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Abstract. We consider the possibility to observationally differentiate the Standard Model
(SM) Higgs driven inflation with non-minimal coupling to gravity from other variants of
SM Higgs inflation based on the scalar field theories with non-canonical kinetic term such
as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the
Einstein tensor.
In order to ensure consistent results, we study the SM Higgs inflation variants by using the
same method, computing the full dynamics of the background and perturbations of the Higgs
field during inflation at quantum level.
Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC
technique to derive constraints on the inflationnoary parameters and the Higgs boson mass
from their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs
mass measurement by the LHC and accurate determination by the PLANCK satellite of the
spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish
among these models. We also show that the consistency relations of the SM Higgs inflation
variants are distinct enough to differentiate the models.
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1 Introduction

There has been much interest recently in models of inflation in which the Standard Model
(SM) Higgs boson non-minimally coupled to the Ricci scalar can give rise to inflation without
the need for additional degrees of freedom to the SM [1–5]. This scenario is based on the ob-
servation that the problem of the very small value of the Higgs quadratic coupling required
by the Cosmic Microwave Background (CMB) anisotropy data can be solved if the Higgs
inflaton has a large non-minimally coupling with gravity [6]. The resultant Higgs inflaton
effective potential in the inflationary domain is effectively flat and can result in successful
inflation for values of non-minimally coupling constant ζ ∼ 104 (ζ-inflation), allowing for
cosmological values for Higgs boson mass in a window in which the electroweak vacuum is
stable and therefore sensitive to the field fluctuations during the early stages of the universe
[7].
Limits of validity of ζ-inflation have been recently debated by several authors. Specifically,
Barbon & Espinosa (2009) argued that the large coupling of Higgs inflaton to the Ricci
scalar makes this model invalid beyond the ultraviolet cutoff scale Λζ ≃ MP /ζ (hereafter
MP = 2.4×1018 GeV is the reduced Planck mass) which is below the Higgs field expectation
value at N e-foldings during inflation, φ ≃

√
NMP /

√
ζ. As consequence, at the ultraviolet

cutoff scale Λζ at least one of the cross-sections of different scattering processes hits the uni-
tarity bound [9]. The fact that the quantum corrections due to the strong coupling to gravity
makes the perturbative analysis to break down at energy scales above Λζ was interpreted
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as a signature of a new physics, implying higher dimensional operators at energies above
Λζ . Few authors addressed the issue of ζ-inflation naturalness with respect to perturbativity
and unitarity violation in Jordan and Einstein frames [10–13]. They show that the apparent
breakdown of the theory in the Jordan frame does not imply new physics, but a failure of
the perturbation theory in the Jordan frame as a calculation method. These works demon-
strate that, for inflation based on a single scalar field with large non-minimal coupling, the
quantum corrections at high energy scales are small, making the perturbative analysis valid
and consequently there is no a breakdown of unitarity at the energy scale Λζ .
Recent works [14–16] revisit the issue of self-consistency of ζ-inflation model emphasizing
that the scale of unitarity violation depends on the size of the Higgs background field. They
found the cutoff scale Λζ higher than the relevant dynamical scales throughout the whole
history of the universe, including the inationary epoch and reheating, indicating that the
theory does not violate unitarity at any time.
Although the above conclusion theoretically may allow to work within the regime of validity
of the effective theory for inflationary calculations, other variants of Higgs inflation within the
SM have been proposed. These models are based on scalar field theories with non-canonical
kinetic term [17] and are motivated by some particle physics models of inflation such us the
Dirac-Born-Infed inflation [18, 19].

A model with non-minimal derivative couplings was proposed in [20–22] in context of
inationary cosmology, and recently, the inflation driven by a scalar field with a Higgs potential
and non-minimal kinetic couplings to itself and to the curvature was proposed in [23, 24]. In
the new model of Higgs inflation (E-inflation) an enhanced kinetic term in the Lagrangian
propagating no more degrees of freedom than the minimally coupled scalar field in General
Relativity (GR) is obtained by considering non-minimal derivative coupling of the SM Higgs
boson to the Einstein tensor [25]. The power counting analysis indicates that the scale at
which the unitarity bound is violated in this model is Λ(H) ≃ (2H2κ)1/3, where H is the
Hubble expansion during inflation. Requiring the unitarity constraint H ≪ Λ to be satisfied,
it is shown that the non-minimal derivative coupling allows a Higgs boson self-coupling value λ
within the limits expected from the collider experiments while the cosmological perturbations
in this model are consistent with present cosmological data [26, 27].

The Galileon models of inflation (G-inflation) are constructed by introducing a scalar
field with a self-interaction whose Lagrangian is invariant under Galileon symmetry ∂µφ →
∂µφ+ bµ, which maintains the equation of motion of the scalar field as a second-order differ-
ential equation, preventing the theory from exhibiting new degrees of freedom and avoiding
ghost or instability problems [28–30]. Recently, an inflation model in which inflation is
driven by the SM Higgs scalar field with a Galileon-like kinetic term has been proposed [31].
The dynamics of background and perturbations of G-inflaton show new features brought by
the modified kinetic term in the Lagrangian, when compared with the standard slow-roll
inflation, such as: violation of the standard consistency relation [31, 32], violation of the
Null Energy Condition [33], generation of isocurvature perturbations and large primordial
non-Gaussianity [34–37].

