c

a
(29)

In the first order Clairaut theory, the rotating mass configuration consists of continuous layers of concentric

ellipsoids of revolution, each with its own density and flattening. The configuration is defined in terms of

a single variable, the normalized mean radius β = s/R, which labels the level surfaces. The actual mean
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radius s, in metric units, can always be recovered by multiplying β by the given mean radius R of the planet.

The density ρ(β) of a particular level surface can also be normalized to the given mean density, so that

δ(β) = ρ(β)/ρ0.

For perturbations of higher order than the first, these definitions can all be retained. However, the level

surfaces are no longer ellipsoids of revolution. Even so, the radius r of a particular level surface can be

expressed in terms of the mean radius s by a distortion to the usual polar coordinate equation for an ellipse.

For the third order theory, the radius r can be expressed as a function of the polar angle θ (colatitude), the

flattening f , and two higher-order, spheroidal shape parameters k and h, as follows (Zharkov and Trubitsyn,

1978).

r (θ) = a

[
1 − f cos2 θ −

(
3

8
f2 + k

)
sin2 2θ +

1

4

(
1

2
f3 + h

)(
1 − 5 sin2 θ

)
sin2 2θ

]
(30)

It is convenient to express the radius in terms of µ, the cosine of θ. Then the mean radius is given by

the integral

s3 =
1

2

∫ 1

−1
r3 (µ) dµ (31)

and the expression for the radius becomes

r = Rβ

∞∑
i=0

a2iµ
2i (32)

Consistent with (30) and (31), the coefficients to third order are

a0 =

(
1 +

1

3
f +

2

9
f2 +

14

81
f3 +

8

15
k +

26

105
h+

16

63
fk

)
a2 = −

(
f +

11

6
f2 +

49

18
f3 + 4k + 4h+

28

15
fk

)
a4 =

3

2

(
f2 +

10

3
f3 +

8

3
k + 6h+

8

9
fk

)
a6 = −5

2

(
f3 + 2h

)
(33)

This is an alternating series that converges absolutely, and the error in the partial sum is less than the

absolute value of the next term in the series.

Equation (32) is fundamental to the theory of figures. With it, a coordinate transformation between

Cartesian coordinates (x,y,z) and generalized coordinates (β, φ, µ) can be defined by

x = r cosφ
√

1 − µ2

y = r sinφ
√

1 − µ2

z = rµ (34)

Because of axial symmetry, the azimuthal coordinate φ can be integrated out of the problem immediately.

The series coefficients a2i are functions of β only, by means of the shape functions f ,k,h. The differential

volume element dτ can be found from the Jacobian determinant of the transformation.
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For example, after integrating for the coordinates φ and µ, the gravitational coefficients Jn in the external

gravitational potential are given by Zharkov and Trubitsyn (1978),

Jn = −
∫
δ (β)βnPn (µ) dτ = −

∫ 1

0

δ (β) d
[
βn+3φn (β)

]
, (35)

where Pn is the Legendre polynomial of degree n. The functions φn are derived in A to third order by means

of a definite integral in µ from minus one to plus one. The only integral that remains in (35) for further

evaluation is the integral in β, which depends on the given density distribution δ(β).

Similarly, the principal moments of inertia, C along the polar axis, and A along an equatorial axis, can

be expressed as third-order series. All quantities are thereby normalized to the total mass M and powers of

the mean radius R, so that the external gravitational potential function V is expressed as

V =
GM

r

[
1 −

∞∑
i=1

(
R

r

)2i

J2iP2i (µ)

]
(36)

The measured gravitational coefficients J2i can be determined from orbital dynamics, as is GM . They are

most often referred to a reference value for the equatorial radius aref . However, they can be referred to R by

multiplying each observed value of degree 2i by (aref/R)2i, consistent with the computed values from (35).

The usefulness of the theory of figures is that a reasonable density distribution δ(β) can be found that

minimizes the weighted sum of squares WSOS for the measured coefficients, the method of weighted least

squares. The minimization function in terms of the observed coefficients Ĵ2i, along with their standard errors

σ2i, and the computed values J2i from (35) is

WSOS =

∞∑
i=1

(
Ĵ2i − J2i
σ2i

)2

(37)

If the orbital dynamics is limited, such that there are strong correlations among the coefficients, the mini-

mization can be generalized to include the covariance matrix Γ for the Ĵ2i from the analysis of the orbital

data. The residuals Ĵ2i− J2i are placed in a column matrix z and WSOS is defined by the matrix operation

zTΓ−1z, with zT the transpose of z.

In principle the theory can be extended to arbitrary order in the small rotational parameter m. However,

it becomes quite cumbersome for orders greater than three. Nevertheless, all expressions required for a

fifth-order theory have been published by Zharkov and Trubitsyn (1976). In the fifth-order theory the radius

r is still normalized to the mean radius s, but (32) is replaced by the following Legendre series, valid to

arbitrary order n

r

s
= 1 +

n∑
j=2

s0jm
j +

n∑
j=1

mjs2jP2j (µ) (38)

This expression can be substituted into (31) and expanded in a power series in m to order n. Then coefficients

of mi for powers of i greater than or equal to 2 can be set to zero. This yields n− 1 equations in the n− 1
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coefficients s0j , which can all be evaluated. For example, at fifth order the values are

s02 = −1

5
s22

s03 = − 2

105
s32

s04 = − 1

315

(
35s24 + 18s22s4

)
s05 = − 2

17325

(
33s52 + 250s2s

2
4

)
(39)

A substitution of the s0j values so determined into (38) yields the nth order expression for r/s, comparable

to (32), the third-order expression in the spheroidal functions f , k, and h. The parameter s2 in (38) and

(39) is not the mean radius parameter used in (21).

The easiest way to compare the theory with observation is to refer the measured gravitational harmonics

to the mean radius of the planet. The advantage is that (35) directly represents what is being measured.

However, the mean radius of a planet depends on its rotation period, which is not always known, and which

may not even be constant throughout the interior. In this sense, the measured equatorial radius is a more

fundamental observational constraint. Therefore, when the measured Jn are referred to the equatorial radius,

the theoretical values given by (35) must be multiplied by the ratio (s/a)n. This ratio can be found from

the inverse of the expression for r/s, with µ set equal to zero. With this approach, care is required in order

to make sure that higher order terms in (s/a)n do not enter into the theoretical expression for Jn and bias

it. Furthermore, this is true in general. If one is computing a first-order Clairaut spheroid, it is important

to make sure the series are always strictly truncated at first order. The same can be said for a second-order

Darwin spheroid, or to any spheroid of arbitrary order n.

5.1 The Level Surfaces

The application of (35) requires that the functions s2j(β), or alternatively f(β), h(β), and k(β) in the

expression for r/s of (32), be found for a given interior density distribution, expressed in terms of the

normalized density δ(β). This is accomplished by finding the level surfaces on which the interior gravitational

potential is a constant. The interior potential at a normalized mean radius β is determined by the amount

of mass interior to the level surface, an integral over the volume from zero to β, plus the amount of mass

exterior to the level surface, an integral from β to one. Let the gravitational moments of the mass lying

internal to β be given by S2j(β). The normalized potential V0 from the mass interior to β is given by the

expansion of s/r in Legendre polynomials. We illustrate this procedure for the spheroidal functions to order

three. The more general procedure for the s2j functions to arbitrary order is similar.

