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Abstract 

   The Nearest Neighbor Spacing Distribution (NNSD) is one of the commonly used methods in 

statistical analysis of regular and chaotic behaviors of nuclear spectra.  In this paper, Maximum 

Likelihood Estimation (MLE) method is proposed to evaluate the parameter of (NNSD)s. We 

estimate the parameter of (NNSD)s for different mass groups, nuclei with special values of 

deformation parameter () and also for nuclear spectra correspond to  three dynamical symmetry 

limits and transition regions in the framework of the Interacting Boson Model (IBM) (with pure 

experimental data). The obtained results confirm theoretical predictions even in cases where the 

small size of data does not allow definite conclusions with the other methods. Also the ML 

estimated parameters have minimum uncertainty with variations very close (much closer than 

those obtained by other methods) to the so called Cramer-Rao Lower Bound (CRLB). ML 

estimated values predict more regular dynamics in compare to what other estimation methods 

indicate. We have also evaluated CRLB for all distributions (Brody, Berry-Robnik and Abul-

Magd) with both values obtained from MLE and in different sequences where Brody distribution 

has the least CRLB. 

PACS: 24.60.Lz, 21.10.Ma, 21.60.Ev 

 

Introduction 

      The study of non-linear systems with chaotic behaviors has regarded as one of interesting 

concepts in recent years. Random Matrix Theory (RMT) has been commonly used for 

investigating non-fixed properties of very excited nuclei [1-5]. The resonance spacing of 

scattered neutrons and protons by atomic nuclei, is often introduced as the first application of 

RMT in nuclear physics, which is first studied by Wigner [1-2]. Despite some developments in 

experimental applications, the majority of new results from these topics have been investigated 

by theoretical studies after 1980’s. The obtained results from broken symmetries and relationship 

between chaos and integrable systems allow new applications even from experimental aspects 

[2]. Though RMT was originally developed for special applications in nuclear physics and then 

widely applied in other sciences but the small size of experimental data in this branch caused to 

some unusual uncertainties in the results [3-5].This problem can be considered as the main 
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reason for collecting classes of different nuclei in special mass groups for preparing sequences 

and studying of level spacing. In RMT, nuclear Hamiltonian is assumed as Gaussian Orthogonal 

Ensembles (GOE) of random matrices with an anti-unitary symmetry [1]. This form was very 

successful in describing the systems with time invariance and also exhibited a chaotic dynamics 

of nuclei with excitation energy near the particle emission threshold [1]. On the other hand, 

systems whose classical dynamics are everywhere rigorous in the phase space, is well 

represented by Poisson distribution [1-2]. These classifications in nuclear structure mean, nuclei 

with definite symmetries can be regarded as integrable systems (regular or Poisson limit) while 

nuclei with mixed symmetries represent chaotic dynamics [6]. The best model in order to explain 

these individual and combined symmetries is Interaction Boson Model (IBM) [6-8] which offers 

an algebraic approach in describing nuclear structure. Also intermediate behavior between these 

two regular and chaotic limits is usual for different mass groups of nuclei (as represented in [3-

5], the lightest nuclei obviously displays chaotic dynamic in comparing to regular behavior of 

heaviest ones). 

 Statistical properties, namely the fluctuations of energy levels can be investigated by different 

methods such as Nearest Neighbor Spacing Distribution (NNSD) [1-5], linear correlation 

coefficients between adjacent spacing [1-3] ,the Dyson-Mehta     statistic [10] and etc. (but we 

restrict our study to NNSD). Various distribution functions [11-13] with special theoretical 

aspects were proposed which all of them can describe some behaviors or some special ranges of 

nuclei [3-5]. The parameters of every distribution can be tuned to interpolate between the Wigner 

and Poisson distributions. Generally theses parameters are evaluated with least square fitting 

(LSF) method [3-6], where the great uncertainty in some cases or unacceptable results [3-5], 

makes almost impossible the lucid conclusions.  

On the other hand, LSF is one of widely used estimation methods more well-known than the 

Maximum Likelihood Estimation (MLE) method or Bayesian Estimation methods (BEM) [13-

21], where as it is shown in [20-21], the LSF is really equivalent to producing a maximum 

likelihood in estimating the variables that are linearly related to some Gaussian case. Therefore, 

one expects, LSF method yields estimation very close to GOE or Wigner limit, while the other 

estimation methods, those with more precise estimation in compare to LSF, yield estimation 

more close to Poison or regular limit. 
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In some cases where this method couldn’t yield appropriate results, other estimation methods 

such as Maximum Likelihood Estimation (MLE) method or Bayesian Estimation methods 

(BEM) [13-21] have been applied. In this paper, we have used MLE method in order to evaluate 

the parameters of all used distributions (Brody, Berry-Robnik and Abul-Magd ones). Also, to 

obtain the uncertainty of results, we have used Cramer-Rao Lower Bound (CRLB) which is the 

common method to calculate the uncertainty of unbiased estimators (as mentioned in [19], the 

MLE method achieves the lowest CRLB). 