In this paper we analyze to possibility to distinguish among the SM Higgs inflation
variants by using the existing cosmological and astrophysical measurements. We will adopt a
similar philosophy as in [38], considering that the SM Higgs inflation variants are consistent
theories and therefore should be subject to rigorous tests against experimental data.
Cosmological constraints on the SM Higgs driven ζ-inflation have been discussed by a number
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of authors [2–4]. These constraints are based on mapping between the Renormalization Group
(RG) flow equations and the spectral index of the curvature perturbations obtained by the
WMAP team, parametrized in terms of the number of e-foldings till the end of inflation.
In a recent paper [39] we studied the implications of the full dynamics of background and
perturbations of the Higgs field during ζ-inflation at quantum level and derive constaints on
the inflationary parameters and the Higgs boson mass from the analysis of WMAP 7-year
CMB measurements complemented with astrophysical distance measurements [45, 46].
Our goal in this paper is to refine the computation for ζ-inflation by considering in the analysis
the improved RG flow equations, accounting at the same time for the possible uncertainties in
the theoretical determination of the reheating temperature. We also make a similar analysis
for G-inflation and E-inflation models and derive constraints on the inflationary parameters
and Higgs boson mass from their fit to the same data set, ensuring in this way that the
differences in the predictions of the observables are due to the differences in the underlying
theories of the SM Higgs inflation and therefore can be used to distinguish among them.

The paper is organized as follows. In Section 2 we introduce the there models of the
SM Higgs inflation that we consider: ζ-inflation [1], G-inflation [31] and E-inflation [25, 26].
In Section 3 we compute the RG improved Higgs field potential and in Section 4 we present
our main results. In Section 5 we draw our conclusions.
Throughout the paper we consider an homogeneous and isotropic flat background described
by the Friedmann-Robertson-Walker (FRW) metric:

ds2 = gµ,ν dxµ dx
ν = −dt2 + a2(t)dx2 , (1.1)

where a is the cosmological scale factor, κ2 ≡ 8πM−2

pl (where Mpl ≃ 1.22 × 1019 GeV is the
Planck mass), overdots denotes the time derivatives and ,X ≡ ∂/∂X.
We also remind that the canonical tree-level action describing the SM Higgs inflation is given
by:

S0 =

∫

d4 x
√−g

[

1

2κ2
R+ LSM

]

, (1.2)

where R is the Ricci scalar and LSM is the tree-level SM Higgs Lagrangian:

LSM = gµνDµH†DνH− λ
(

H†H− v2
)2

. (1.3)

In the above expression H is the Higgs boson doublet, Dµ is the covariant derivative with
respect to SU(2) × SU(1) and v is the vacuum expectation value (vev) of the Higgs broken
phase of the SM. Rotating the Higgs doublet such that HT = (1/

√
2)(0, v+φ) and assuming

that φ is much greather than vev during inflation we have:

LSM = P (φ,X) = X − V (φ) , X = −1

2
gµν∂µ∂νφ , V (φ) =

λ

4
φ4 , (1.4)

where λ is the tree-level Higgs self coupling and V (φ) is the corresponding Higgs potential.

2 Models: background equations and cosmological perturbations

In this section we derive the background equations of motion of the scalar field and present
the power spectra of scalar and tensor perturbations derived in the framework of linear
cosmological perturbation theory for the SM Higgs inflation models that we consider. A
review of chaotic inflation formalism in modified gravitational theories can be found in [40].

– 3 –



2.1 Higgs driven ζ-inflation

The general action for these models in the Jordan frame is given by [40, 41]:

SJ ≡
∫

d4x
√−g

[

U(φ)R − 1

2
G(φ)(∇φ)2 − V (φ)

]

, (2.1)

where U(φ) is a general coefficient of the Ricci scalar, R, giving rise to the non-minimal
coupling, G(φ) is the general coefficient of kinetic energy and V (φ) is the general potential.
The generalized U(φ)R gravity theory in Equation (2.1) includes diverse cases of coupling.
For generally coupled scalar field U = (γ+κ2ζφ2), G(φ) = 1 and γ and ζ are constants. The
non-minimally coupled scalar field is the case with γ = 1 while the conformal coupled scalar
field is the case with γ = 1 and ζ = 1/6. The conformal transformation for the action given
in Equation (2.1) can be achieved by defining the Einstein frame line element:

dŝ2 = Ω
(

−dt̂2 + â2(t̂)dx2
)

, Ω = 2κ2U(φ) , U(φ) = (1 + κ2ζφ2) , (2.2)

where the quantities in the Einstein frame are marked by caret. From the above equations
we get:

dâ =
√
Ωda , dt̂ =

√
Ωdt , (2.3)

and scalar potential V̂ (φ̂) in the Einstein frame is given by:

V̂ (φ̂) =
1

4κ4
V (φ)

U2(φ)
. (2.4)

The non-minimal coupling to the gravitational field introduces a modification of the Higgs
field propagator by a suppresion factor s(φ̂) defined as [4, 49]:

s(φ̂)−2 =

(

dφ̂

dφ

)2

=
1

2κ2
G(φ)U(φ) + 3U2(φ),φ

U2(φ)
, (2.5)

that made the kinetic energy in the Einstein frame canonical with respect to the the new
scalar field φ̂.
Background equations. The Friedmann equation in the Einstein frame reads as [42, 44]:

Ĥ2 =
κ2

3





(

dφ̂

dt̂

)2

+ V̂ (φ̂)



 , (2.6)

where:

Ĥ ≡ 1

â

dâ

dt̂
=

1√
Ω

[

H +
1

2Ω

dΩ

dt

]