The first step is to invert the expression for r/s in (32) and expand it in a series to order three in the

small rotational parameter m. The result is a function in even powers of µ. Next, the Legendre polynomials
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in µ can be inverted to any arbitrary degree to obtain powers of µ in terms of the polynomials. For third

order in m the result is

µ2 =
1

3
[1 + 2P2 (µ)]

µ4 =
1

35
[7 + 20P2 (µ) + 8P4 (µ)]

µ6 =
1

231
[33 + 110P2 (µ) + 72P4 (µ) + 16P6 (µ)] (40)

The next step in the procedure is to substitute the powers of µ given by (40) into the series for s/r. The

result is an expansion of s/r in a series of Legendre polynomials in the form

V0 =
s

r
=

n∑
j=0

C0
2jP2j (µ) (41)

For the spheroidal functions, the coefficients C0
2j can be written as

C0
0 = 1 +

8

45
f2 +

584

2835
f3 +

64

315
fk

C0
2 =

2

3
f +

31

63
f2 +

76

189
f3 − 2

21
h+

8

21
k +

88

315
fk

C0
4 = − 4

35
f2 − 172

1155
f3 − 192

385
h− 32

35
k − 416

1155
fk

C0
6 =

8

231
f3 +

80

231
h− 128

231
fk (42)

This completes the expansion for the zero-degree gravitational moment S0, which is basically a mass function

given by

S0 =
3

β3

∫ β

0

z2δ (z) dz (43)

For any interior density distribution given by δ(β), the function S0 must be equal to one at the surface of

the planet, where β is equal to one. Otherwise the interior model will not be consistent with the observed

mass and mean radius.

In general, the gravitational moments S2i are included in the level-surface theory by series expansion in

powers of the inverted r/s in (41) times the appropriate higher-degree Legendre polynomial, as follows

Vi =
(s
r

)2i+1

P2i (µ) i = 0, 1, 2, · · ·, n (44)

The series expansion to order m for a particular degree 2i is carried out to order n − i. The powers of µ

given by (40) are substituted into the series for Vi. The result is an expansion in Legendre polynomials that

can be written

Vi =

n∑
j=0

Ci2jP2j (µ) i = 0, 1, 2, · · ·, n (45)

The evaluation of the coefficients Ci2j for the spheroidal functions is given in A for orders 1, 2 and 3. The

coefficients for order zero are given by (42).
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The gravitational moments S′2i for the potential exterior to the level surface labeled by β require potential

functions V ′i , which are defined by

V ′i =
(r
s

)2i
P2i (µ) i = 0, 1, 2, · · ·, n (46)

After similar expansion in powers of m as for Vi, the potentials for mass between β and the surface at β = 1

can be expressed in terms of coefficients Ci′2j by

V ′i =

n∑
j=0

Ci′2jP2j (µ) i = 0, 1, 2, · · ·, n (47)

The coefficients Ci′2j are given to third order in A.

So far we have been concerned with the expansion of the internal gravitational potential to order n in a

series of Legendre polynomials of degree 2n in the general coordinate µ. However, the planet is in rotation

about its principal axis of maximum moment of inertia, the z axis. In this rotating non-inertial coordinate

system the planet deviates from a sphere because of a centrifugal force generated by a rotation in inertial

space, a rotation with respect to the “fixed stars”. Relativistic corrections to this Newtonian model are

ignored in the theory of figures for planets. Therefore the centrifugal force per unit mass can be represented

by the following potential function Vrot

Vrot =
1

2

(
2π

P

)2

r2 sin2 θ (48)

This potential function can be made consistent with the gravitational potentials Vi and V ′i by replacing the

period P by the smallness parameter m according to (27), by replacing µ by the Legendre polynomial P2

according to (40), and by normalizing to the gravitational potential GM/R at the surface. The result is

(Zharkov and Trubitsyn, 1978)

Q =
1

3
m
(r
s

)2
[1 − P2 (µ)] (49)

The centrifugal potential Q can be expanded to arbitrary order by means of (38) or to third order by (32).

The third order coefficients corresponding to the third order coefficients for Vi and V ′i are

Q0 = m

(
1

3
+

4

45
f +

2

189
f2 +

16

315
k

)
Q2 = −m

(
1

3
+

20

63
f +

38

189
f2 +

16

45
k

)
Q4 = m

(
8

35
f +

76

231
f2 +

32

55
k

)
Q6 = −m

(
32

231
f2 +

64

231
k

)
(50)

The small rotational parameter m enters explicitly in the theory of figures by means of the centrifugal

potential Q.

12



All the coefficients derived so far can be collected into complete expressions for the internal potentials

Ai on the level surface labeled by β. These potentials to arbitrary order can be written as

Ai =

n∑
j=0

(
Ci2jS2j + Ci′2jS

′
2j

)
+Qi i = 0, 2, 4, · · ·, 2n (51)

The gravitational moments can be written in terms of the following integrals (Zharkov and Trubitsyn, 1978)

Si =
1

βi+3

∫ β

0

δ (z) d
[
zi+3φi

]
S′i = βi−2

∫ 1

β

δ (z) d
[
z2−iφ′i

]
(52)

The functions φi and φ′i represent the integral of the gravitational moments over µ as follows

φi =
3

2 (i+ 3)

∫ 1

−1
Pi (µ)

(r
s

)i+3

dµ i = 0, 2, 4, · · ·, 2n

φ′i =
3

2 (2 − i)

∫ 1

−1
Pi (µ)

(r
s

)2−i
dµ i = 0, 2, 4, · · ·, 2n (53)

When i is equal to 2, the integration for φ′2 must be carried out as a special limiting case. The integral is

φ′2 =
3

2

∫ 1

−1
P2 (µ) ln

(r
s

)
dµ (54)

The functions under the integrals for φi and φ′i can be expanded to arbitrary order in m and integrated.

The results to order three are given in A. Results to order 5 by means of (38) are given by Zharkov and

Trubitsyn (1976).

Evaluations of A0, A2, A4 and A6 are given in Appendix B. In order that the potential be a constant

on level surfaces, all potentials of order greater than zero must be zero. This means that any Ai with i

equal to 2 or greater can be multiplied through by a constant. It also means that A2 can be used to solve

for m, as it appears explicitly in Q2. By substituting this value of m into the higher-degree potentials, A4,

A6 and higher, they can be simplified. They do not contain m explicitly. A0 is the only potential function

that is not zero. For this reason it represents the total internal potential at normalized mean radius β, with

the centrifugal term included in the potential. It is the potential that enters in the equation of HE. The

pressure p(β) on a level surface and the total gravitational potential U(β) can be normalized by the following

relations involving the given mass M and mean radius R for the planet

χ (β) =
Rp (β)

GMρ0

A0 (β) =
RU (β)

GM
(55)

In terms of these normalized variables, the equation of HE in the interior is given by Zharkov and Trubitsyn

(1978)

dχ

dβ
= δ

d
(
β2A0

)
dβ

(56)
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5.2 Solution to the Level-Surface Problem

The objective of a solution to the level-surface problem is to find the gravitational moments and the shape

of the planet at its surface, and to compare the theoretical result with what is observed for the surface shape

and external gravitational field. This result depends on the interior normalized density distribution δ(β),

which can be a given function, as in the two-zone model treated here, or it can be obtained from a known

equation of state (EOS) by including (56) in the solution of the overall problem. When the EOS is given for

the internal material as a function χ(δ), most likely in zones, the following differential equation for δ can be

included in the solution for the theoretical interior model(
dχ

dδ

)
dδ

dβ
= δ

d
(
β2A0

)
dβ

(57)

This suggests that it might be useful to have the level-surface problem not in the form of integrodifferential

equations, but in the form of differential equations only. An advantage of this approach is that a numerical

solution to a set of differential equations (ODE) can be carried out to high precision, in fact to far more pre-

cision than needed to justify the accuracy of the observational constraints on a static model. An alternative

method used in a previous paper (Anderson and Schubert, 2007) can cause precision problems. The method

expresses the shape coefficients f , k and h, or s2i, as polynomials in β, and forces the polynomial coefficients

to satisfy the equations A2i = 0. The problem with this approach is that a finite number of polynomial

coefficients can never be found that satisfy the equations everywhere on the interval 0 ≤ β ≤ 1. Numerical

compromises must be made in order to satisfy the equations on average over the interval. With the ODE

approach, the solution for the shape parameters can be automated.

