
ar
X

iv
:1

01
0.

35
73

v1
  [

as
tr

o-
ph

.S
R

]  
18

 O
ct

 2
01

0
Astronomy & Astrophysicsmanuscript no. Investigationofdynamicsofselfsimilarlyevolvingmagneticcloudsacceptedc©ESO 2010
October 19, 2010

Investigation of Dynamics of Self-Similarly

Evolving Magnetic Clouds

Giorgi Dalakishvili1,4, Andria Rogava2,3, Giovanni Lapenta4, and Stefaan Poedts4

1 Institut für Weltraum und Astrophysik, Ruhr-Universität Bochum (RUB)

e-mail:giorgi@tp4.rub.de
2 Centre for Theoretical Astrophysics, ITP, Ilia State University

e-mail:andria.rogava@iliauni.edu.ge
3 Abdus Salam International Centre for Theoretical Physics
4 Centre for Plasma Astrophyics, Katholieke Universiteit Leuven

e-mail: Giovanni.Lapenta@wis.kuleuven.be, e-mail:

Stefaan.Poedts@wis.kuleuven.be

Received,Accepted

ABSTRACT

Context. Magnetic clouds (MCs) are “magnetized plasma clouds” moving in the solar wind. MCs

transport magnetic flux and helicity away from the Sun. Thesestructures are not stationary but

feature temporal evolution. Commonly, simplified MC modelsare considered.

Aims. The goal of the present study is to investigate the dynamics of more general,radially

expanding MCs. They are considered as cylindrically symmetric magnetic structures with low

plasmaβ.

Methods. The self-similar approach method and a numerical approach are used.

Results. It is shown that the forces are balanced in the considered self-similarly evolving, cylin-

drically symmetric magnetic structures. Explicit analytical expressions for magnetic field, plasma

velocity, density and pressure within MCs are derived. These solutions are characterized by con-

served values of magnetic flux and helicity. We also investigate the dynamics of self-similarly

evolving MCs by means of the numerical code “Graale”. In addition, their expansion in a medium

with higher density and higher plasmaβ is studied. It is shown that the physical parameters of the

MCs maintain their self-similar character throughout their evolution.

Conclusions. A comparison of the different self-similar and numerical solutions allows us to con-

clude that the evolving MCs are quite adequately described by our self-similar solutions - they

retain their self-similar, coherent nature for quite a longtime and over large distances from the

Sun.

Key words. Magnetohydrodynamics (MHD) — Magnetic fields — Plasmas — Sun: solar

wind

1. Introduction

It is well-known thatcoronal mass ejections (CMEs) are one of the most significant forms of

solar activity. They carry enormous masses of plasma threaded by the magnetic field away into the

http://arxiv.org/abs/1010.3573v1
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interplanetary medium. Further away from the Sun, these large-scale, dynamical plasma structures

are commonly calledinterplanetary coronal mass ejections (ICMEs). Magnetic clouds (MCs) form

a subset of ICMEs (Klein & Burlaga 1982, Burlaga 1991, Farrugia et al. 1995). Spacecrafts crossing

the central parts of such MCs provide valuable information about their physical characteristics. It

turns out that MCs have a strong magnetic field, low proton temperatures (low plasmaβ, compared

to the ambient solar wind with the same speed) and they feature a substantial and smooth rotation of

the magnetic field vector. These three features of MCs are selected as signatures of MCs (Nakwacki

et al. 2008). The MCs are also characterized by a coherence ofthe magnetic field (low level of

fluctuations). The radial dimension ofa MC is typically≈ 0.25 AU (at 1 AU).

Thesein situ observations of the physical properties of MCs are considered as important steps

towards the prediction of the geophysical effectiveness of their interaction with the Earth’s magne-

tosphere, for space weather forecasts and related issues.