To feature the advantages of MLE method to other ones, we have compared the results obtained 

by MLE method for Brody and Berry-Robnik distributions with those investigated in [3-5], 

where the MLE method yields accuracies very close to CRLB in compare with other methods 

and predict less chaotic more regular dynamics. Also to make a physical meaning for the results 

obtained in this paper, we calculate the parameter of Berry-Robnik distribution in sequences 

constructed of nuclei with special values of deformation parameter,, while the resulting values 

confirm theoretical predictions with again less chaoticity in compare to LSF estimated values.  

We have also used the MLE method in estimating parameter of Abul-Magd’s distribution in 

sequences of oblate and prolate nuclei and compared it with [22-23] (which is investigated 

(BEM)). Also, we have studied nuclei corresponding to three dynamical symmetry limits and 

nuclei in transitional regions [9,24-26] of IBM (here used sequences constructed from pure 

experimental data [27-28]), where the estimated values corresponding to the       levels, 

confirm theoretical predictions , namely regular behavior for nuclei with dynamical symmetry 

(particularly in nuclear with U(5) dynamical symmetry) and also chaotic behavior of nuclei in 

transitional regions . Finally in order to compare different distributions in the same sequences 

(prolate, oblate, three dynamical symmetry limits and three transitional regions of IBM ), we 

have evaluated CRLB for all Brody, Berry-Robnik and Abul-Magd distributions where Brody 

distribution has the least CRLB. 

The paper is arranged as follows. Section II briefly summarizes IBM model (the majority of our 

results related to this model), unfolding processes (the method of preparing sequences (used 

data)), well known distributions, MLE method and CRLB. In section III, the results of MLE 

related to all distribution have been presented. Section IV, contains the numerical results 

obtained by applying the MLE method to different sequences. Section V is devoted to 
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comparison of MLE method with LSF one, based on results given in section IV. The paper ends 

with appendices containing the details and related calculations of Brody, Berry-Robnik and 

Abul-Magd distributions and CRLB. 

 

II) Preliminaries 

This section introduces the notation used in the paper and reviews relevant concepts from Interaction 

Boson Model (IBM), Nearest Neighbor Spacing Distribution (NNSD), maximum likelihood method and 

Cramer-Rao Lower Bound (CRLB). 

 

a) Interaction Boson Model (IBM)  

The interacting boson approximation represents a significant step forward in our understanding of nuclear 

structure. It offers a simple Hamiltonian capable of describing collective nuclear properties across a wide 

range of nuclei and is founded on algebraic (group) theoretical techniques. The IBM [6-9] is expressed in 

terms of a U(6) Lie algebra spanned by the bilinear Combinations of five pairs of       (d-boson 

operators) and one pair of       (s-boson operators). Thus, the Hilbert space of the model is the carrier 

space for a so-called symmetric irrep of the compact unitary group U(6). It can be realized as a subspace 

of the six-dimensional harmonic oscillator Hilbert space. In terms of s- and d-boson operators the most 

general IBM Hamiltonian can be written as: 

                  
        

                                                                                                                         

where            is the number operator of d-bosons, L is angular momentum and    is quadrupole 

operator defined as [7-9] 

                    
 
         

 
                                                                                                             

with   as control parameter. The IBM has three dynamic symmetries corresponding to the following 

algebra chains 

          
         

     

         
                                     

 
  
   
                                                                                         

Chain (I) occurs for      which describes vibrational nuclei or U(5) limit, chain (II) is obtained for 

       &     
  

 
 to describe rotational nuclei or SU(3) limit and chain(III) arises for      &    

              unstable nuclei or O(6) limit[6-9]. Different nuclei with definite values of ratio      

    
  

    
  

 can exhibit these three chains and transitional regions which can be obtain from Casten triangle [7-

9] in figure 1. 

 



6 
 

b) Nearest Neighbor Spacing Distribution (NNSD) 

The study of statistical properties of nuclear spectra has long been a subject of great interest and it can be 

investigated by different methods, such as Nearest Neighbor Spacing Distribution NNSD [1-5], linear 

correlation coefficients between adjacent spacing [1,3] ,the Dyson-Mehta    statistic [10]. We focus here 

on NNSD, which is one of the simplest tools for studying the short-range fluctuations in nuclear spectra. 

In this method, level spacing of nuclear spectra is compared with RMT predictions. The main point in 

comparing data to the predictions of RMT is to use some special levels with the same symmetry [3-5] 

mainly same quantum numbers. This requirement in nuclear physics means to use levels with same total 

quantum number (J) and same parity, where these group of levels will be called “sequences” [3-5]. 