Using this ODE approach, we first express the shape coefficients as power series in the small rotational

parameter m. We illustrate the method for f , k and h, and use it for the two-zone model, but it can be

extended to higher orders as well. The three spheroidal functions can be written as

f(β) = mF1(β) +m2F2(β) +m3F3(β)

k(β) = m2K2(β) +m3K3(β)

h(β) = m3H3(β) (58)

The first step in the procedure is to substitute these expressions for f , k and h into the functions φ2i and

φ′2i given in Appendix C and to drop terms of order higher than three. The next step is to substitute the

resulting power series into the expressions for S2i and S′2i given by (52). Finally substitute the resulting

gravitational moments and the shape functions f , k and h into the expressions for A2, A4 and A6 given in

Appendix B. Then expand to order three in m. This completes the setup of the level-surface problem for

the ODE approach.

The lowest-order level-surface potential is A2 to the first order in m. Call it A21. It is obtained as the
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coefficient of m for A2 from the setup of the problem. It can be written as

A21 = −1

2
+ S0F1 (β) − 3

5

∫ 1

β

δ (z)F ′1 (z) dz − 3

5β5

∫ β

0

z4δ (z) (5F1 (z) + zF ′1 (z)) dz = 0 (59)

where S0 can be evaluated by the integral of (43). Differentiate A21 once with respect to β to obtain

A′21 =
3

β6

∫ β

0

z4δ (z) [5F1 (z) + zF ′1 (z)] dz − 1

β
S0 [3F1 (β) − βF ′1 (β)] = 0 (60)

Multiply this derivative by β6 and differentiate once again. The result is

(
β6A′21

)′
= 6β4δ (β) [F1 (β) + βF ′1 (β)] − β4S0

[
6F1 (β) − β2F ′′1 (β)

]
= 0 (61)

This last equation (61) is Clairaut’s differential equation for the flattening function. However, the first two

equations contain integrals that are not known, and they will enter into higher-order ODE. Therefore, we

solve for the two integrals from the two equations (59) and (60) and at the same time solve for the second

derivative of F1 from the third equation (61). This establishes a procedure for all higher orders. The result

is

∫ β
0
z4 δ (z) [5F1 (z) + zF ′1 (z)] dz = β5S0F1 (β) − 1

3
β6S0F

′
1 (β)∫ 1

β
δ (z)F ′1 (z) dz = −5

6
+

2

3
S0F1 (β) +

1

3
βS0F

′
1 (β)

F ′′1 (β) =
6

β2
F1 (β) − 6

β2

(
δ (β)

S0

)
F1 (β) − 6

β

(
δ (β)

S0

)
F ′1 (β) (62)

The ODE in (62) can be solved for F1 and F ′1 and the result can be substituted into the two integrals. The

solution to the ODE to first order in m and the corresponding two integrals are now available for higher

order ODE. The boundary conditions on the solution are discussed in section 5.3 and they are applied to

the two-zone model in section 5.6. Note that the density function that completely determines F1 is given by

the ratio δ/S0.

The next function for consideration is K2. It is derived from the coefficient A42 of m2 in A4. This

time A42 is divided by β2 and differentiated. Then the result of that first differentiation is multiplied by

β10 and differentiated once more. This establishes the procedure for all the shape functions. When A6 is

involved, it is divided by β4 and differentiated. Then the result of that differentiation is multiplied by β14

and differentiated once more. The procedure can in principle be carried to higher orders. For each shape

function, three equations are solved for two unknown integrals and the second derivative of that particular

shape function. The sequence of steps for deriving the ODE is F1, K2, F2, H3, K3, F3, and so forth. The

result can be expressed as a nonlinear homogeneous differential equation plus a function of β that is built
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up by means of the sequence of derivations. We express the ODE in the form

β2F ′′i + 6β

(
δ

S0

)
F ′i − 6

(
1 − δ

S0

)
Fi = G2i i = 1, 2, 3

β2K ′′i + 6β

(
δ

S0

)
K ′i − 2

(
10 − 3

δ

S0

)
Ki = G4i i = 2, 3

β2H ′′i + 6β

(
δ

S0

)
H ′i − 6

(
7 − δ

S0

)
Hi = G6i i = 3 (63)

These equations differ in form because of the way k and h are defined in (30). The functions Gji are given

in Appendix D.

5.3 General Boundary Conditions

The derivatives of the shape functions at the surface where β is equal to one can be found sequentially,

similar to the technique for finding the ODE. For the function F1, the potential A21 is multiplied by β5 and

differentiated. This is done for A22 and A23 as well. For A42 and A43 the multiplier before differentiation

is β7, and for A63 it is β9. The resulting derivatives are evaluated for β equal to one. Consequently, the

integral with limits of integration from β to one is set to zero. The integral representing S0 is evaluated at

the surface such that S0 is equal to one. The second derivatives are eliminated by substitution of the ODE,

again evaluated at the surface. The resulting first derivatives of the potential functions multiplied by the

appropriate βi can be set to zero and all the derivatives of the shape functions at the surface boundary can

be found sequentially. As a result, the surface boundary conditions are given by

F ′11 =
5

2
− 2F11

K ′21 =
25

16
− 5

4
F11 − 4K21

F ′21 = − 5

12
+

19

42
F11 +

1

3
F 2
11 − 2F21 +

8

7
K21

H ′31 =
25

8
+

15

4
F11 − 5F 2

11 − 6H31 − 2K21

K ′31 = −25

24
+

25

168
F11 +

137

168
F 2
11 −

5

4
F21 +

12

11
H31 +

904

231
K21 −

524

231
F11K21 − 4K31

F ′31 =
155

72
− 143

84
F11 −

47

147
F 2
11 +

7

9
F 3
11 +

19

42
F21 +

2

3
F11F21 − 2F31 −

92

77
H31

−68

11
K21 +

22

2695
F11K21 +

8

7
K31 (64)

This gives the derivatives of the shape functions at the surface. One more set of boundary conditions

is needed for a unique solution to the ODE, and hence for a unique interior model for a given density

distribution δ(β), or for a unique EOS that can be integrated by (57) to yield a unique density distribution.

One approach is to iterate on the surface functions, which must satisfy the boundary conditions given by

(64), until finite functions are obtained at the origin. However, this iterative process can be tedious. An
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alternative, which we adopt here, introduces a constant-density core into the interior density distribution.

The core radius βC can take on any value in the interval 0 < βC ≤ 1, and in principle it can be arbitrarily

small. However, as the core radius approaches zero, the numerical precision required to evaluate the shape

functions at the core boundary becomes arbitrarily large. For every model, there is a practical lower limit

to the core radius βC . We illustrate this method of a core plus overlying envelope in Sec. 5.6.