Different models for the structures of magnetic clouds have beenproposed. There is no gen-

eral agreement about the large scale structure of MCs. Commonly, the local structure of MCs is

considered in the form of cylindrically symmetric force-free configurations (Burlaga 1988, 1991,

Demoulin & Dasso 2009). It is often suggested that the ends ofMCs connect to the surface of

the Sun while, according to other models, MCs are described as tori (Vandas et al. 2006, 2009,

Romashets et al. 2006, 2007). In a number of studies, MCs are considered as force-free, static, axi-

ally symmetric flux ropes and their magnetic field is constructed on the basis of Lundquist’s model

(Burlaga 1988, Lepping et al. 1990, Farrugia et al. 1993). Observations show, however, that MCs

do not stay static but expand while propagating in the solar wind and they keep expanding well be-

yond 1 AU (Burlaga 1991, Demoulin 2008, Demoulin & Dasso 2009, Bothmer & Schwenn 1998).

In a large majority of the cases it is observed that the frontal parts of the MCs propagate with higher

velocities than their back regions. This shows that, with respect to the MC’s own cylindrical set of

coordinates, the radial size of those cylindrical MCs increases (Nakwacki et al. 2008). Theoretical

models including the effect of radial expansion have been proposed before (Osherovich et al. 1995,

Farrugia et al. 1993, Nakwacki et al. 2008). In these models,only the radial expansion is taken into

account and solutions have been found for all plasma parameters. There are other studies (Shimazu

& Vandas 2002, Demoulin & Dasso 2009), however, where the axial expansion is also included.

Previous studies also showed that inside MCs the densitydrops asd−2.4 (Bothmer & Schwenn

1998), i.e. thevolume of MC increases asd2.4, whered denotes the distance from the Sun. The

radius of the MCs, denoted by (R), also increased and at a rate changing with the distance, viz. as:

R ∼ d0.8 (Bothmer & Schwenn 1998). Since the surface of the MC’s crosssection perpendicular to

its axis increases asR2 ∼ d1.6, and the MC’s volume increases asd2.4, the MC’s longitudinal size

should increase asd0.8. Therefore, according to Bothmer & Schwenn’s data, the MCs are radially

expanding and also show an extension along their axis.

In the present study, we consider self-similarly expandingcylindrical MCs that are able to

expand both in the radial and longitudinal directions. We consider the problem in the frame of

the MC and in cylindrical coordinates related with the MC, i.e. with a longitudinal axisZ that

coincides with the MC’s axis. Overall cylindrical symmetryof the MC is assumed. Based on these

assumptions, we derive the appropriate full set of non-stationary MHD equations and find their

analytical solutions. The logical and natural consequenceof the assumptions of self-similarity and
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cylindrical symmetry is that the dynamic forces acting uponthe MCs are balanced. The solutions

include expressions for the plasma magnetic field, velocity, mass density and thermal pressure.

An important feature of our model is that certain significantcharacteristics of the MCs —

magnetic flux and helicity — are conserved. We separately consider also the particular case of a

MC that is allowed to expand only in the radial direction. It can be shown that in this case, the

MHD equations do not have any physical, self-similar solution.

2. Self-similar expanding MC models

2.1. General equations and self similar expansion

In order to perform an analytic study of the dynamics of magnetic clouds, we have to start from the

full set of MHD equations:

▽ · B = 0, (1)

∂tB = ∇ × [V × B] , (2)

∂t̺ + ∇ · (̺V) = 0, (3)

̺[∂t + (V · ∇)]V = (1/4π)(▽× B) × B − ∇ · p, (4)

In these equations,p denotes the thermal plasma pressure,̺ is the density,V is the velocity

field andB denotes the magnetic field.

In a number of previous studies, the MCs were considered as cylindrical magnetic structures,

characterized by axial symmetry. In the present consideration, both symmetry along theZ axis

(∂z = 0) and the azimuthal symmetry (∂ϕ = 0) are assumed. The axially-symmetric magnetic field

can then be expressed in the following way

B ≡ [0, Bϕ, Bz], (5)

whereBϕ = Bϕ(r, t) andBz = Bz(r, t). Note that this representation satisfies the solenoidal condition.