Denoting the energy difference between the adjacent levels in every sequence by level distance   , one 

can use s=S/D  which D is the average spacing [3] ) to obtain level spacing distribution as a function of 

dimensionless parameter. For sequences obeying GOE statistics, NNSD probability distribution function 

is approximated with the Wigner distribution [1] 

         
 

 
    

   

                                                                                                                                                           

Analysis of the statistical information from proton and neutron resonance for different nuclei 

demonstrates that the NNSD for levels with excitation energy about 8Mev is well represented by Wigner 

distribution. On the other hand, for majority of quantum systems with regular behavior in phase space, 

NNSD can be analyzed with Poisson distribution [1,2] 

                                                                                                                                                                                

In most cases, the NNSD distributions show a intermediate behavior between these two limits, namely the 

Wigner and the Poisson distributions [3-5] (this indicates theoretical predictions about mixture of regular 

and chaotic dynamics for low-lying energy levels of excited nuclei [3,4]). Different distributions are 

suggested to investigate intermediate situation of different systems, which have one or more parameters 

and can exhibit this interpolation between both limits. One of popular distribution is Brody distribution 

[11] 

    

                 
                      

   

   
  
   

                                                                                             

that considers a power-law level repulsion and interpolates between the Poisson       and Wigner 

      distributions .Another distribution is Berry-Robnik distribution which is derived by assuming 

that the energy level spectrum is a product of the superposition of independent subspectra, which are 

contributed respectively from localized eigenfunctions onto invariant (disjoint) phase space region[12]   

            
 

 
             

 

 
                                                                                                                      

Also another distribution which is appropriate to use, is the NNSD given by the Rosenzweig and Porter 

random matrix model. The exact form of this model is complicated and its simpler form is proposed by 

Abul-Magd in Refs.[13.22-23] as: 
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Where interpolates between Poisson       and Wigner       distributions. 

 

c) Maximum Likelihood Estimation (MLE) 

The likelihood function for the probability distribution function                     of random 

variables            (both discrete and continuous variables), is defined as [14-21]  

                                                                                                                                                        

That is the chance function for observing variables            in order to obtaining a correct choice of  . 

If                indicates the maximum value of function             

                                                                                                                                                                     

Thus, the Likelihood estimator of   is defined as [14-19] 

                                                                                                                                                                     

Therefore     is the estimate or MLE suggestion for  . In evaluating the maximum value of    we will 

consider the fact             and       have maximum value for the same . In the following, we will 

present some properties of MLE method which can explain the goal of above expressed suggestion [18-

21] 

 Consistency: probability, the estimator converges to the value that has been estimated 

 Asymptotic Normality: with increasing the sample size, the distribution of MLE tends to 

Gaussian distribution with mean   and also covariance matrix becomes equal with the inverse 

of the Fisher information matrix 

 Efficiency: when the sample size tends to infinity, for i.e., it would reach to the lower bund of 

Cramer-Rao. It means that asymptotic mean squared error of any asymptotically unbiased 

estimator isn’t lower than MLE. 

Newton-Raphson iteration method will be used for obtaining the exact result with the minimum variance 

(for more details see Appendix (C)). 

  

d) Cramer-Rao Lower Bound (CRLB)  

 In estimation theory and statistical application, the Cramer–Rao lower bound (CRLB) measures how 

close this estimator's variance comes to this lower bound. Suppose   is an unknown deterministic 

parameter which is to be estimated from measurements of x and also suppose that its corresponding 

distribution probability density function is       . Inverse of the Fisher information bounds the variance 

of any unbiased estimator     of   as fallow [14-21]: 

            
 

     
                                                                                                                                                          

where M is the sample size and Fisher information F( ) is defined as fallow: 

http://en.wikipedia.org/wiki/Probability_density_function
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, 

The expression (12) is called the Cramer-Rao inequality. The scalar quantity 
 

     
 is the Cramer-Rao 

lower bound on the variance of unbiased estimators of                [14].  

 The Cramer-Rao Lower Bound for scalar functions of scalar parameters  

By considering an unbiased estimator T(X) of a function      of the parameter   we can obtain a more 

general form of the bound. Here, by unbiasedness we mean E {T(X)} =       In this case, the bound is 

given by [14-17] 

        
       

 

     
                                                                                                                                                        

where        is the derivative of       and      is the Fisher information that was defined above. 

 The Cramer-Rao Lower Bound for vector functions of vector parameters 

 Define a parameter column vector in order to extending the Cramér–Rao bound into multiple parameters,  

              
      

with probability density function of         which satisfies the following regularity condition: 

 The  Fisher information matrix would be  a      matrix with element      that is defined as [14-16] 

       
 

   
         

 

   
            

Let        be an estimator of any vector function of parameters,                     
 , and denote 

its expectation vector          by     . The Cramér–Rao bound shows that the covariance matrix 

      satisfies [14-16] 

           
     

   
         

      

  
                                                                                                                  

While as (12), the expression (14) is called the Cramer-Rao inequality and quantity 
     

   
         

      

  
  

is the Cramer-Rao lower bound .  

The difference between the traces of left and right sides of equation (14) will be used for presenting the 

amount of decreasing of the uncertainty variation of estimated parameters during the iterations. 

 

 

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Regularity_conditions
http://en.wikipedia.org/wiki/Fisher_information_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
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III) MLE approach to evaluate the parameter of NNSD 

Now we are proceeding to determine the parameters of the above introduced nearest neighbor spacing 

distributions via the maximal likelihood method.  

