时滞对退化微分方程稳定性的强烈影响1

蒋威

安徽大学数学与计算科学学院,安徽合肥(230039)

E-mail: jiangwei@ahu.edu.cn

摘 要:本文讨论时滞对退化微分方程的稳定性强烈影响。首先,我们给出两个例子来表明时滞对退化微分方程影响的强烈。然后给出一些时滞对退化微分方程的稳定性没有强烈的影响的条件。

关键词: 时滞强烈影响; 稳定性; 退化微分方程

中图分类号: O175 文献标识码: A

0. 引言

时滞(有时也称为时延、停时、后效)现象是一种非常广泛的现象,目前它已经引起了很多学者的注意[1-7]。在一些实际系统中,如经济系统,生物系统,航天工业系统等等,由于信号的传输或者机械传输,时滞是不可避免的。有些时候时滞甚至可以破坏系统的稳定性。我们对此必须认真考虑。

文献[1]给出了泛函微分方程的基础理 论,给我们很多有用的方法和工具来研究时 滞系统。

在文献[6]中,Jean-Pierre Richard 给出了一些近年来时滞微分系统所做出的进展和公开问题。文献[2~4]和[7]也给出了许多关于时滞系统的结果。

我们发现,在一些系统中必须同时考虑运动状态和静止状态的特征。这些系统均为退化系统。近年来,许多学者对退化系统非常关注,而且给出了很多重要结果^[2,3,7~11]。

我们还注意到许多系统同时有时滞和 退化现象,我们称这样的系统为退化微分时 滞系统。这些系统有很多特殊的性质。在参 考文献[2,3,7,10,11],作者已经讨论了这样的 系统,得出了一些结论。

本文将讨论退化微分系统

$$\mathbf{E} \mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{x}(t-\tau), \tag{1}$$

其中 $\mathbf{x}^{(t)} \in \mathbf{R}^n$ 是状态向量: $\mathbf{E} \in \mathbf{R}^{n \times n}$ 是

退化矩阵; $A, B \in \mathbb{R}^{n \times n}$ 是矩阵; $\tau \ge 0$ 为时滞。

我们要考虑的是时滞对退化微分系统 (1)的稳定性的强烈影响。首先,我们给出两 个例子来表明时滞对退化微分方程影响的 强烈。然后给出一些时滞对退化微分方程的 稳定性没有强烈的影响的条件。

1. 时滞对退化系统稳定性的影响

在本节,我们讨论两个问题。一个问题是如果当 $\tau=0$ 时系统(1)稳定,那么当 $\tau>0$ 时系统(1)是否稳定?另一个问题是如果当 $\tau=0$ 时系统(1)不稳定,那么当 $\tau>0$ 时系统(1)是不是也不稳定?

我们首先给出一些预备知识。

定义 1: 如果 $\det(\lambda E - A) \neq 0$, 则称矩阵对(A, E)正则。如果(A, E)是正则的,则称系统(1)正则。

注:由文献[2]可知,如果 $^{(A,E)}$ 正则,那么系统 $^{(1)}$ 可解。

定义 2: 设

$$\boldsymbol{H}(\lambda) = (\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda \tau}), \tag{2}$$

则称方程

$$\det(\boldsymbol{H}(\lambda)) = |\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda \tau}| = 0, \quad (3)$$

中国科技论文在线

为系统(1)的特征方程。如果 $^{\lambda}$ 满足方程(3),则称其为系统(1)的特征根。

易见,如果 $^{\lambda}$ 是(3)的解,那么存在一个 非零向量 $^{x(0)}$,使得 $^{x(t)}=e^{it}x(0)$ 是(1)的解。

例 1 考虑下面的退化微分系统

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \dot{\boldsymbol{x}}(t) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \boldsymbol{x}(t) + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \boldsymbol{x}(t-\tau).$$

$$\stackrel{\text{def}}{=} \boldsymbol{\tau} = 0 \text{ pt}, \quad \text{系统(4)}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \dot{\boldsymbol{x}}(t) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \boldsymbol{x}(t).$$

$$(4)$$

则有 $\mathbf{x}_1(t) = -\mathbf{e}^{-t}\mathbf{x}_2(0)$, $\mathbf{x}_2(t) = \mathbf{e}^t\mathbf{x}_2(0)$ 。 系统(4)稳定。

 $\det(\boldsymbol{H}(\lambda)) = |\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda r}| = \lambda e^{-\lambda r} + 1$ 。下面 我们将证明对任意 $\tau > 0$, $\lambda e^{-\lambda r} + 1$ 在 C^+ 中 有许多零点。也就是说无论 τ 多么小,只要 $\tau \neq 0$,系统(4)就有不稳定解。