, (2.7)

dφ̂

dt̂
=

(

dφ̂

dφ

)

(

dt

dt̂

)

φ̇ (2.8)

Equations (2.7) and (2.8) are enough to compute the background field evolution in the Ein-
stein frame once the field equations in the Jordan frame are known.
The Jordan-frame field equations from action (2.1) are obtained as [43]:

H2 =
κ2

3 (1 + κ2ζφ2)

[

V (φ) +
1

2
φ̇2 − 6 ζHφφ̇

]

, (2.9)
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φ̈+ 3Hφ̇+

(

κ2ζφ2(1 + 6ζ)

1 + κ2ζφ2(1 + 6ζ)

)

φ̇2

φ
=

κ2ζφV (φ)− (1 + κ2ζφ2)V, φ(φ)

1 + κ2ζφ2(1 + 6ζ)
, (2.10)

that in the slow-roll approximation ( |φ̇/φ| ≪ H and |φ̇2| ≪ V (φ) ) can be written as:

H2 ≃ κ2

3(1 + κ2ζφ2)
V (φ) , (2.11)

3Hφ̇ ≃ κ2ζφV (φ)− (1 + κ2ζφ2)V, φ(φ)

1 + κ2ζφ2(1 + 6ζ)
. (2.12)

Cosmological perturbations. Introducing the following quantities

Q̂S =

(

dφ̂/dt̂

Ĥ

)2

, ǫ̂ = −
˙̂
H

Ĥ2
, δ̂S =

˙̂
QS

2ĤQ̂S

,

γ̂S =
(1 + δ̂S)(2 + δ̂S) + ǫ̂)

(1 + ǫ̂)2
, ν̂S =

√

γ̂S + 1/4 , (2.13)

the power spectrum of the curvature perturbations in the Einstein frame is given by [43, 44]:

PR =
1

Q̂S

(

Ĥ

2π

)2(

1

âĤ|τ |

)2
(

Γ(γ̂S)

Γ(3/2)

)2(k|τ |
2

)3−2ν̂S

. (2.14)

where τ = −1/[(1 + ǫ̂âĤ] is the conformal time.
The spectral index of the curvature perturbations obtained as usual as nS ≡ 1+d lnPS(k)/d lnk
is:

nS − 1 = 3− 2ν̂S = 3−
√

4γ̂S + 1 . (2.15)

The power spectrum of the tensor perturbations in the Einstein frame is obtained from
Equation (2.14) making the following replacements:

Q̂S → Q̂T = 1 , γ̂S → γ̂T =
(1 + δ̂T )(2 + δ̂T ) + ǫ̂)

(1 + ǫ̂)2
, δ̂S → δ̂T =

˙̂
QT

2ĤQ̂T

= 0 . (2.16)

The spectral index of the tensor perturbations nT and the tensor-to-scalar ratio R are then
given by:

nT = 3−
√

4γ̂T + 1 R = 8
Q̂S

Q̂T

(

Γ(γ̂T )

Γ(γ̂S)

)2

. (2.17)

2.2 Higgs driven G-inflation

In this section we consider that inflation is driven by the SM Higgs potential with a kinetic
term modified by a function G(φ,X) such that the standard part of the Lagrangian given in
Equation (1.4) remains much larger than the Galileon interaction term, taking the form [31]:

LG(φ,X) = P (φ,X) −G(φ,X)�φ , where |P (X,φ)| ≃ V (φ) ≫ |G(X,φ)�φ| . (2.18)
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Background equations. The energy density and pressure of the homogeneous and isotropic
background field described by the FRW metric are [32, 37]:

ρ = 2P,XX − P + 6G,XHφ̇X −G,φX , (2.19)

p = P − (G,φ +G,X φ̈)X , (2.20)

where H = ȧ/a is the Hubble parameter. The gravitational field equations are then given
by:

3κ2H2 = ρ , −κ2
(

2H2 + 2Ḣ
)

= p , (2.21)

and the scalar field equation of motion reads as:

P,X(φ̈+ 3Hφ̇) + 2PXXXφ̈+ 2P,XφX − P,φ − 2G,XφX(φ̈− 3Hφ̇) (2.22)

+6G,X [(HX) + 3H2X]− 2G,φφX + 6G,XXHXẊ = 0 .

Since we are interesting in fluctuations generated during inflation, we assume a background
for which the quantities |φ̈/(Hφ̇)| and |G,φφ̇/(GH)| are much smaller than unity. Under
these assumptions, the first slow-roll parameter can be written as [34]:

ǫ ≡ − Ḣ

H2
=

XP,X + 3G,XHφ̇X

κ2H2
≪ 1 , (2.23)

and the sound speed of scalar perturbations is given by:

c2s ≡
∂X p

∂X ρ
=

F
G , (2.24)

where:

F = P,X + 4φ̇H G,X , (2.25)

G = P,X + 2XP,XX + 6Hφ̇(G,X +XG,XX) . (2.26)

Cosmological perturbations. The CMB temperature anisotropy directly relates to the statis-
tical properties of the primordial curvature perturbations R on large scales:

R = −H

φ̇
Q , (2.27)

where φ is the background value of the field and Q is the perturbation in the unitary gauge,
φ(x, t) = φ(t), with δφ = 0. The second order action in this gauge at leading order in the
slow-roll approximation reads as:

S2 =
1

2π2

∫

dτd3x
a3

2c2s
(P,X + 4φ̇HGX)