1) Brody distribution  

Here we propose a generalized Brody distribution with two parameters b and q as [11]:  

                      
                                                                                                                                        

Where it reduces to Brody one by choosing       
   

   
  
   

  

Now, in order to estimate the parameters b and q, we need to introduce the corresponding maximum 

likelihood estimators .To this aim, we try to use the products of the generalized Brody distribution 

functions as a likelihood function [14-16], namely 

                    
 
     

   
 
                

  
          

   

                                                      

 Then, taking the derivative of the log of likelihood function (16) with respect to the parameters ”q” and 

”b” and setting them to zero, i.e., maximizing likelihood function, we obtain the following pair of implicit 

equations for the required estimators:    

    

   
 

 
   

   
 

 

 
                                                                                                                                                         

    

     
 

 
        

   
 

 

 
      

 

   
                                                                                                                     

Now, the parameters b and q can be estimated by high precision via solving above equation by Newton-

Raphson iteration method ( full details are provided in Appedix A), where the difference between the 

traces of left and right hand sides of equation (14) is used to see the decreasing of the variation of 

uncertainty of estimated parameters during the iterations. 

2) Berry-Robnik distribution  

We can repeat the above mentioned process for Berry-Robnik distribution [12] 

            
 

 
             

 

 
                                                                                                                    

In order to estimate the parameter of distribution, Likelihood function introduces as product of all P(s) 

functions [21] 
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Then, taking the derivative of the log of likelihood function (20) with respect to its parameter (q) and set 

it to zero, i.e., maximizing likelihood function, we obtain the following relation for desired estimator (see 

Appendix (C) for more details) 

       
  

 

 
   

  
 

 
        

      
 

 
   

                                                                                                                               

We can estimate q by high accuracy via solving above equation with Newton-Raphson method and also 

we can use the difference of both sides of equation (13) to obtain the decreasing of uncertainty for 

estimate values. 

3) Abul-Magd’s distribution  

This distribution as Berry-Robnik’s one has one parameter [13] 

                           
  

 
                         

   

 
  

As previous case, we can prepare likelihood function to estimate f with product of all       ’s 

           

 

   

                  
   
 
   

                   
   

 

 

 

   

                                             

With setting zero the derivative of the log of likelihood function (22), i.e., maximizing likelihood 

function, we obtain the following relation for required estimator (see Appendix (C) for more details) 

           
             

   
 

                
   
  

               
   

 

 
                                                      

We must use Newton-Raphson iteration method to estimate f (see Appendix(C) for more details), and also 

as previous case we can use the difference of right and left sides of (13) to obtain decreasing of 

uncertainty for our estimates . 

 

IV) MLE Parameter Estimation of Brody, Berry-Robnik and Abul-Magd 

distributions from experimental nuclear data and its comparison with other 

methods. 

As mentioned in previous sections, we expect that the estimated values with MLE method yield 

accuracies which is closer to CRLB. To this aim, we apply the MLE method in estimating the parameter 

of Brody distribution (A-4,5) by using the data sequences chosen in [3](The most used data sequences in 

obtaining  NNSD of nuclear spectra ). These sequences consist of levels with definite spin and parity of 

nuclei given in Table1 (this is the copy of Table2 given in Ref.(3)) obtained by applying unfolding 

processes to the experimental data of Refs. [27,28]. The estimated values of parameter of Brody 

distribution corresponding to these sequences are listed in tables 1 and 2, respectively, where first is 

obtained by LSF method while the second one by MLE method. In Maximal likelihood (ML) case we 

have followed the prescription explained in subsection III.1, namely ML estimated parameters correspond 
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to the converging values of iterations (A-4) and (A-5), where as an initial values we have chosen the 

values of parameters obtained by LSF method given in Table1, therefore the ML estimated parameters 

display reduction of uncertainties and yield estimator's variance very close to CRLB as shown in Figures 

(2,3) respectively for Brody and Berry-Robnik distributions(Due to similarity of CRLB shapes, we only 

represent two CRLB figures of  Tables2,3). 

 

 
 

                        

        
          

        
          

             
                 

                                                                          

                                                                               

                                                                               

                                                  

                                  

                                                                       

                                                                                

                                                     

                                                 

Table1 [1]: The LSF estimated values of q in Brody distribution for different sequences. 

 

 
 

                        

        
          

        
          

             
            

     

                                                                                 
       

                                                                                      
       

                                                                                      
       

                                                   
       

                               
       

     
     

                                                                  
       

     
     

                                                                             
       

     
     

                                          
       

                                                  
       

Table [2]: The ML estimated values of q in Brody distribution for the same sequences used in table 1.  Here every cell of table 

exhibits q-parameter of Brody distribution in every sequence. All sequences are collected from different nuclei with the method 

introduced in [3]. 

 

In Berry-Robnik distribution case, using the sequences of Ref. [5], the corresponding ML iterations given 

in (C-5) yields the estimated parameters listed in Table (3). Again we have chosen the parameters 

estimated by LSF method of Ref. (5) as initial values for the iterations. 
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Table [3]: Comparison of the ML estimated values of q in Berry-Robnik distribution with those estimated by LSF method for 

different sequences given in Ref. [4,5]. 