5.4 Calculation of the Normalized Pressure in the Interior

To the first order in m, the pressure depends only on the density distribution. The differential equation for

χ is simply (Zharkov and Trubitsyn, 1978)

dχ

dβ
=

[
−S0 +

2

3
m

]
βδ (β) (65)

The boundary condition for a solution to (65) is that χ is equal to zero at β equal to one. The density

distribution can be piecewise continuous, as in the two-zone model considered here. However, the pressure

and gravitational potential must be continuous over a density discontinuity. This implies that the spheroidal

functions f , k and h (or the s2i functions) and their first derivatives must be continuous throughout the

interior. In addition, the derivative dδ/dβ must be less than or equal to zero throughout the interior, so

that the density either remains constant (incompressible material) or increases with depth. Also δ(β) must

satisfy the boundary condition that the gravitational moment S0 as given by (43) must be equal to one at the

planet’s surface. The surface is defined such that all the planetary mass is contained within the outermost

level surface with β equal to one. Even so, the pressure and the density can be made to match a model

atmosphere. The atmosphere is a part of the total mass. In that sense, it is more realistic to define the

surface at the 100 mbar level in the atmosphere, near the top of the troposphere, not at a more standard

one-bar level. Nevertheless, the one-bar level is an acceptable approximation to the surface. At least this

approximation avoids the complication of treating the atmosphere as a separate zone in the level-surface

computation. There is something to be said for separating the atmospheric modeling from the interior

modeling, and simply making sure the two are consistent at the one-bar level. For one thing, the atmosphere

is not static, but is dominated by observed zonal flows for all four giant planets in the solar system. The

theory of figures is a static equilibrium theory. A level surface of one bar in the atmosphere is stretching

the static assumption as it is. It is a reasonable level to stop the interior modeling. In order that both the

density and the pressure go to zero at the surface, the density must go to zero at the surface. This introduces

another constraint on the interior density distribution. A separate constraint is that the derivative of the

density distribution at the surface is equal to the derivative in the atmosphere at the one bar level. With

the inclusion of the constraint on S0 previously mentioned, this results in a total of three constraints on

the interior density distribution. Physically, these three constraints mean that the total mass of the model
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is equal to the measured total mass of the planet, and that the interior density distribution matches the

density distribution in the atmospheric model at the one-bar level.

By means of the derivation of the ODE for the shape functions in the interior, it is straightforward

to derive the second and third order terms in the differential equation for the pressure. All the integrals

necessary for an evaluation of A0 are available from the derivation of the ODE. The first order term in

(65) contains only zero-order shape functions. Similarly, the second order terms in the derivative of β2A0

contains only first order terms in the shape functions. The right side of (56) can be expanded in powers of

m, and each order can be integrated separately for purposes of obtaining the normalized pressure χ (β) =

χ0 (β) +mχ1 (β) +m2χ2 (β) +m3χ3 (β) to third order. The four functions for the integrations are given by

d
(
β2A00

)
dβ

=−βS0

d
(
β2A01

)
dβ

=
2

3
β

d
(
β2A02

)
dβ

=
8

45
β (2F1 + βF ′1) +

4

45
βS0

(
5F 2

1 + 2βF1F
′
1 + β2F ′21

)
d
(
β2A03

)
dβ

=− 8

135
β
[
5F 2

1 − 6F2 + 2βF1F
′
1 + β

(
βF ′21 − 3F ′2

)]
+

4

2835
βS0

(
385F 3

1 + 231βF 2
1F
′
1

)
+

24

2835
β2S0F

′
1

[
21F2 + 12K2 + β

(
2βF ′21 + 21F ′2 + 12K ′2

)]
+

24

2835
βS0F1

[
105F2 + 60K2 + β

(
25βF ′21 + 21F ′2 + 12K ′2

)]
(66)

The pressure can be found by multiplying the four derivatives in (66) by the normalized density δ (β) and

integrating, with the boundary condition χ (1) equal to zero.

The method described here can be applied to the simple case of a planet made up of incompressible

material in HE. The normalized density is a constant equal to one, and the zero degree gravitational moment

S0 is also a constant equal to one. The ODE simplify considerably, but that fact can be ignored, and our

general numerical procedure can be applied to the constant-density case. As a result, the numerical solution

to the ODE yields the result

f=
5

4
m

(
1 +

15

56
m+

925

1568
m2

)
k=0

h=0 (67)

The normalized axial moment of inertia C/Ma2 for this configuration is equal to 2/5, independent of m.

A numerical integration of the four pressure functions in (66), with δ (β) equal to one, yields the following

18



result for the normalized pressure

χ =
(
1 − β2

)(1

2
− 1

3
m− 41

72
m2 − 1235

2268
m3

)
(68)

In the above, the real numbers returned by the numerical integration have been replaced by nearby rational

numbers with small denominator. This has only been done in (68).

The next simplest density distribution is the linear distribution. Because it implies compressible material,

it is a far better approximation to a real planet than the constant-density model. The normalized density δ (β)

is equal to 4 (1 − β). For purposes of applying our numerical procedure, we introduce a core of normalized

radius βC equal to 0.05. The normalized constant density in the core is equal to 3.85. The gravitational

moment S0 in the envelope is equal to 4 − 3β. In this model, there is a negligible fractional core mass equal

to 77/160000. The numerical integration is carried out in the envelope over the interval 0.05 ≤ β ≤ 1.

5.5 Calculation of the Coefficients Jn in the Exterior Gravitational Potential

The solution to the differential equations to third order in the small rotational parameter m yields the six

shape functions F1, F2, F3, K2, K3, H3. If good observations of the shape of the planet are available, such as

for the Earth, these shape functions can be used directly to constrain the envelope density δE . However, for

the outer planets, the measured zonal gravitational coefficients J2, J4 and J6 provide far better constraints

on δE . The calculated values of the three coefficients are given by (35).

The procedure for finding values of the gravitational coefficients in terms of the shape functions is to first

express the coefficients as a truncated power series in m according to

J2=mJ21 +m2J22 +m3J23

J4=m2J42 +m3J43

J6=m3J63 (69)

Next we recognize that the coefficients, when referenced to the equatorial radius a, are proportional to the

gravitational moments Sn by

Sn =
(a
s

)n
Jn (70)

and where, from (32) with µ set equal to zero

a

s
= 1 +

1

3
f +

2

9
f2 +

14

81
f3 +

26

105
h+

8

15
k +

16

63
fk (71)

Substitute (70) into the expressions for the potential functions A2,A4,A6 given respectively by (107), (109),

(110), and evaluate at the surface. Use the truncated series of (69) for the Jn and the similar series for the

shape functions given in (58). The functions S′n are all zero at the surface. Expand to order three in m.