[

Q̇2 − c2s
a2

∂iQ∂iQ

]

, (2.28)

where τ is the conformal time. One should note that in the case of G-inflation the uni-
tary gauge does not coincide with the comoving gauge [31] as in the case of K-inflation for
which the scalar field Lagrangian is Lφ = P (X,φ) [47]. Consequently, there are two inde-
pendent solutions of the perturbation equation resulting from the second order action (2.28).
Introducing the following parameters

ν ≡ G,X φ̇X

κ2H
, ǫ̃ ≡ ǫ+ ν , (2.29)
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the power spectra for Q and R are obtained as [34]:

PQ =
X

4π2M2

plcsǫ̃
, PR =

1

8π2M2

pl

H2

csǫ̃
, (2.30)

which are evaluated at the time of sound horizon exit csk = aH. Defining the additional
slow-roll parameters:

η̃ ≡
˙̃ǫ

ǫ̃H
, s ≡ ċs

csH
, (2.31)

the spectral index of the curvature perturbations is obtained as:

ns − 1 =
dPR(k)

d lnk
= −2ǫ− η̃ − s . (2.32)

The power spectrum and the spectral index of tensor perturbations are given as usual in the
form:

PT =
2H2

π2M2

pl

, nT = −2ǫ . (2.33)

Thus, the tensor-to-scalar ratio R is:

R ≡ PT

PR
= −8cs(nT − 2ν) , (2.34)

that highlights the difference between G-inflation model and K-inflation model for which
R = −8csnT .

Hereafter we will consider Higgs potential driven G-inflation corresponding to the fol-
lowing setup [32]:

G(φ,X) = −g(φ)X , g(φ) =
φ

w4
, (2.35)

where w is a mass parameter assumed to be positive. Under the slow-roll conditions, the
energy density is dominated by the potential energy and the standard part of the kinetic term
in the Lagrangian given in equation (2.18) takes the form |P (φ,X)| ≃ V (φ). The speed of
sound corresponding to this setup is c2s ≃ 2/3 and the Friedmann equation and the equation
of motion of the scalar field read as:

H2 ≃ κ2

12
λφ2 , φ̇3 ≃ −2

3

κ2H

g(φ)
ǫ . (2.36)

2.3 Higgs driven E-inflation

In the recently proposed SM Higgs inflation model (E-inflation) with non-minimal derivative
coupling to gravity [25], the tree-level SM Higgs Lagrangian takes the form:

LE(X,φ) = −1

2

(

gµν − w2Gµν
)

∂µφ∂νφ− V (φ) , Gµν = Rµν − R

2
gµν , (2.37)
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where R is the Ricci scalar, Gµν is the Einstein tensor, w is a mass parameter and V (φ) is
the Higgs potential.
Background equations. The Friedmann equation and the field equation of motion are given
by:

H2 =
κ2

6

[

φ̇2(1 + 9H2w2) +
λ

2
φ4

]

, ∂t

[

a3φ̇(1 + 3H2w2)
]

= −a3λφ3 . (2.38)

Asking the solutions to obey the following constraints:

ǫ ≡ − Ḣ

H2
≪ 1 , 9H2w2φ̇2 ≪ λ

2
φ4 , H ≫ 1

3w
, |φ̈| ≪ 3H|φ̇| , (2.39)

Equations (2.38) can be written as:

H2 ≃ k2

12
λφ4 , φ̇ ≃ − 4

3Hw2κ2φ
. (2.40)

Cosmological perturbations. The power spectrum of the curvature perturbations evaluated at
the time of sound horizon exit csk = aH is obtained as solution of the perturbation equation
resulting from the canonically normalized second order action [26]:

PR =
κ2H2

4π2

1

12w2κ2φ̇2

(

1 +
19

2
w2κ2φ̇2

)

, (2.41)

where the sound speed of the curvature perturbations is

0 < c2s =
3− 13w2κ2φ̇2

3 + 18w2κ2φ̇2
< 1 . (2.42)

Introducing the first two slow-roll parameters:

ǫ ≡ − Ḣ

H2
=

3

2
κ2w2φ̇2 , (2.43)

η ≡ − φ̈

Hφ̇
= −9

4
κ2w2φ̇2 = −3

2
ǫ , (2.44)

to leading order in slow-roll approximation PR can then be written as:

PR =
κ2H2

4π2

1

8ǫ
, (2.45)

and the spectral index of the curvature perturbations is

nS − 1 =
d lnPR

d lnk
= 2

d lnH

d lnk
− d lnǫ

d lnk
, (2.46)

and by using Equations (2.43) and (2.44) can be written as:

nS = 1− 2ǫ− 2η = 1− 5ǫ . (2.47)

The power spectrum of the tensor perturbations is obtained as:

PT =
κ2H2

4π2Ω2c3g
, (2.48)
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where Ω and the sound speed of the gravitational waves cg are:

Ω2 = 1− 1

2
w2κ2φ̇2 , c2g ≃ 1 + w2κ2φ̇2 . (2.49)

To the leading order in w2κ2φ̇2 we have Ω ≃ 1 and cg ≃ 1. The spectral index of the tensor
perturbations is

nT =
d lnPT

d lnk
= −2ǫ , (2.50)

and the tensor-to-scalar ratio R is given by:

R =
PT

PR
= 12w2κ2φ̇2 = 8ǫ . (2.51)