 

Considering the estimated q values (by MLE and LSF methods) given in tables 1,2 and 3, we can deduce 

the following important facts: 

I) Estimated values of parameters of both Brody and Berry-Robnik distributions given in Tables 1,2 and 3 

(estimated by LSF and ML methods, respectively), imply that the distribution of lightest nuclei (  

    displays chaotic behavior in compare to heaviest ones (     ). But the ML estimated values of 

parameter in both distributions are less than LSF estimated ones for behavior nuclei, consequently the 

spectrum of heaviest nuclei are more regular than what LSF estimation indicates. Similarly, in light 

nuclei, ML estimated values of parameter in both distributions  is less than LSF estimated ones, hence the 

spectrum of light  nuclei are not so much chaotic that  LSF estimation indicates. 

II) As it is predicted in Ref. [3]( by LSF estimation method),          levels are more regular (are more 

closer to Poisson  distribution) than         ones. Obviously ML estimated parameters given in Table 2 

confirm this but again all of above levels are more regular than what LSF indicates. 

III) The nuclei in            sequence (spherical nuclei) are located between two sequence of 

deformed nuclei, namely             and      . As it is shown  in Ref. [3, 24 ]( by LSF 

estimation method),  there is a considerable variation in the values of q, that is  its values drop to half 

value in the two neighboring mass region which implies that, spherical nuclei exhibit more chaotic 

dynamics in compare to deformed ones. The ML estimated values given in Table 2 confirm this behavior 

but predict less chaotic dynamic for all sequence. 

IV) Similarly, the spherical odd-mass and odd-odd nuclei display more chaotic dynamics in compare to 

deformed nuclei, where  ML estimated values given in tables 2 and 3 confirm this but predict less chaotic  

dynamic again. 

V) As already mentioned in previous sections, due to presence of noticeable uncertainty in LSF estimated 

values (because of High level variance of estimators), it is almost impossible to do any reliable statistical 

analysis of odd-odd nuclei in mass regions            and             while as a result of 

small variation in MLE method, hence minimum uncertainty, the trustworthy analysis is quite possible 

(See table 2 for these reliable ML estimated q values for above mass region). On the whole, ML estimated 
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values are almost exact in all sequences, even in cases with small sample sizes, where by LSF estimation 

method one cannot achieve the appropriate results. 

Also, we can compared ML and LSF estimated q values for different groups of nuclei with a given 

deformation parameter. As it is predicted by LSF method in Ref. [5], chaoticity degrees of sequence 

decrease with increasing of . The same behavior can be seen in ML estimated q values of Berry-Robnik 

distribution given in Table 4, but with less chaoticity degrees. Again these values are obtained by using 

the iterations given in (C-5) by choosing LSF estimated q values as an initial values. 

 

      Different Nuclei 

-0.025                

0.032                    

0.051                     

0.246                     

-0.125                     

0.217                 

Table [4] :The ML estimated values of q in Berry-Robnik distribution for different sequences (mass groups) of nuclei with given 

values of  . These sequences are prepared by the same method introduced in Ref.[5]. 

Also, in Abul-Magd distribution case, we use the sequences of oblate and prolate nuclei introduced in 

[22]. These are the sequences used in Ref. [22] for estimating the parameter f of Abul-Magd distribution 

by Bayesian estimation method (BEM). The corresponding ML iterations given in (C-11) yields the 

estimated f values listed in Table 5 and the corresponding NNSD distributions displayed in Fig. 4. As for 

the initial values of iterations, we have chosen both LSF and BEM (the values given in Ref. [22]) 

estimated values of parameter f, where both choice yield almost the same values given in Table 5.  

 

                                                                      

 

               
 

          

 

          

 

          

 

              
 

          

 

          

 

          

Table [5]: ML , LSF and BEM estimated values of f in  Abul-Magd distribution for  sequences of oblate and prolate nuclei given in Ref. [22], 

where BEM estimated values are those of Ref. [22] .  

The above given ML estimated values together with NNSD distributions displayed in Fig 4, like the 

previous distributions, reveals some regularity in oblate sequence in compare to prolate one, but similar to 

other cases with less chaoticity in both sequences. Also, the ML estimated parameters have the least 

amount of uncertainties since the variance of  estimator is  very close to CRLB as shown in Figures 5 

(Due to similarity of CRLB shapes, we only represent CRLB figure for oblate nuclei). where the 
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minimum CRLB correspond to  for the final value in iteration procedure (ML estimated value), while 

BEM estimated values correspond to initial values of iteration with variances far from the CRLB. 

Therefore, one can conclude that, MLE method yield the most exact result in compare to BEM and LSF 

estimation methods and display less chaoticity in compare to those methods. 