因为 $f(\beta_2^n) = 1, g(\beta_2^n) = \beta_2^n$,存在 $N \in \mathbb{N}$,使得对任意 $n \ge N$,

$$g(\beta_2^n) > f(\beta_2^n).$$

$$\Leftrightarrow \tilde{\beta}_n^k = \beta_1^n + \frac{1}{k},$$
我们有对充分大的 k 使
$$\tilde{\beta}_n^k \in (\beta_1^n, \beta_2^n),$$
且
$$g(\tilde{\beta}_n^k) < f(\tilde{\beta}_n^k).$$
(6)

由式(5)、式(6)以及 f 和 g 的连续性知, 存在 $\beta_n \in (\beta_1^n, \beta_2^n)$ 使得 $f(\beta_n) = g(\beta_n)$

$$\alpha_n = \beta_n \frac{\cos \tau \beta_n}{\sin \tau \beta_n}, \quad \text{回 } e^{\lambda \alpha_n} = f(\beta_n) \text{ } \text{由}$$

$$f(\beta_n) = g(\beta_n) \qquad 我 \qquad \text{们 } \text{知 } \text{道}$$

$$\alpha_n + e^{\tau \alpha_n} \cos \tau \beta_n = 0,$$

$$\beta_n + e^{\tau \alpha_n} \sin \tau \beta_n = 0$$

汉
$$\lambda_n=lpha_n+ieta_n$$
 ,则 $\lambda_n+e^{ au\lambda_n}=0$ 。即 $e^{- au\lambda_n}+1=0$ 。

因为
$$\alpha_n = \beta_n \frac{\cos \tau \beta_n}{\sin \tau \beta_n} > 0$$
 因为 ,可以看到对任 意 $\tau > 0$, $\lambda e^{-\lambda \tau} + 1$ 在 C^+ 中有许多零点。换 句说就是系统(4)有不稳定解。

例 2 考虑退化微分系统

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \dot{\boldsymbol{x}}(t) = \begin{pmatrix} 0 & 0 \\ -1 & -1 \end{pmatrix} \boldsymbol{x}(t) + \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \boldsymbol{x}(t - \tau)$$

$$(7)$$

当
$$\tau = 0$$
时,系统(7)为
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \dot{x}(t) = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} x(t)$$

如果
$$\lambda_n$$
是 $\lambda e^{-\lambda \tau} + 1 = 0$ 的解,那么 $-\lambda_n$ 是 $\lambda - e^{-\lambda \tau} = 0$ 的解。

我们已经证得,对任意 $\tau > 0$, $\lambda - e^{-\lambda \tau}$ 在 C^- 中有许多零点。也就是说尽管 $\tau = 0$ 时系统(7)不稳定,当 $\tau \neq 0$ 时,无论 τ 有多小,系统(7)都有稳定解。

2. 时滞无强烈影响的条件

在这一节中,我们给出一些条件,在这 些条件下时滞对退化微分方程的稳定性没 有强烈的影响。

设
$$C_{\alpha} = \{\lambda \in C / \operatorname{Re} \lambda > \alpha\} \text{ (其中} \alpha \in \mathbf{R})$$
, $S_{l} = \{\lambda \in C / |\lambda| < l\} \text{ (其中} l > 0)$, 令 H^{cl} 为集合 $H \subset C$ 的闭包。

定义 3: 对于系统(1),如果其所有的特征根都具有负实部,则称其为在所有模式稳定的意义下稳定的。

定理 1: 假设矩阵对(A, E)正则,当 $\tau = 0$ 时系统(1)稳定,如果存在 $\overline{l} > 0$ 使得对 -切 $\lambda \in C_0^d \setminus S_{\overline{l}}^d, \tau > 0$,都有 $\det \left[e^{\tau \lambda} I + (\lambda E - A)^{-1} B \right] \neq 0,$

则存在 $\tau^* > 0$ 使得对一切 $\tau \in (0, \tau^*)$,系统(1)是在所有模式稳定的意义下稳定的。

证明:由式(2),系统(1)的特征多项式可写为

$$\det \boldsymbol{H}(\lambda) = \det(\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda r})$$
$$= e^{-\lambda r} \det(\lambda \boldsymbol{E} - \boldsymbol{A}) \det \left[e^{r\lambda} \boldsymbol{I} + (\lambda \boldsymbol{E} - \boldsymbol{A})^{-1} \boldsymbol{B} \right].$$