3 Quantum corrections to the Higgs potential

The quantum corrections due to the interaction effects of the SM particles with Higgs boson
through quantum loops modify Higgs scalar potential from classical expression in both Jordan
and Einstein frames, taking the RG forms:

V (t) =
λ(t)

4
φ(t)4 , V̂ (t) =

1

16κ4
λ(t)φ4(t)

(1 + κ2ξ(t)φ2(t))2
, t = ln

(

φ

mTop

)

, (3.1)

where the scaling variable t normalizes the Higgs field and all the running couplings to the
top quark mass scale mTop = 171.3 GeV [48]. We compute the various t-dependent running
constants by integrating the RG β-functions as compiled in the Appendix. For each case,
the t-dependent running constants are obtained as:

Y (t) =

∫ t

t=0

βY (t
′)

1 + γ(t′)
dt′ , Y = {g, g′, gs, yt, λ, ζ} , (3.2)

where γ is the Higgs field anomalous dimension given by Equation (6.7) from Appendix.
At t = 0, which corresponds to the top quark mass scale mTop, the Higgs quadratic coupling
λ(0) and the top Yukawa coupling yt(0) are determined by the corresponding pole masses
and the vacuum expectation value v = 246.22 GeV as:

λ(0) =
m2

H

2v2
[1 + 2∆H(mH)] , yt(0) =

√
2mT

v
[1 + ∆T (mT )] , (3.3)

where ∆H(mH) and ∆T (mT ) are the corrections to Higgs and top quark mass respectively,
computed following the scheme from the Appendix of Espinosa et al.(2008). The initial
values of the gauge coupling constants at t = 0 are given by:

g2(0)

4π
= 0.03344 ,

g′2(0)

4π
= 0.01027 ,

g2s(0)

4π
= 0.1071 . (3.4)

The couplings g and g′ are obtained by integrating RG flow equations from their values at
MZ , while gs is calculated numerically [49]. The value of non-minimally coupling constant ζ
at the beginning of inflation is determined such that the calculated value of the amplitude
of the curvature density perturbations agrees with the measured value [50].

– 9 –



4 RESULTS

4.1 The CMB Angular Power Spectra

We obtain the CMB temperature anisotropy and polarization power spectra by integrating
the coupled Friedmann equation and equation of motion of the scalar field with respect to
the conformal time corresponding to the SM Higgs inflation variants, as presented in the
previous section. We take wavenumbers in the range 5× 10−6 − 5 Mpc−1 needed by CAMB
Boltzmann code [51, 52] to numerically derive the CMB angular power spectra and a Hubble
radius crossing scale k∗ = csk = 0.002Mpc−1 and impose that the electroweak vacuum
expectation value v =246.22 GeV is the true minimum of the Higgs potential at any energy
scale (λ(t) >0).

The value of the Higgs scalar field at the beginning of inflation φN determines the value
of the scaling parameter t = ln(φN /mTop) at this time.
For the case of ζ-inflation the value of φN relates to the quantum scale of inflation φI and
to the duration of inflation expressed in units of e-folding number N through [2]:

ϕ2
∗

ϕI
= ex − 1 , ϕI =

64π2M2

pl

ξAI

, x ≡ NAI

48π2
, (4.1)

AI =
3

8λ

(

2g4 + (g2 + g′2)2 − 16y4t
)

− 6λ , (4.2)

where the inflationary anomalous scaling parameter AI involves a special combination of
quantum corrected coupling constants [6, 49].
The value of the field at the end of G-inflation is obtained from Equations (2.23) and (2.35)
asking the solution to obey the condition ǫ = 1 at the end of G-inflation:

φend = 23/4λ−1/8κw1/2 . (4.3)

The number of e-folds till the end of G-inflation is then given by:

N =

∫ φend

φN

H

φ̇
dφ =

1

16

λ1/2

κ2w2
φ4 − 1

2
, (4.4)

from which the value of the field evaluated N e-folds before the end of G-inflation is:

φN = (16N + 8)1/4λ−1/8κw1/2 . (4.5)

In a similar way, the value of the field at the end of E-inflation is obtained from Equations
(2.40) and (2.43) by asking the solution to obey the condition ǫ = 1 at the end of E-inflation:

φ6

end =
32

w2κ4λ
, (4.6)

From the evaluation of the number of e-foldings N during E-inflation:

N =

∫ φend

φN

H

φ̇
dφ =

1

96
λw2κ4

(

φ6

N − φ6

end

)

, (4.7)
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we obtain the value of the field at N e-folds before the end of E-inflation as:

φ6

N =
32

w2κ4λ
(3N + 1) . (4.8)

As the inflationary observables are evaluated at the epoch of horizon-crossing quantified
by the number of e-foldings N before the end of the inflation at which our present Hubble
scale equalled the Hubble scale during inflation, the uncertainties in the determination of
N translates into theoretical errors in determination of the inflationary observables [53, 54].
Assuming that the ratio of the entropy per comoving interval today to that after reheating
is negligible, the main uncertainty in the determination of N is given by the uncertainty in
the determination of the reheating temperature Tr after inflation.
The dynamics of the Higgs field during G-inflation show that the effect of Galileon-like
interaction during reheating is very small and can be safely ignored because g = φ/w4

(φ ≪ w) term is suppressed around the minimum of the potential [32].
In the case of E-inflation the constraint wH ≫ 1 suppresses the canonically normalized field
φ ∼ (wH)−1 that becomes ineffective during reheating.
Recent studies of the reheating after ζ-inflation estimates Tr in the range [5, 55]:

3.4× 1013 GeV < Tr <

(

λ

0.25
)

)1/4

1.1 × 1014 GeV , (4.9)

that translates into a negligible variation of the number of e-foldings with the Higgs mass
(∆N ∼ 0.1). The number of e-foldings at Hubble radius crossing scale k∗ is related to Tr

through [38]:

N = ln

[

(

ρR
ρend

)1/3(g0T
3

0

g∗T 3
r

)1/3

Hλ

]

, (4.10)

where g∗ ≃ 106.5 for the SM, g0 ≃ 2 and T0 is the present value of the photon temperature.
Taking the variation range of Tr given in Equation (4.9) and N = 59 e-foldings at k∗, in the
view of WMAP7+SN+BAO normalization at this scale, we obtain 57.8 ≤ N ≤ 60.2 for the
number of e-foldings at which k∗ exits the horizon.
Throughout, we will consider N varying in the above range for all SM Higgs inflation variants.
In this way we conservatively included the same error ∆N ≃ 1.17 to account for possible
uncertainties in the theoretical estimate of Tr.
For each wavenumber k our code integrates the β-functions of the t-dependent running con-
stant couplings in the observational inflationary window imposing that k grows monotonically
to the wavenumber k∗, eliminating at the same time those models violating the condition for
inflation ǫ ≡ −Ḣ/H2 ≤ 1.

4.2 Markov Chain Monte Carlo (MCMC) Analysis

We use MCMC technique to reconstruct the Higgs field potential and to derive constraints
on the inflationary observables and the Higgs boson mass from the following datasets.
The WMAP 7-year data [45, 46] complemented with geometric probes from the Type Ia
supernovae (SN) distance-redshift relation and the baryon acoustic oscillations (BAO). The
SN distance-redshift relation has been studied in detail in the recent unified analysis of the
published heterogeneous SN data sets - the Union Compilation08 [56, 57]. The BAO in
the distribution of galaxies are extracted from Two Degree Field Galaxy Redshift Survey
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(2DFGRS) the Sloan Digital Sky Surveys Data Release 7 [58]. The CMB, SN and BAO
data (WMAP7+SN+BAO) are combined by multiplying the likelihoods. We use these mea-
surements especially because we are testing models deviating from the standard Friedmann
expansion. These datasets properly enables us to account for any shift of the CMB angular
diameter distance and of the expansion rate of the universe.
The likelihood probabilities are evaluated by using the public packages CosmoMC and
CAMB [51, 52] modified to include the formalisms for the SM Higgs driven G-inflation
and E-inflation as described in the previous sections.
The fiducial model is the ΛCDM standard cosmological model described by a set of parame-
ters receiving uniform priors. For the case of G-inflation and E-inflation we used the following
set of parameters:

{

Ωbh
2 , Ωch

2 , θs , τ , mHiggs , w , N
}

,

where: Ωbh
2 is the physical baryon density, Ωch

2 is the physical dark matter density, θs is
the ratio of the sound horizon distance to the angular diameter distance, τ is the reionization
optical depth, mHiggs is the Higgs boson pole mass, w is the mass parameter and N is the
number of e-foldings at the Hubble radius crossing.
For the case of ζ-inflation we used the same set of input parameters except for the mass
parameter w. For this case we use as input the amplitude of the curvature perturbations
A2

S ∼ λ/ζ2 that fix the value of the non-minimally coupling constant ζ at k∗ for a given value
of the Higgs boson mass.
For each inflation model we run 64 Monte Carlo Markov chains, imposing for each case the
Gelman & Rubin convergence criterion [59].

Figure 1 and Figure 2 show the dependence of the spectral index of the curvature
perturbations and of the tensor-to-scalar ratio respectively on the Higgs boson mass, as
obtained from the fit of the SM Higgs inflation variants to the WMAP7+SN+BAO data set.
Table 1 presents the mean values and the lower and upper intervals of the input and derived
parameters as obtained from their posterior distributions corresponding to each model.

We find that the confidence regions of nS and mHiggs for G-inflation and E-inflation
models are correlated as A2

S ∼ λ increases for heavier Higgs boson. For ζ-inflation model we
find the same confidence regions anticorelated. Since for this case we fixed the non-minimal
coupling constant ξ such that the amplitude of the curvature perturbations A2

S ∼ λ/ξ2 is at
the observed value, this anticorrelation reflects the fact that in the inflationary domain the
running of ζ dominates over the running of λ. Figure 1 clearly shows that at 2-σ level the
variation ranges of nS obtained for SM Higgs inflation variants do not overlap. However,
to discriminate among different models the measurement of the Higgs boson mass and an
improved detection of nS are required.
The connection between the physics of inflation and the low energy physics expected to be
proved by the collider experiments depends on the choice of UV-completion of each theory.
For ζ-inflation and E-inflation this introduces an uncertainty in the determination of Higgs
inflaton mass [14, 60]. For the case of G-inflation it has recently been argued that the choice
of the Lagrangian in the form L = G(X,φ) leads to second order equations of motion for any
choice of G(X,φ) and therefore to unitarity evolution as quantum field theory [61].
Therefore, if PLANCK satellite, designed to measure nS to 2-σ accuracy of 4×10−4, will find
nS smaller then 0.97, while LHC will find a Higgs mass significantly smaller then 151 GeV,
the ζ-inflation and E-inflation models would be ruled out. On the other hand, if PLANCK
will find nS higher then 0.97 while LHC will find the Higgs mass significantly higher then
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Figure 1. Two-dimensional marginalized joint probability distributions (68% and 95% CL) showing
the dependence of the spectral index of the curvature perturbations nS on the Higgs inflaton mass
mHiggs as obtained from the fit of the SM Higgs inflation variants withmTop=171.3 GeV and v=246.22
GeV to the WMAP7+SN+BAO data set. All parameters are computed at the Hubble crossing scale
k∗=0.002Mpc−1.