Also, in order to investigate level spacing distribution of different nuclei in IBM framework, we have 

chosen the sequences of Nuclei with specified symmetries listed in Table6. These nuclei correspond to 

well-known three dynamical symmetry limits and transitional regions of IBM characterized with      

    
  

    
  

 ratio. To this aim, following the method introduced in [3-5], we have prepared sequences with 

      levels from the experimental data [27-28] and then have estimated q parameter in Brody 

distribution by using the iterations (A-4,5) of corresponding estimators obtained from MLE method (see 

Fig. 7). Analogous to the theoretical anticipations [9,25-26], the NNSD distributions of these six regions 

displayed in Fig. 7 and also estimated values listed in Table 6, indicate that nuclei with U(5) dynamical 

symmetry [24-26] have maximum regularity in compare to other dynamical symmetry limits[6-9,24-26]. 

Again MLE method shows more regularity in above three symmetric limits. On the other hand, nuclei in 

transitional regions have chaotic behavior in compare to dynamical symmetry limits [9, 25-26]. Again 

ML yield estimator's variance very close to CRLB as shown in Figure 8 for SU(3) symmetry limit 

and           transition regions. 

Special group Nuclei 

U(5) 
98Mo,100Mo,108Cd,112Cd, 114Cd, 110Cd, 116Cd,118Cd ,118Te,120Te, 122Te, 124Te, 126Te ,112Sn, 114Sn ,134Xe ,154Dy,… 

O(6) 
56Fe,78Ge,80Se,130Ba,132Ba,132Ce,134Ce,196Hg, 194Pt,196Pt,198Pt, 198Hg,… 

SU(3) 
166Er,176Hf,180W,168Yb,174Hf, 160Dy, 230Th, 184W,232Th, 182W, 232U, 178Hf, 170Yb, 162Dy, 234U, 164Dy, 172Yb, 240Pu, 168Er, 

170Er, 246Cm,… 

SU(3)-U(5) Nd-Sm-Gd  isotopes 

U(5)-O(6) Ru-Pd isotopes, Xe isotopes(else ones mentioned in above series),134Ba 

O(6)-SU(3) Os-Pt isotopes(else 194Pt,196Pt,198Pt) 

Table [6]: The sequences of Nuclei with specified dynamical symmetries. 

 

                                                 

                                              

                                              

                                              

                                                       

                                                      

                                                      

Table [7]: Values of  q for sequences introduced in Table6,  estimated by LSF and ML methods,  respectively.  



15 
 

ML estimated values listed in Tables 4,5 and 7, more or less confirm the above deduced facts from the 

contents of Tables 1 and 2,  namely, due to  existence of noticeable uncertainty in LSF estimated values,  

reliable statistical analysis would be somehow impossible. On the other hand, as a result of small 

variation in MLE method, hence minimum uncertainty, the trustworthy analysis is possible. In general, 

ML estimated values are almost exact in all sequences, even in cases where one cannot reach the 

appropriate results by LSF or BEM estimation methods and also ML estimated values indicate less 

chaotic dynamics in compare to what LSF or BEM indicates. 

In order to compare different distributions, we evaluate Cramer-Rao lower bound, namely the term 

defined on the right hand side of Cramer-Rao inequality (12) as  

       

     
 

 
 

                                                           
 

 

For all distributions utilized here in this paper. To this aim, we have evaluated the Cramer-Rao lower 

bound for the Brody, Berry-Robnik and Abul-Magd distributions based on the sequences of prolate, 

oblate, three dynamical symmetry and also three transitional regions of IBM,  (please see Appendices B 

and C for details ) as tabulated below in Tables 8, 9. The above obtained result implies that, the MLE 

method yields good accuracies in all distributions, since the ML estimated values have the least 

uncertainty, that is, the variances in MLE method are more closer to the Cramer-Rao lower bound than 

those of LSF method as we were expecting. Also, Brody distribution has the least CRLB in compare to 

two other distributions; hence one can conclude that, it is the best NNSD distribution based on the 

existing theoretical and experimental data. 
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Nuclei 

 

Brody distribution 

 

Berry-Robnik distribution 

 

Abul-Magd distribution 

 

Oblate nuclei 

q= 0.73 q=0.37 f=0.61 

CRLB =            CRLB =         CRLB=         

 

Prolate nuclei 

q=0.82 q=0.21 f=0.78 

CRLB =          CRLB =         CRLB=         

Nuclei with U(5) 

symmetry 

q=0.46 q=0.44 f=0.57 

CRLB =         CRLB =         CRLB=         

Nuclei with SU(3) 

symmetry 

q=0.71 q=0.31 f=0.69 

CRLB =          CRLB =         CRLB=         

Nuclei with O(6) 

symmetry 

q=0.52 q=0.40 f=0.62 

CRLB =         CRLB =         CRLB=         

Nuclei in U(5)-O(6) 

region 

q=0.78 q=0.22 f=0.80 

CRLB =          CRLB =         CRLB=         

Nuclei in 

U(5)-SU(3) region 

q=0.74 q=0.29 f=0.71 

CRLB =           CRLB =         CRLB=         

Nuclei in 

SU(3)-O(6) region 

q=0.94 q=0.15 f=0.86 

CRLB =          CRLB =         CRLB=         

Table [8]: CRLBs for LSF estimated parameters in different distributions. 
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Nuclei 

 

Brody distribution 

 

Berry-Robnik distribution 

 

Abul-Magd distribution 

 