The self-similar approach, adopted here, implies that the temporal evolution of the physical

functions is controlled by the following self-similar variable:

ξ =
r
Φ(t)
, (6)

whereΦ(t) denotes a function of time. Let us search solutions of the MHD equations in the follow-

ing form (in analogy with Low 1982):

Bϕ = Φ
δQϕ(ξ), (7a)

Bz = Φ
σQz(ξ), (7b)

̺ = Φαρ̃(ξ), (7c)

p = Φβ p̃(ξ), (7d)

One can see that, the type of solutions introduced by Eqs. (7a-7d) evolve self-similarly and are

characterized by a particular time scaling.

Here Qϕ, Qz, ρ̃ and p̃ are functions of the self similar variableξ. Φδ, Φσ, Φα andΦβ show

the time scaling of the azimuthal and longitudinal components of the magnetic field, the plasma

density and the plasma pressure, respectively.
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2.2. Solution of the induction equation

We consider both a radial and a longitudinal expansion of theMC but no motion in the azimuthal

direction is considered. In this case theEulerian velocity field of the plasma,V, can be expressed

in the following way:

V = [Vr, 0, Vz]. (8)

Here, we assume that the radial component of the velocityVr = Vr(r, t), and thez−component

Vz = Vz(z, t), i.e. we assume that the MC maintains its cylindrical shapeduring its evolution.

After substitution of Eq. (8) in Eq. (2) we derive:

∂tBz +
1
r
∂r(rVrBz) = 0, (9a)

After taking into account relations (6), (7b) and the relations (A1) and (A2) given in the appendix,

Eq. (9a) can be rewritten as follows:

Qz

[

σΦ̇ +
Vr

ξ
+ Φ∂rVr

]

+ Q′z
[

Vr − ξΦ̇
]

= 0. (9b)

HereQ′z corresponds todQz(ξ)/dξ. Equation (9a) (therefore equation (9b)) is satisfied for arbi-

trary Qz only when:

Vr − ξΦ̇ = 0, (10a)

and

σΦ̇ +
Vr

ξ
+ Φ∂rVr = 0. (10b)

From Eq. (10a) and Eq. (10b) follows that radial component ofthe Eulerian plasma velocity is

described as follows:

Vr = rΦ̇/Φ, (11)

and

σ = −2, (12)

whereΦ is the function of time mentioned in Eq. (6).

One can check that forσ = −2 the longitudinal magnetic fluxφz is conserved. Nakwacki et al.

(2008) analyzed different MC models and derived expressions for the magnetic flux, the magnetic

helicity and the magnetic energy per unit length along the flux tube. The models which are in good

agreement with observations are characterized by the conservation ofφz, see also Berdichevsky et

al. (2003).

Let us analyze theϕ-component of the induction equation, Eq. (2):

∂t(Bϕ) + Bϕ∂zVz + ∂r(VrBϕ) = 0. (13)

The combination of Eqs. (11) and (13) leads to the following important relation:

(δ + 1)Φ̇/Φ + ∂zVz = 0. (14)

After taking into account expressions (5) and (8) in combination with the assumption of az-

imuthal symmetry, one can see that radial component of the induction equation, Eq. (2), is auto-

matically satisfied and does not lead to any additional restrictions.
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2.3. Self-similar solutions

After inserting the expression for the plasma density (7c),together with the velocity from Eq. (8),

with Eq. (11) for the radial component, in the mass conservation law Eq. (3), we obtain another

important relation, viz.

(α + 2)Φ̇/Φ + ∂zVz = 0. (15)

Obviously, in order to have consistency between Eqs. (14) and (15), one should have:α + 2 =

δ + 1.

The z-component of the equation of motion, Eq. (4), helps to derive an expression for thez-

component of the plasma velocity:

∂tVz + Vz∂zVz = 0. (16a)

Let us try to solve the partial differential equation (16a) by using the variable separation tech-

nique, i.e. we assume that

Vz(z, t) = Z(z)T (t). (16b)

Substitution of expression (16b) in Eq. (16a) yields:

ṪZ + ZT 2Z′ = 0, (17a)

hereḞ ≡ ∂tF denotes the first order time derivative of a functionF. Hereafter we will use, for

indicating second order derivatives, the notation:F̈ ≡ ∂2
t F. While Z′ stands fordZ/dz.