151 GeV the G-inflation model would be ruled out. One should note that the actual value
of nS measured by the WMAP team at 68% CL is nS = 0.968 ± 0.012 [45].

Figure 2 presents the equivalent dependences for R. The joint confidence regions of R
and mHiggs are uncorrelated for all SM Higgs inflation variants. These can be attributed to
a smaller contribution of the tensor modes to the primordial density perturbations when the
Higgs mass is increased. We also find a striking difference among the predicted intervals for
R by different models. While in the case of E-inflation and ζ-inflation the predicted values
for R are very low, the G-inflation model predicts R values large enough to be detected by
the PLANCK satellite. Also for this case we conclude that the measurement by LHC of
the Higgs boson mass and the detection by PLANCK of the tensorial modes are required
to discriminate among the SM Higgs inflation variants. If PLANCK will detect a value of
R ∼ 0.1 while LHC will find a Higgs mass significantly smaller then 151 GeV, the ζ-inflation
and E-inflation models would be ruled out.
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Figure 2. Two-dimensional marginalized joint probability distributions (68% and 95% CL) show-
ing the dependence of the tensor-to-scalar ratio R on the Higgs inflaton mass mHiggs as ob-
tained from the fit of the SM Higgs inflation variants with mTop=171.3 GeV and v=246.22 GeV
to the WMAP7+SN+BAO data set. All parameters are computed at the Hubble crossing scale
k∗=0.002Mpc−1.

Figure 3 presents the dependence of the tensor-to-scalar ratio on the spectral index of
tensor perturbations (the consistency relation) as obtained from the fit of the SM Higgs infla-
tion variants to the WMAP7+SN+BAO data set. Figure 4 clearly shows that the consistency
relations are unique enough to distinguish the SM Higgs inflation variants.

Finally, we address the question of the violation of perturbative unitarity for E-inflation
model. Figure 4 presents the dependence of the scale at which unitarity is violated in this
model, Λ ≃ (2H2κ)1/3, on the value of the background field φ and on the comoving curvature
perturbations R ≃ 12H2, as obtained from the MCMC analisys. We find that Λ is smaller
than both

√
R and φ during E-inflation, confirming that this model suffers from unitarity

problems [27], contrary to the original claims [26].

5 CONCLUSIONS

Although the SM Higgs inflaton non-minimally coupled to gravity can account for inflation
(ζ-inflation), other variants of Higgs inflation within the SM based on scalar field theories
with non-canonical kinetic term such as Galileon-like kinetic term (G-inflation) and kinetic
term with non-minimal derivative coupling to the Einstein tensor (E-inflation) have been pro-
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Figure 3. Two-dimensional marginalized joint probability distributions (68 % and 95% CL) showing
the degeneracy between the spectral index of tensor perturbations nT and the tensor-to-scalar ratio R
obtained from the fit of SM Higgs inflation models with mTop=171.3 GeV and v=246.22 GeV to the
WMAP7+SN+BAO dataset. For each case the dashed line shows the theoretical consistency relation.
All parameters are computed at the Hubble crossing scale k∗=0.002Mpc−1.

posed. In this paper we have analyzed the possibility to distinguish ζ-inflation, G-inflation
and E-inflation models through their predictions for nS and R as a function of mHiggs as
well as through their predictions for the consistency relations.
In order to ensure consistent results, we have studied the SM Higgs inflation variants consider-
ing the full dynamics of the background and perturbations of the Higgs field during inflation
and compute the RG improved Higgs potential by including the two-loop β-functions for
the SU(2) × SU(1) gauge couplings, the SU(3) strong coupling, the top Yukawa coupling,
the Higgs quadratic coupling and the Higgs field anomalous dimension. Assuming that all
SM Higgs inflation variants are consistent theories, we use the MCMC technique to de-
rive constraints on the inflationary parameters and the Higgs boson mass from their fit to
WMAP7+SN+BAO data set. We show that the SM Higgs inflation variants lead to signifi-
cant constraints on ns, R and mHiggs.
From the analysis of the confidence regions in nS-mHiggs plane we conclude that in order to
discriminate the SM Higgs inflation variants by using these parameters the measurement by
LHC of mHiggs and an improved detection of nS are required. If PLANCK satellite, designed
to measure nS to an accuracy of 4 × 10−4, will find nS smaller then 0.97, while LHC will
find a Higgs mass significantly smaller then 151 GeV, the ζ-inflation and E-inflation models
would be ruled out.

– 15 –



φ / M
P

Λ
 /
 M

P

0.019 0.02 0.021 0.022 0.023 0.024

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

2.04

x 10
−3

√R / M
P

2 2.05 2.1 2.15 2.2 2.25

x 10
−4

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

2.04

x 10
−3

Figure 4. Two-dimensional marginalized joint probability distributions (68% and 95% CL) showing
the dependence of the scale at which unitarity is violated Λ on the value of the background field
φ (left) and on the comoving curvature perturbations R (right) as obtained from the fit of the E-
inflation model with mTop=171.3 GeV and v=246.22 GeV to the WMAP7+SN+BAO data set. All
parameters are computed at the Hubble crossing scale k∗=0.002Mpc−1.