Oblate nuclei 

q= 0.59 q=0.44 f=0.57 

CRLB =           CRLB =         CRLB=         

 

Prolate nuclei 

q=0.72 q=0.36 f=0.64 

CRLB =          CRLB =         CRLB=         

Nuclei with U(5) 

symmetry 

q=0.33 q=0.64 f=0.35 

CRLB =         CRLB =         CRLB=         

Nuclei with SU(3) 

symmetry 

q=0.57 q=0.46 f=0.56 

CRLB =        CRLB =         CRLB=         

Nuclei with O(6) 

symmetry 

q=0.48 q=0.57 f=0.44 

CRLB =         CRLB =         CRLB=         

Nuclei in U(5)-O(6) 

region 

q=0.64 q=0.34 f=0.67 

CRLB =          CRLB =         CRLB=         

Nuclei in 

U(5)-SU(3) region 

q=0.63 q=0.40 f=0.61 

CRLB =          CRLB =         CRLB=         

Nuclei in 

SU(3)-O(6) region 

q=0.74 q=0.30 f=0.71 

CRLB =          CRLB =         CRLB=         

Table [9]: CRLBs for ML estimated parameters in different distributions. 

One of the widely used method for comparing different distributions is Kullback-Leibler Divergence or 

Kullback-Leibler Distance (KLD). KLD is a non-symmetric measuring method of distance between the 

difference two probability distributions   and  . For two probability distributions   and   with discrete 

random variables, KLD is defined as (see Appendix(C) for more details) 

                      
    

                                                                                                                                        

All distribution used in this paper, namely Brody, Berry-Robnik and Abul-Magd distributions are one-

parameter distributions and as their parameter varies, they intermediate between Poisson and Wigner 

distributions, namely the distribution correspond to the limiting values of parameter. Fortunately, in these 

distribution, KLD reveals the  same behavior as the parameter does. Namely, for the values of their 

parameter near one of the limits (estimated by all three estimation methods MLE, BEM and LSF), KLD 

displays closer distances to the corresponding limiting distributions. As we pointed out already  in 
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previous sections, ML estimated values exhibit more regularity in all sequences, therefore, one can 

conclude that ML estimated values have closer Kullback-Leibler Distance to Poisson limit. 

 

V. Conclusions 

      In the present paper, MLE method is utilized in investigating the statistical properties of nuclear 

spectra in NNSD framework. Using MLE method, we have estimated the parameter of all used 

distributions (Brody, Berry-Robnik and Abul-Magd) in sequences of different mass groups, nuclei with 

special values of deformation parameter (), oblate and prolate nuclei and also for nuclei correspond to 

three dynamical symmetry limits and transition regions in the framework of the Interacting Boson Model 

(IBM) (with pure experimental data). 

In all cases, the ML estimated values have minimum uncertainty in compare to those estimated by other 

methods, that is, the variation of ML estimated values are rather small and close enough to CRLB. 

Therefore, in investigating the statistical properties of nuclear spectra, MLE method is more reliable than 

other estimation methods, particularly LSF one, such that ML estimated values indicate more regular 

dynamics in compare to what LSF or BEM indicates. This is more obvious in cases with small size of 

data, such that LSF estimated values are not reliable at all. Finally, besides reliability, MLE method is 

also more handy than other sophisticated estimation methods such as BEM. 
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Appendix 
 

Appendix A 

Brody distribution 

As mentioned in previous sections, our used distribution has some differences in compare to certain 

distributions. This is because of troubles which occur in Likelihood function but in the following we will 

display, our choice doesn’t have any difference with the main one 

                      
                                                                                                                                   

                     
 
     

   
 
                 

  
          

   

                                                

     
         

  
      

 

 
   

   
 

 

 
                                                 

    
         

  
       

 

 
       

   
 

 

 
      

 

   
                              

And we can get the final result by using of Newton-Raphson iteration method:  

      
    
    

   
    
    

                                                                                                                      

                    

              

  

              

  

              

  

              

  

   
 
 

 
       

   
                                                 

 

  

 
 

 
       

   
   

 
 

      
   
 

 
       

     

               
 
 

 
       

        
 

 
  

 

       
 

    
  

 

    
  
    
 

       
       

 

 
      

 

      
 

  
 

 
       

       
 
  

 

    
   

    
 

       
  

 

       
 

        
  

                           

                                                                                                                                                                     

 
  

    
 

       
   

       
 

        
   

 
 
   

       
 
    

   
 
 
       

        
    
 

       
       

 
 
      

 
      

 

  
 
 
       

       
 

 
 

    
   

    
 

       
   

       
 

        
  

  

And if we plot (b)’ values in all iteration stages as have displayed in Figure (9), obviously it would have 

the same behavior as coefficient of main distribution which we have changed it in our calculations. 
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AppendixB 

CRLB’s calculation 
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 And for Fisher information 

           
           

 
                                            

                                                       
  
                                                          

 In the above relation have 
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 And our used estimator functions for minimum variation are 
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 And with proposed functions and derivatives, we have 
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Appendix C 