对于多项式 $\det(\lambda E - A)$, 存在 $l_1 > 0$ 使得 对 一 切 $|\lambda| > l_1$, $\det(\lambda E - A) \neq 0$ 。 令 $\hat{l} = \max(\bar{l}, l_1)$, 我 们 有 , 对 一 切 $\lambda \in C_0^{cl} \setminus S_{\hat{l}}^{cl}$, $\tau > 0$,

$$\det \boldsymbol{H}(\lambda) = \det(\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda \tau})$$

$$= e^{-\lambda \tau} \det(\lambda \boldsymbol{E} - \boldsymbol{A}) \det[e^{\tau \lambda} \boldsymbol{I} + (\lambda \boldsymbol{E} - \boldsymbol{A})^{-1} \boldsymbol{B}]$$

$$\neq 0$$

因为当 $\tau = 0$ 系统(1)稳定,我们知道存在 $\tau^* > 0$ 使 得 对 一 切 $\tau \in (0, \tau^*)$ 和 $\lambda \in C_0^{cl} \cap S_i^{cl}$,

$$\det \boldsymbol{H}(\lambda) = \det(\lambda \boldsymbol{E} - \boldsymbol{A} - \boldsymbol{B} e^{-\lambda \tau}) \neq 0$$

由上面的讨论,存在 $\tau^* > 0$ 和 $\lambda \in C_0^{cl}$,使得对一切 $\tau \in (0, \tau^*)$, $\det H(\lambda) \neq 0$ 。那么系统(1)稳定。 定理得证。

我们给出另外一个定理。

定理 2: 设矩阵对 $^{(A,E)}$ 正则,且下面条件满足:

$$1^{0} \quad \lim_{|\lambda| \to \infty} (\lambda \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} = \Gamma$$
存在;

$$2^0$$
 Γ 的谱半径小于 1,即 $r(\Gamma) < 1$:

$$3^0$$
 当 $\tau = 0$ 时,系统(1)稳定;

则存在 $\tau^* > 0$ 使得对一切 $\tau \in (0, \tau^*)$,系统(1)在所有模式稳定的意义下稳定的。

证明:由 1^0 和 2^0 知,存在 $\overline{l}>0$ 使得一切

$$\lambda \in C_0^{cl} \setminus S_{\overline{l}}^{cl}, \tau > 0,$$

$$\det(\mathbf{e}^{\tau\lambda}\mathbf{I} + (\lambda\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}) \neq 0.$$

满足了定理的1的条件。由定理1可知定理2成立。

糸老立副

- [1] Jack K Hale, Sjoerd M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, Berlin, New York, 1992.
- [2] 蒋威. 退化微分时滞系统[M]. 合肥: 安徽大学出版社. 1998.
- [3] Jiang Wei. Eigenvalue and stability of singular differential delay systems [J]. Journal of Mathematical Analysis and Applications, 2004, 297: 305~316.
- [4] John Chiasson. A method for computing the interval of delay values for which a differential-delay system is stable [J]. IEEE Transactions on Automatic Control, 1988, 33: 1176~1178.
- [5] Jie Chen, On computing the maximal delay intervals for stability of linear delay systems [J]. IEEE Transactions on Automatica Control, 1995, 40: 1087~1093
- [6] Jean-Pierre Richard, Time-delay systems: an

overview of some recent advances and open problems [J]. Automatica, 2003, 39: 1667~1694.

- [7] Hartmut Logemann, Destabilizing Effects of Small Time Delays on Feedback Controlled Descriptor Systems [J]. Linear Algebra and its Application, 1998, 272: 131~153.
- [8] Dai L. Singular Control Systems Berlin, New York, Springer-Verlag, 1989.
- [9] Campbell S L. Singular Systems of Differential

- Equation (II). San Francisco, London, Melbourne, Pitman, 1982.
- [10] Jiang Wei and Zheng Zuxiu, The General Solution for the Degenerate Differential System with Delay, Acta Mathematical Sinica, 1999,42(5): 769~780.
- [11] Jiang Wei ,Variation Formula of Time Varying Singular Delay Differential Systems [J]. Journal Mathematics, 2003, 24(2): 161~166.

Delay drastic effects on stability of singular differential systems

Jiang Wei School of Mathematical Sciences, Anhui University, Hefei (230039)

Abstract

This paper considers delay drastic effects on stability of singular differential systems. Firstly, two examples are given to show that the time delay affects the stability of singular systems in a drastic way. Then some conditions are given, under which delay have no drastic effect on stability of singular differential systems.

Keywords: delay drastic effects; stability; singular differential systems