We also find a striking difference for the predicted values for R by different models. While
for E-inflation and ζ-inflation the predicted values for R are low, the G-inflation model pre-
dicts R values enough large to be detected by the PLANCK satellite. We conclude that
if PLANCK will detect a value of R ∼ 0.1 while LHC will find a Higgs mass significantly
smaller then 151 GeV, the ζ-inflation and E-inflation models would be ruled out.
We also show that the consistency relations are distinct enough to differentiate the SM Higgs
inflation variants.
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Table 1. Mean values and the lower and upper intervals (at 68% CL) of parameters obtained
from the fit of the SM Higgs inflation variants with mTop=171.3 GeV and v=246.22 GeV to the
WMAP7+SN+BAO data set. All parameters are computed at the Hubble radius crossing k∗=0.002
Mpc−1.

Model ζ-inflation G-inflation E-Inflation
Parameter

100Ωbh
2 2.2572.308

2.206 2.2722.296
2.247 2.2542.315

2.294

Ωch
2 0.1140.117

0.111 0.1170.123
0.113 0.1180.121

0.114

τ 0.0860.093
0.073 0.0940.109

0.083 0.0910.109
0.081

θs 1.0371.039
1.035 1.0391.041

1.038 1.0401.044
1.039

mHiggs(GeV) 155.37159.22
151.52 143.83152.98

134.87 151.578156.46
147.76

ζ × 10−4 3.1473.656
2.638 ... ...

w/MP ... 6.586.93
6.22 ×10−6 4.3694.522

4.194 × 108

N 58.8859.64
58.26 59.0159.79

58.13 58.8759.68
57.86

ln[1010A2

S ] 3.1613.193
3.129 3.1773.203

3.154 3.1513.188
3.124

nS 0.9720.9722
0.9716 0.9680.9690

0.9597 0.9750.9795
0.9741

nT × 102 -0.0442−0.0421
−0.0463 -1.575−1.560

−1.592 -1.023−1.018
−1.028

R 0.00360.0045
0.0027 0.1370.140

0.134 0.0410.0421
0.0387

6 Appendix

In this appendix we collect the SM renormalization group β-functions at renormalization
energy scale t = ln(φ/mTop) beyond the top quark mass mTOP .
All β-functions and the Higgs field anomalous dimension γ include the Higgs field suppression
factor s(t) that for the case of ζ-inflation is given by [4, 38]:

s(t) =
1 + ζ(t)φ2(t)

1 + (6ζ(t) + 1)ζ(t)φ2(t)
. (6.1)

For the case of G-inflation and E-inflation we take s(t) = 1.

The two-loop β-functions for gauge couplings gi = {g′, g, gs} are [7]:

βgi = κg3i bi + κ2g3i





3
∑

j=1

Bijg
2

j − s(t)dtiy
2

t



 , (6.2)

where κ = 1/16π2 and

b = ((40 + s(t))/6,−(20 − s(t))/6,−7), B =





199/18 9/2 44/3
3/2 35/6 12
11/6 9/2 −26



 ,

dt = (17/6, 3/2, 2). (6.3)
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For the top Yukawa coupling yt, the two-loop β-function is given by [4]:

βyt = κ yt

[

−9

4
g2 − 17

12
g′2 − 8g2s +

9

2
s(t)y2t

]

+ κ2yt

[

− 23

4
g4 − 3

4
g2g′2 +

1187

216
g′4 + 9g2g2s

+
19

9
g′2g2s − 108g4s +

(

225

16
g2 +

131

16
g′2 + 36g2s

)

s(t)y2t + 6
(

−2s2(t)y4t − 2s3(t)y2t λ+ s2(t)λ2
)

]

.

(6.4)

The two-loop β-function for the Higgs coupling λ is [4, 38]:

βλ = κ

[

(18s2(t) + 6)λ2 − 6y4t +
3

8

(

2g4 +
(

g2 + g′2
)2
)

+
(

−9g2 − 3g′2 + 12y2t
)

λ

]

+ κ2

[

1

48

(

915g6 − 289g4g′2 − 559g2g′4 − 379g′6
)

+ 30s(t)y6t − y4t

(

8g′2

3
+ 32g2s + 3s(t)λ

)

+ λ

(

−73

8
g4 +

39

4
g2g′2 +

629

24
s(t)g′4 + 108s2(t)g2λ+ 36s2(t)g′2λ− 312s4(t)λ2

)

+ y2t

(

−9

4
g4 +

21

2
g2g′2 − 19

4
g′4 + λ

(

45

2
g2 +

85

6
g′2 + 80g2s − 144s2(t)λ

))

]

. (6.5)

The β-function for non-minimal coupling ζ is given by [38]:

βζ = κ

(

ζ +
1

6

)(

6(1 + s(t))λ+ 6y2t −
3

2
g′2 − 9

2
g2
)

. (6.6)

Finally, the two-loop Higgs field anomalous dimension γ is given by [4]:

γ = −κ

[

9g2

4
+

3g′2

4
− 3y2t

]

− κ2
[

271

32
g4 − 9

16
g2g′2 − 431

96
s(t)g′4

]

+ κ2
[

−
(

45

8
g2 +

85

24
g′2 + 20g2s

)

y2t +
27

4
s(t)y4t − 6s3(t)λ2

]

, (6.7)
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