I) In this section as same as App (A) and App(B) ,we replay our calculation for Berry-Robnik distribution 

             
 

 
         

    
 

 
                                                                                                              

                
 
        

 

 
          

     
 

 
        

 
 
                                                                  

                  
 

 
         

 

   

      
 

 
        

 

 

   

 

    
       

  
  

  
 
 
   

  
 
 
        

      
 

 
   

                                                                              

 And with Newton-Raphson iteration method, we can get final result as 

             
       

        
                                                                                                                                        

             

   
  

 
    

     
 
  

          

     
 
    

  

 
    

 
     

 

      
 
  

           
 

                                                                           

     And CRLB for Berry-Robnik distribution 
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II)  Abul-Magd’s distribution [10,17] 

                       
  

 
                         

   

 
  

           

 

   

                  
   
 
  

                    
   

 

  

 

   

                                    

                                
   
 
 

 

   

                     
   

 

 
 

 

   

                        

       

  
  

             
   
 

                
   
  

               
   

 

 
                                     

          
       

        

      

 
                

   
 

                         
   
 
 
                  

   
 

 

 
                                 

   
 
                   

   
 
  

                         
   
 
  

         
 

                

As explained for Berry- Robnik distribution, we can introduce CRLB for Abul-Magd’s distribution 
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III) Newton-Raphson method 

 If we have n non-linear equations from n variables 

                                                                             

Now if      and         , we have 
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 And finally, we can introduce Jacobian matrices   

      

 
 
 
 
 
   
   

 
   
   

   
   
   

 
   
    

 
 
 
 

                                                                                                             

 Now if         is a derivability function in       if we expand   about   , we can obtain in 

matrices form 

                                                                                                                                                                                                                                                                            

D) Kullback-Leibler Divergence (KLD) 

The K-L divergence of the probability distributions P and Q of a discrete random variable is defined as: 

                  
    

    
 

                                                                                                              

In a word, in the average of the logarithmic difference between the probabilities P and Q, the average is 

taken by using of the probabilities P. The K-L divergence only can be defined if the sum of P and Q be 1 

and if Q(i) > 0 for any i , such that P(i) > 0. If the 0log0 is appeared in the formula, it would be 

interpreted as zero. 

For distributions P and Q of a continous random variable, KL-divergence is defined to be an integral : 

                  
    

    

  

  

                                                                                                       

Where  p and q denote the densities of P and Q. 

More generally, if P and Q are probability measures over a set X, and Q is absolutely continuous with 

respect to P, then the Kullback–Leibler divergence from P to Q is defined as 

               
  

  

 

 

   

where 
  

  
 is the Radon-Nikodym derivative of Q with respect to P, and it provides an expression that is 

exist in  the right-hand of the equation. Likewise, if P is absolutely continuous with respect to Q, then 
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We can introduce some properties of KLD as: 

 The Kullback–Leibler divergence is always non-negative, 

            

a result known as Gibbs' inequality,  and  DKL(P||Q) would be zero if and only if P = Q. 

 The Kullback–Leibler divergence remains well-defined for continuous distributions, and furthermore, 

under the parameter transformations it would be invariant  

 The Kullback–Leibler divergence is additive for independent distributions in a very similar way as 

Shannon entropy. If P1,P2 are independent distributions, with the joint distribution P(x,y) = 

P1(x)P2(y), and Q,Q1,Q2 likewise, then 
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Figure caption 

Figure1. Casten triangle [14], three vertices show dynamical symmetry limits and three edges show 

transitional regions, respectively. 

Figure2. (Color online). Plots of CRLB for  q estimated values of Brody distribution for  spherical and 

deformed nuclei listed in table2. In both graphs, the horizontal axis represents number of iteration and 

vertical one, represents                     
  

   
  
    

 

  
   . 

Figure3. (Color online). Plots of CRLB for q estimated values of Berry-Robnik distribution for two 

different mass regions (               ) listed table3. In both graphs, the horizontal axis represents 

number of iteration and vertical one represents              
 

     
  . 

Figure4. (Color online). Plots of NNSDs for sequences of oblate and prolate nuclei given in Ref. [10] 

Figure5. (Color online). Plot of CRLB for f estimated values of Abul-Magd distribution for oblate nuclei 

listed in Table 5, where the horizontal axis represents number of iteration and vertical one 

represents             
 

     
  . 

Figure6. (Color online). Plots of NNSD for different nuclei correspond to three Limits (dynamical 

symmetries) of IBM and transitional regions between these limits (all sequences are prepared by 

experimental data given in Refs.[27,28]) 

Figure7. (Color online). Plots of CRLB for q estimated distribution for  nuclei with SU(3) symmetry and 

also for nuclei in transitional region between two U(5) and O(6) limits. In both graphs, the horizontal axis 

represents number of iteration and vertical one, represents                    
  

   
  
    

 

  
   . 

Figure8. (Color online). Variation of our proposed constant for Brody distribution in different iteration 

stages which verify our aim that any change does not occur with the main distribution.  The horizontal 

axis represents number of iteration and vertical one represents  
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Figure5 
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Figure6 
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Figure7 
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