It follows from Eq. (17a) that:

−
Ṫ
T 2
= Z′ = const, (17b)

Equation (17b) can be decomposed into two ODEs, viz.

−
Ṫ
T 2
= λ, (17c)

and

Z′ = λ. (17d)

Here,λ is an arbitrary constant.

After solving the ODEs (17c-17d) with the assumption that, at the surfacez = 0, Vz = 0, we

derive the following expressions:

T =
T0

1+ λT0t
, (18a)

and:

Z = λz, (18b)

whereλ andT0 are constants.

After inserting Eqs. (18a-18b) in Eq. (16b), we obtain the wanted expression forVz:

Vz =
zk

1+ kt
. (19)

Here,k ≡ λT0.

We assumed that locally the MC could be described as a cylindrical structure. Let us investigate

the evolution of the lengthL of this cylindrical structure. For this purpose, let us describe the

temporal evolution of thez-coordinate of the plasma element located at the positionz = L at time
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t. The Lagrangian velocity of this element coincides with theEulerian velocity of the plasma flow

at time t and z = L. If at a certain time the coordinate of this element isL, then its Lagrangian

velocity is:

VL =
dL
dt
. (20a)

From Eq. (19) we then have:
dL
dt
=

Lk
1+ kt

. (20b)

The solution of this ordinary differential equation (20b) gives the following expression forthe

longitudinal size of the considered cylindrical structure:

L = L0(1+ kt), (20c)

where L0 is the length of the cylinder att = 0.

The radial component of the equation of motion, in combination with the expressions for the

magnetic field, the velocity and the plasma density leads to:

ΦαξΦ̈ρ̃ = Fr. (21)

Here, Fr denotes the radial component of the total force. In terms of ˜p, Qϕ,z, andξ, this force

component can be expressed as (details of the derivation aregiven in the appendix):

Fr = −
1
4π















1
Φ5

Q′zQz + Φ
δ−3















Q2
ϕ

ξ
+ Q′ϕQϕ





























−Φβ−1 p̃′, (22)

whereQ/ϕ,z = dQϕ,z/dξ, andp̃′ = dp̃/dξ. In order to have a self-consistent time scaling for all terms

in Eq. (22), one has to require thatδ = −2 andβ = −4. From a comparison of Eq. (14) to Eq. (15),

follows that ifδ = −2, thenα = −3.

At the same time, from Eq. (15) and Eq. (19):

Φ̇

Φ
=

k
1+ kt

. (23)

Equation (23) is an ordinary differential equation in terms ofΦ(t). After solving this ODE, we find

the following explicit expression forΦ(t):

Φ = Φ0(1+ kt). (24)

HereΦ0 is a constant parameter.

The substitution of expression (24) in Eq. (21) leads to an important conclusion: calculating

the magnetic and pressure gradient forces, we see that for the self-similarly evolving, cylindrical,

axially-symmetric structure the magnetic force,Fm ≡ 1/(4π)(▽ × B) × B and the thermal pressure

gradient force,Fp ≡ − ▽ ·p are exactly balanced, i.e.

Fr = Fm + Fp = 0. (25)

If we associate the valueξ0 of the self-similar variableξ with the boundary of the MC, then the

expression of the MC Lagrangian velocity is given by (Low 1982):

Vs =
dR
dt
= ξ0

dΦ
dt
. (26)

After substitution of the expression (24) forΦ in Eq. (26), we can derive a time-dependent solution

for the MC radius:

R = R0(1+ kt). (27)

Note that the form of this expression coincides with the one given by Nakwacki et al. (2008).
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2.4. Plasma and force-free field evolution

The rest of the solutions readily follows from the derived equations, yielding:

Vr =
rk

1+ kt
, (28a)

̺ =
˜̺

(1+ kt)3
, (28b)

and

p =
p̃

(1+ kt)4
. (28c)

Here, ˜̺and p̃ are arbitrary functions ofξ = r/Φ.