Since all the coefficients of powers of m are zero, this process yields six equations which can be solved for
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the six Jn functions in terms of the six shape functions from the differential equations, again evaluated at

the surface. The result is

J21=−1

3
+

2

3
F11

J22=
2

21
F11 −

1

3
F 2
11 +

2

3
F21 +

8

21
K21

J23=− 11

147
F 2
11 +

2

21
F21 −

2

3
F11F21 +

2

3
F31 −

2

21
H31 −

16

105
K21 +

40

147
F11K21 +

8

21
K31

J42=
4

7
F11 −

4

5
F 2
11 −

32

35
K21

J43=−22

49
F 2
11 +

4

5
F 3
11 +

4

7
F21 −

8

5
F11F21 −

192

385
H31 +

208

385
K21 +

3616

2695
F11K21 −

32

35
K31

J63=−20

21
F 2
11 +

8

7
F 3
11 +

80

231
H31 −

160

231
K21 +

128

77
F11K21 (72)

5.6 The Two-Layer Model

The two-layer model consists of a constant density core of normalized density δC , plus an envelope of

normalized density δE . The envelope density can be a function of β, or even piecewise continuous in two

or more zones overlying the constant-density core. The two densities are connected by means of the mass

constraint implied by (43), and they must satisfy the following equation

δCβ
3
C + 3

∫ 1

βC

β2δE (β) dβ = 1 (73)

A particular interior model is defined by the envelope density δE and the core radius βC . The core density

δC is a derived constant obtained from (73). As the core radius approaches zero, the core density approaches

positive infinity. However, the core mass given by δCβ
3
C is finite at the origin. For βC arbitrarily small, the

core mass can represent a point-mass core with mass greater than or equal to zero. Whatever the values for

δE(β) and βC , the ODE of (63) can be solved exactly in the core, and the second set of boundary conditions

for the envelope integration can be found at the core-envelope boundary.

5.7 Solution to the Theory of Figures in a Constant-Density Core

The functions needed for the ODE of (63) are S0 and δ/S0. For a constant-density core, S0 is simply δC and

the ratio δ/S0 is one. It follows from (63) and (112) that the first-order flattening function F1 is a constant.

It has the value F1B everywhere in the core and its derivative is zero within the core. This simplifies the

other ODE of (63) considerably. The equation for K2 is

β2K ′′2 + 6βK ′2 − 14K2 = 0 (74)
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The boundary conditions on (74) are that K2 is finite at the origin and that it is equal to K2B on the

core-envelope boundary. The solution to (74) and the boundary condition at β equal to βC are

K2=K2B

(
β

βC

)2

K ′2B=2

(
K2B

βC

)
(75)

Both the shape functions and their first derivatives are continuous at the core-envelope boundary. Therefore,

the above boundary condition applies to both the core and the envelope at β equal to βC . Similarly, the

equation for F2 from (63) and (112) is

β2F ′′2 + 6βF ′2 = −8K2 (76)

with the solution

F2=F2B +
4

7
K2B

[
1 −

(
β

βC

)2
]

F ′2B=−8

7

(
K2B

βC

)
(77)

The equation for H3 is

β2H ′′3 + 6βH ′3 − 36H3 = −88

(
β

βC

)2

F1BK2B (78)

with solution

H3=H3B

(
β

βC

)4

+ 4F1BK2B

(
β

βC

)2
[

1 −
(
β

βC

)2
]

H ′3B=4

(
H3B

βC

)
− 8

(
F1BK2B

βC

)
(79)

The equation for K3 is

β2K ′′3 + 6βK ′3 − 14K3 = 48

(
β

βC

)4

F1BK2B − 12

(
β

βC

)4

H3B (80)

with solution

K3=K3B

(
β

βC

)2

− 24

11
F1BK2B

(
β

βC

)2
[

1 −
(
β

βC

)2
]

+
6

11
H3B

(
β

βC

)2
[

1 −
(
β

βC

)2
]

K ′3B=2

(
K3B

βC

)
+

48

11

(
F1BK2B

βC

)
− 12

11

(
H3B

βC

)
(81)

Finally, the equation for F3 is

β2F ′′3 + 6βF ′3=
8

385

(
β

βC

)2
[

2039 − 3150

(
β

βC

)2
]
F1BK2B

−12

11

(
β

βC

)2
[

4 − 15

(
β

βC

)2
]
H3B − 8

(
β

βC

)2

K3B (82)
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with solution

F3=F3B − F1BK2B

[
1 −

(
β

βC

)2
][

296

245
− 20

11

(
β

βC

)2
]

−H3B

[
1 −

(
β

βC

)2
][

1

7
+

5

11

(
β

βC

)2
]

+
4

7
K3B

[
1 −

(
β

βC

)2
]

F ′3B=−3288

2695

(
F1BK2B

βC

)
+

92

77

(
H3B

βC

)
− 8

7

(
K3B

βC

)
(83)

5.8 Solution to the Theory of Figures in a Constant-Density Envelope

When the normalized envelope density δE is a constant, (73) yields the following expression for the normalized

density in the core

δC = δE +
1 − δE
β3
C

(84)

The gravitational moment S0 in the envelope is similarly

S0 = δE +
1 − δE
β3

(85)

A value for δE , and also S0 from (85), can be substituted into the differential equations given by (63) and

(112), and the solution for the spheroidal functions in the envelope can be found subject to the boundary

conditions at the surface, given in Sec. 5.3, and the boundary conditions at normalized radius βC given by

expressions at the core boundary in Sec. 5.7. The normalized core radius βC enters through the boundary

conditions of Sec. 5.7 only. For any finite value of δE the solutions to the ODE are complicated and lengthy,

although solutions do exist for the two-zone model considered here. Nevertheless, beyond this idealized two-

zone model, numerical integration is required when the envelope density varies with β. Perhaps the exact

solutions to the ODE for constant density are useful for purposes of checking the precision of the numerical

integration, but they have no particular advantage to the problem of interior modeling. In practice, numerical

integration is a useful general approach for any envelope density, including constant density. The precision

of the numerical integration can be adjusted such that it is competitive with the exact solutions to the

constant-density envelope, especially given the limited accuracy required by the observational constraints.

However, the exact solution is tractable for the case where the density in the envelope is zero. This is

the generalized Roche model considered by Zharkov and Trubitsyn (1978) and discussed in Section 4. The

envelope contains no gravitational mass contribution to the HE, but there is an inertial contribution from the

centrifugal potential, and hence a contribution to the surface shape of the planet. For purposes of illustrating

the ODE approach, we solve this Roche case in section 5.8.1 and finally consider the general case of finite

density in section 5.8.2.
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5.8.1 The Generalized Roche Model

For δE equal to zero, the density of material in the core is given by ρ0/β
3
C . In turn, the differential equation

for F1 in the envelope becomes

β2F ′′1 − 6F1 = 0 (86)

The boundary conditions on the solution for F1 is that F ′1 = 5/2 − 2F1 at β equal to one, and F ′1 equal to

zero at β equal to βC . With these boundary conditions, F1 in the envelope is given by

F1=
2β5 + 3β5

C

4β2

F ′1=
3
(
β5 − β5

C

)
2β3

F11=
1

4

(
2 + 3β5

C

)
F1B=

5

4
β3
C (87)

Here F11 is the value of F1 at the surface, and F1B is the value of F1 at the core boundary. All the quantities

in (87) are needed for solutions to the ODE for the higher order shape functions. The value of F1 in the core

is determined by the envelope density distribution, which in this Roche case is zero, but it is true in general

for any envelope density distribution. For the Roche model, the density distribution in the core is simply a

constant, given by F1B according to the core solution of Sec. 5.7.

The differential equation for the function K2 is obtained from (63) and (112), and after the envelope

density is set to zero and the solution for F1 is inserted into G42, the equation for the Roche model is

β2K ′′2 − 20K2 =
15

16
β
(
β5 + 4β5

C

)
(88)

Again, with the boundary conditions from Sections 5.3 and 5.7, the solution for K2 is

K2=
3

32

(
β5 − β5

C

)2
β4

K ′2=
3

16

(
3β10 − β5β5

C − 2β10
C

)
β5

K21=
3

32

(
1 − β5

C

)2
K2B=0 (89)

Similarly, the differential equation for F2 is

β2F ′′2 − 6F2 = − 3β5
C

16β4

(
4β5 + 11β5

C

)
(90)
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and the solution is

F2=
β5
C

224β4

(
28β5 + 80β2β3

C − 33β5
C

)
F ′2=

β5
C

56β5

(
7β5 − 40β2β3

C + 33β5
C

)
F21=

β5
C

224

(
28 + 80β3

C − 33β5
C

)
F2B=

75β6
C

224
(91)

This process can be extended to third order, although the expressions for H3, K3 and F3 as a function of β

in the envelope become more lengthy. We list here only their values at the surface, which are

H31=
1

160

(
1−β5

C

)2 (
38+67β5

C

)
K31=− 1

2240

(
42+49β5

C+200β8
C−424β10

C − 200β13
C +333β15

C

)
F31=

1

94080

(
7056+392β5

C+5600β8
C−462β10

C +74000β11
C −13200β13

C −4011β15
C

)
(92)

The values for the gravitational coefficients can be obtained from (72). The results are

J21=
1

2
β5
C

J22=−1

2
β5
C

(
1

3
− 10

21
β3
C +

1

2
β5
C

)
J23=−1

2
β5
C

(
23

180
+

10

63
β3
C − 1

30
β5
C − 925

882
β6
C +

10

21
β8
C +

9

140
β10
C

)
J42=−15β10

C

28

J43=
15β10

C

28

(
2

3
− 20

21
β3
C + β5

C

)
J63=

125

168
β15
C (93)

These results for the gravitational coefficients in the generalized Roche model agree with Zharkov and

Trubitsyn (1978), except for J23. Total agreement is a good check on our ODE method, as the derivation

in Zharkov and Trubitsyn (1978) is quite different from ours. We suggest that the third order term for J2

in Zharkov and Trubitsyn (1978) contains typographical errors. For example, by setting the core radius to

one in (93), the case of a constant-density planet is recovered. The result is

J2=
1

2
m− 5

28
m2 +

25

196
m3

J4=−15

28
m2 +

75

196
m3

J6=
125

168
m3 (94)
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This is correct (Zharkov and Trubitsyn, 1978), and it is a good check on the ODE method. However, if βC

is set equal to one in (34.6) for J2 in Zharkov and Trubitsyn (1978), the result is J2 = (1/2)m− (5/28)m2 −

(1889/4410)m3. This is not correct. We conclude that there is agreement between our ODE method and

the method of Zharkov and Trubitsyn, but only if the third order J2 term in Zharkov and Trubitsyn (1978)

is brought into agreement with J23 in (93).

Although the generalized Roche model is an idealization of a real giant planet, it illustrates the method.

Starting with a density distribution in the envelope given by δE(β) and a core radius βC , the zonal grav-

itational coefficients in the external gravitational potential can be calculated. In general, the results are

obtained by numerical integration of the ODE, but the numerical values analogous to the six functions of

(93) can be calculated to any arbitrary precision. A comparison of the calculated values with the measured

values is achieved by calculating the value of the small rotational parameter m for the planet in question,

and then by applying (69).

5.8.2 Model for a Finite-Density Envelope

Even for this simple case of a finite-density envelope, the solution to the ODE can be obtained by numerical

integration. For purposes of illustrating the method, we pick a normalized envelope density of 1/2 and a

normalized core radius of 1/2. By (73) the density δC in the core is equal to 9/2, and the percentage of

the total mass in the core (δCβ
3
C) is 9/16. This particular choice of δE and βC results in a fairly simple

differential equation for the first-order function F1. By (63) we have

β2
(
1 + β3

)
F ′′1 + 6β4F ′1 − 6F1 = 0 (95)

The integration can be done numerically subject to the boundary conditions of sections 5.3 and 5.7, which

for F1(β) are

F ′1 (1)=
5

2
− 2F1 (1)

F ′1 (βC)=0 (96)

The limits of integration are from βC to one. After the numerical integration is complete, a value of F1

anywhere on the interval βC ≤ β ≤ 1 can be found by numerical interpolation. This solution in the envelope

can be matched to the solution in the core given in Sec. 5.7. A plot of this particular case throughout the

interior is shown in Fig. 3.

Because the differential equation for K2 involves both F1 and its first derivative, it must be evaluated

numerically by interpolating in the numerical solution to (95). Furthermore, the boundary condition at the

surface is not known until F1 at the surface is known. Therefore, we do not write down the differential

equation that must be integrated, but instead numerically evaluate it according to (63) on the interval
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βC ≤ β ≤ 1. The boundary conditions for this special case, with δE and βC both equal to 1/2, are obtained

from the expressions given in Sec. 5.3 and Sec. 5.7, and include the solution for F1 at the surface. In general,

the boundary conditions are

K ′2 (βC)=2

(
K2 (βC)

βC

)
K ′2 (1)=

25

16
− 5

4
F1 (1) − 4K2 (1) (97)

and by numerical interpolation in the previous solution, F1 (1) is equal to 99060576/131853043, accurate to

16 places past the decimal. With these boundary conditions, numerical integration yields the solution for

K2 in the envelope, which can be matched to the core solution and plotted. The result is shown in Fig. 4.

The procedure is similar for the function F2, and the differential equation from (63) involves the previous

solution for both F1 and K2 and their first derivatives. The boundary conditions are

F ′2 (βC)=−8

7

(
K2 (βC)

βC

)
F ′2 (1)=− 5

12
+

19

42
F1 (1) +

1

3
F1 (1)

2
+

8

7
K2 (1) − 2F2 (1) (98)

where for this special case, K2 (1/2) is equal to 143636/109713139 and K2 (1) is equal to 6168175/61992373,

again accurate to 16 places past the decimal. After numerical integration, the solution for F2 is represented

by Fig. 5.

The above process can be repeated for the third-order functions H3, K3 and F3, in that order. As each

function is introduced, all previous solutions are used in both the ODE and in the boundary conditions.

The results for the special case considered here are represented by Fig. 6, Fig. 7 and Fig. 8. All six plotted

functions can be evaluated at the surface. As a result, the shape of the surface is given by (32) with β equal

to one and with

f1=
1424483

1896036
m+

8128

132573
m2 +

14522

96145
m3

k1=
9750

97991
m2 − 139

46715
m3

h1=
49427

155163
m3 (99)

These expressions for f , k, and h at the surface are accurate to 10 significant digits. For all practical purposes

they are limited only by the uncertainty in the small rotational parameter m, and of course by truncation of

the series at order m3. Similarly, by (72), the surface conditions can be used to calculate the gravitational

coefficients in the external potential. The results for this special case are

J2=
156041

931420
m− 980

25913
m2 +

339

46459
m3

J4=− 6381

56362
m2 +

2864

63535
m3

J6=
5277

46804
m3 (100)
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6 Application to Planets

In this section we apply the two-layer model of this paper (with constant core and envelope densities) to

the planets. The model is a simple one for planets, and it is most applicable to terrestrial planets and icy

satellites that have a differentiated structure consisting of either a metallic core and a rocky mantle or a

rock, metal core and an icy mantle. Application to the gas and ice giant planets will also be made, though a

constant-density envelope is not a very realistic model of these bodies. However, with some generalization of

the two-layer model to include envelopes with arbitrary radial density profiles, application to giant planets

can be made much more realistic. The approximate theory of figures approach presented in this paper is

readily generalized to arbitrary radial density profiles in the envelope, and the exact solution can also be

extended to this case.

6.1 Earth

Table 3 presents the eccentricities and gravitational coefficient J2 for a two-layer model of the Earth with

parameters ρ2/ρ1 = 0.401, QV = 0.1674, and ε2 = 0.002. Results are given for the exact solution to the

two-layer problem and for the theory of figures. Approximate solutions are valid to orders 1, 2, and 3 in

the small parameter m. Table 3 also lists the observed values of E1, E2, and J2. Two-layer models provide

a good match to the observed eccentricities and an acceptable match to the gravitational coefficient. No

attempt was made to fine tune the model parameters. For this case, even the theory of figures to first order

in m gives good agreement with the exact solution and with the observations.

6.2 Mars

Table 4 gives results for a Mars model with ρ2/ρ1 = 0.486, QV = 0.125, ε2 = 0.00347. There are no

observations of the eccentricity of the Martian core-mantle boundary. The models provide good estimates

of the eccentricity of the surface and the theory of figures approximations match the exact solution of E2

quite closely. The eccentricity of the core-mantle boundary is less than that of the surface, as was the case

for the Earth models, and E1 from the theory of figures approximations agrees rather well with the value of

E1 from the exact solution. The model J2 is not in particularly good agreement with the observed J2 for

Mars, but it is emphasized that we made no attempt to fine tune the model parameters to fit J2. Moreover,

the radius of the Martian core and the densities of the Martian core and mantle are not known.

6.3 Neptune

Table 5 lists results for a Neptune model with ρ2/ρ1 = 0.157334, QV = 0.091125. ε2 = 0.0254179 (parameter

values based on a model in C.Z. Zhang (1997)). It is emphasized that the two-layer model with a constant-
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density envelope is not a good model for an ice giant planet like Neptune. Nevertheless, the shape of the

surface is not too different from Neptune’s observed shape, but J2 for the model is almost a factor of 2 larger

than the observed value. We do not know if Neptune has a core-envelope configuration or a continuous radial

density profile.

6.4 Uranus

Table 6 provides results for two Uranus models with model parameters given in the table and based on

Horedt and Hubbard (1983). As was the case for Neptune, the Uranus models do okay in matching E2 but

fail to give good estimates for J2. Similar to Neptune, it is not known if the radial density profile of Uranus

is a smooth one or if it contains a discontinuity associated with a core.

7 Discussion and Conclusions

The exact solution for the rotational distortion of a two-layer Maclaurin ellipsoid reported in Kong et al.

(2010) has been extended here to provide formulas for the standard spherical harmonic expansion of the

external gravitational field of the body. We have also presented a new approach to the evaluation of the

theory of figures based on numerical integration of ordinary differential equations.

The classical Radau-Darwin formula is a low order result from the theory of figures and its realm of

validity has been evaluated for the two-layer model using the exact solution. It was found that the Radau-

Darwin approximation is not valid for the rotational parameter ε2 = Ω2/(2πGρ2) ≥ 0.17 since the formula

predicts a surface eccentricity that is smaller than the eccentricity of the core-envelope boundary. Interface

eccentricity must be smaller than surface eccentricity. For an envelope density of 3000 kg m−3 the failure of

the Radau-Darwin formula corresponds to a rotation period of about 3 hr.

The generalized Roche model, a two-layer model with an envelope density equal to zero, provides a simple

model against which to evaluate the validity of the theory of figures against the exact solution. It was found

that the theory of figures only slightly underestimates the eccentricities of the surface and core-envelope

interface compared with the exact solution.

Application of the exact solution and the theory of figures is made to models of Earth, Mars, Uranus,

and Neptune. It is found that the two-layer model with constant densities in the layers can provide realistic

approximations to terrestrial planets and icy outer planet satellites. This is perhaps not surprising since the

zeroth order structure of these planetary bodies is similar to the two-layer model with constant densities in

the layers. The situation is not as straightforward for giant planets since a constant density envelope is not

a particularly good representation of the density in the outer layers of such planets. However, the theory of

figures, as developed in this paper, is readily generalized to models with arbitrary radial density profiles in
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the envelope (though we have not carried this out in this paper). Such models will be particularly useful for

Jupiter and Saturn which might possess heavy element cores surrounded by gaseous envelopes. The envelope

density can be represented by polynomial functions of radius. Inversions of gravitational data based on these

models provide constraints on the gas giant interiors independent of assumptions about composition and

equations of state. The exact solution for the two-layer Maclaurin ellipsoid can also be extended to allow

for a non-constant radial profile of envelope density. This is not as straightforward as the generalization of

the theory of figures, but it can be done. The solutions for two-layer bodies can therefore provide acceptable

models for the rotational distortion of terrestrial, gas giant, and ice giant planetary bodies. These solutions

can also serve as benchmarks to test the validity of complicated numerical models that invert gravitational

and shape data to infer the interior structure of planets.
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Figure 1: Surfaces of constant total (gravity) potential for cases (a) QV = 0.5, ρ1/ρ2 = 2, ε2 = 0.18 and (b)

QV = 0.25, ρ1/ρ2 = 2, ε2 = 0.05.
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Figure 2: The eccentricity of the total potential isosurfaces in Fig. 1 plotted as a function of radius.

32



0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

NormalizedMean Radius Β

F 1

First Order Function F1

Figure 3: Function F1(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Figure 4: Function K2(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Figure 5: Function F2(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Figure 6: Function H3(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Figure 7: Function K3(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Figure 8: Function F3(β) for normalized envelope density δE of 0.5 and core radius βC of 0.5.
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Table 1: Eccentricities of the interface E1 and the surface E2 as a function of the rotation parameter ε2 for

QV = 0.5 and ρ1/ρ2 = 2. The surface eccentricity based on the Radau-Darwin approximation is ER−D2 .

ε2 E1 E2 ER−D2

0.01000 0.13959 0.14390 0.14383
0.02000 0.19761 0.20330 0.20288
0.03000 0.24158 0.24860 0.24782
0.04000 0.27886 0.28670 0.28540
0.05000 0.31147 0.32010 0.31824
0.06000 0.34050 0.35010 0.34769
0.07000 0.36770 0.37770 0.37453
0.08000 0.39250 0.40320 0.39931
0.09000 0.41592 0.42710 0.42238
0.10000 0.43790 0.44960 0.44402
0.11000 0.45864 0.47090 0.46441
0.12000 0.47895 0.49130 0.48372
0.13000 0.49789 0.51070 0.50208
0.14000 0.51604 0.52930 0.51957
0.15000 0.53399 0.54730 0.53630
0.16000 0.55103 0.56460 0.55232
0.17000 0.56739 0.58130 0.56771
0.18000 0.58335 0.59750 0.58250
0.19000 0.59873 0.61320 0.59674
0.20000 0.61401 0.62854 0.61047
0.21000 0.62897 0.64350 0.62373
0.22000 0.64315 0.65800 0.63654
0.23000 0.65732 0.67224 0.64894
0.24000 0.67128 0.68620 0.66093
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Table 2: Comparison of interface and surface eccentricities for several models with small envelope densities

computed from the exact theory and the theory of figures Roche model evaluated to second order in m.

ρ2/ρ1 ε2ρ2/ρ1 Qv E1 E2 EToF
1 (ρ2 = 0) EToF

2 (ρ2 = 0)

10−2 0.05 0.5 0.4297 0.4629 0.4268 0.4603

10−3 0.05 0.5 0.4292 0.46296 0.4268 0.4603

10−4 0.05 0.5 0.4291 0.46296 0.4268 0.4603

10−2 0.05 0.33 0.4378 0.5189 0.4268 0.5141

10−3 0.05 0.33 0.4366 0.5195 0.4268 0.5141

10−4 0.05 0.33 0.4365 0.51955 0.4268 0.5141

10−2 0.02 0.5 0.2730 0.2953 0.2724 0.2949

10−3 0.02 0.5 0.27297 0.29537 0.2724 0.2949

10−4 0.02 0.5 0.2728 0.29537 0.2724 0.2949

10−2 0.02 0.33 0.2757 0.3314 0.2724 0.3313

10−3 0.02 0.33 0.2749 0.3318 0.2724 0.3313

10−4 0.02 0.33 0.2748 0.3318 0.2724 0.3313

40



Table 3: Application of exact solution and theory of figures to Earth.

Two-layer Earth model: ρ2/ρ1 = 0.401, QV = 0.1674, ε2 = 0.002.

1st order 2nd order 3rd order exact observed

E1 0.070765 0.0707906 0.0707907 0.070593 0.0707

E2 0.0810949 0.0811186 0.0811188 0.081000 0.082

J2(106) 1115.25 1114.19 1114.19 1110.2 1080
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Table 4: Application of exact solution and theory of figures to Mars.

Two-layer Mars model: ρ2/ρ1 = 0.486, QV = 0.125, ε2 = 0.00347.

1st order 2nd order 3rd order exact observed

E1 0.0888247 0.0888743 0.0888747 0.088859 –

E2 0.100246 0.100294 0.100295 0.10030 0.10837

J2(106) 1825.82 1823.18 1823.18 1823.1 1960.0
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Table 5: Application of exact solution and theory of figures to Neptune. Observed values of eccentricity and

gravitational coefficient are from Lindal (1992) and Jacobson (2009).

Two-layer Neptune model: ρ2/ρ1 = 0.157334, QV = 0.091125, ε2 = 0.0254179.

1st order 2nd order 3rd order exact observed

E1 0.143134 0.143506 0.143515 0.15147 –

E2 0.209326 0.209642 0.209658 0.21019 0.18414

J2(106) 6228.69 6188.61 6188.92 6241.0 3408
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Table 6: Application of exact solution and theory of figures to Uranus. Observed values of eccentricity and

gravitational coefficient are from Lindal (1992) and Jacobson (2007).

Two-layer Uranus model: ρ2/ρ1 = 0.0883529, QV = 0.421875, ε2 = 0.103112.

1st order 2nd order 3rd order exact observed

E1 0.186917 0.187284 0.187296 0.18752 –

E2 0.207279 0.207599 0.207616 0.20780 0.212918

J2(106) 4847.54 4812.63 4812.62 4821.4 3341

Two-layer Uranus model: ρ2/ρ1 = 0.0791231, QV = 0.0563272, ε2 = 0.0318902.

1st order 2nd order 3rd order exact observed

E1 0.115322 0.115648 0.115655 0.14160 –

E2 0.213329 0.213629 0.213648 0.21473 0.212918

J2(106) 5718.07 5679.99 5680.32 5801.4 3341
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A Level-Surface Coefficients for the Spheroidal Functions f , k and

h to Order Three

The radial coordinate r, normalized to the mean radius s, can be written as follows as a truncated power

series to order three in m.

r

s
=1 +mf

(
1

3
− µ2

)
+m2k

(
8

15
− 4µ2 + 4µ4

)
+

1

18
(mf)

2 (
4 − 33µ2 + 27µ4

)
+m3h

(
26

105
− 4µ2 + 9µ4 − 5µ6

)
+ (mf)

3

(
14

81
− 49

18
µ2 + 5µ4 − 5

2
µ6

)
+ (mf)

(
m2k

)(16

63
− 28

15
µ2 +

4

3
µ4

)
(101)

This expansion for r is equivalent to (32), but with the powers of m emphasized and stated explicitly. With

k and h set equal to zero, it is the expansion for an ellipse with flattening mf , and with origin of coordinates

at the center of the ellipse.

With this function for r/s, it is straightforward to derive the coefficients Ci2j for the potential functions

Vi to arbitrary order by means of (45), and by means of the procedure used to derive the coefficients C0
2j in

(42). For order one (i = 1), the result for the spheroidal functions is obtained to order 2 in the form

C2
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5
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35
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35
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f +

402

385
f2 − 48

385
k

C2
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77
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k (102)

and for order two, the coefficients to first order are

C4
0 =0

C4
2 =

20

21
f

C4
4 =1 +

200

231
f

C4
6 =

50

33
f (103)

For order three, there is only one non-zero coefficient to order one, C6
6 which is equal to one.

The coefficients for the mass contribution exterior to the level surface at β follow from (46). There is

only one non-zero coefficient for order zero, the coefficient C0′
0 which is equal to one. For order one the
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coefficients can be written as

C2′
0 =− 4
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315
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and for order 2 as,

C4′
0 =0

C4′
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21
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231
f

C4′
6 =−40

33
f (105)

and for order 3 there is just one non-zero coefficient C6′
6 equal to one.

B Level-Surface Potential Functions

The coefficients Ci2j and Ci′2j derived in Appendix A can be substituted into (51) for the potential functions.

The internal normalized potential A0 on a level surface is obtained immediately to third order as

A0=
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Similarly, the second degree potential function A2 is obtained immediately by (51), but it is simplified

somewhat by multiplying it through by 3/2. Because it must be independent of µ on a level surface, and

because it is multiplied by P2 (µ), it is equal to zero. The final expression for A2 is
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Because A2 is zero, a solution for the small rotational parameter m can be found to third order. The

46



result is
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For the higher degree potentials, the coefficients Ci2j and Ci′2j are substituted into (51). Then the above

expression for m is substituted into the result, and terms higher than order three are dropped. In this way

the centrifugal potential enters explicitly only in A0 and A2. When this procedure is applied to A4 and the

result is multiplied through by 35/4, the final expression is,
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Similarly for A6, with the result multiplied through by −33/8, the final result is,
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Except for two obvious typographical errors in the m term for A0, these expressions for A0, A2, A4 and

A6 agree with expressions given by Zharkov and Trubitsyn (1978). They can of course be carried to higher

order, either by introducing higher-order spheroidal functions into (32) or by extending (38) to arbitrary

order, as carried out by Zharkov and Trubitsyn to fifth order (Zharkov and Trubitsyn, 1978)

C Evaluation of the Gravitational Moments

The evaluation of the gravitational moments S2i and S′2i that appear in the potentials A2i is straightforward.

An expression for r/s to arbitrary order is simply substituted into (53) and (54) and the integration is carried

out over µ. The appropriate third-order expression for r/s is given by(101), and the third-order expressions

for the functions φi and φ′i evaluate to the following. They agree with expressions given by Zharkov and
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Trubitsyn (1978).
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D Functions Gji for the Differential Equations

As described in section 5.2, the procedure for generating the ODE of (63) sequentially produces the right-

hand side of the equations as functions Gji of β. The results of this process are
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These general equations, when applied to a particular problem, are not as complicated as they appear. The

application of Eq. 112 to the two-zone model in Sec. 5.6 illustrates the method in more detail. It illustrates

49



our preferred method for application of the ODE approach to any interior calculation in general.
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