After analysis of the expressions for pressure and density (28b-28c), one can check that, for

systems characterized by entropy conservation, the entropy conservation law is satisfied only if the

polytropic indexγ = 4/3. Actually, this is a common feature of all different self-similar systems

(Low 1982, Farrugia et al. 1995, Finn et al. 2004).

From various observations it is known that MCs are characterized with low plasmaβ’s (Burlaga

et al. 1981, Burlaga 1991, Bothmer & Schwenn 1998). The thermal pressure term in the total force

could be neglected and this implies that we have to constructa force-free magnetic field that evolves

in a self-similar way. The cylindrically symmetric force-free structure of the MC’s magnetic field

is indeed advocated by a number of researches (Burlaga 1988,Lepping et al. 1990, Farrugia et al.

1993, Farrugia et al. 1995, Nakwacki et al. 2008, Demoulin & Dasso 2009). A force-free magnetic

field satisfies the following relation:

▽ × B = µB. (29)

If we rewrite the vectorial equation (29) for each componentof vectors, taking in to account ex-

pressions (7a), (7b) and (12), we obtain:

−Q′z = µΦQϕ, (30a)

Q′ϕ +
Qϕ
ξ
= µΦQz, (30b)

hereQ′ϕ,z stands fordQϕ,z/dξ. If we take the derivative of both terms of Eq. (30a) with respect to

the variableξ, we get:

−Q′′z = µΦQ′ϕ. (30c)

Here it was assumed thatµ does not depend onξ. In general, however,µ could be a function

of ξ.

If we take in to account expressions (30a) and (30c), we can derive from Eq. (30b) an ordinary

differential equation forQz:

Q′′z +
Q′z
ξ
+ µ2Φ2Qz = 0. (31a)

With the following transformation of variables:x = µΦξ, we can rewrite Eq. (31a) as follows:

d2Qz

dx2
+

1
x

dQz

dx
+ Qz = 0. (31b)

Actually Eq. (31b) is a Bessel equation of zero order, with the following solution:

Qz = J0(x) = C0J0(µΦξ), (32a)
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whereJ0(x) is the Bessel function of the first kind,C0 is a constant parameter. Notice that the

solution which is not characterized with a singularity atx = 0 has been chosen. The substitution of

Eq. (32a) in relation (30a) leads to an expression forQϕ:

Qϕ = J1(x) = C0J1(µΦξ), (32b)

with J1(x) the Bessel function of the first kind.

From Eqs. (32a-b) we see thatQϕ and Qz are the functions of µΦξ. Since we assumed

above thatµ is not a function of ξ, that Φ is only a function of t (Eq. (6)), and that Qϕ,z are

functions of only ξ (Eqs. (7a,7b)), it follows thatµΦ = const. The substitution of Eqs. (32a),

(32b), (24) and (6) in Eqs. (7a) and (7b) respectively, taking into account that δ = σ = −2,

leads to the following expressions for the components of themagnetic field:

Br = 0, (33a)

Bϕ =
B0

(1+ kt)2
J1

(

r
r0(1+ kt)

)

, (33b)

and

Bz =
B0

(1+ kt)2
J0

(

r
r0(1+ kt)

)

, (33c)

where B0 and r0 are constants.

(C0/Φ
2
0 is changed byB0 and µξ/Φ0 is substituted by1/r0.)

From Eqs. (33a − c) we can calculate important expressions for the magnetic flux and the

helicity (Nakwaci et al. 2008) associated with the MC:

Φz =
2π
χ

R
B0

(1+ kt)2
J1(χR), (34a)

Φϕ =
1
χ

B0

(1+ kt)2
L(1− J0(χR)), (34b)

and

H =
2π
χ

R2 B2
0

(1+ kt)4
L(J2

1(χR) − J0(χR)J2(χR) + J2
0(χR)), (34c)

whereχ ≡ 1/(r0(1+ kt)).

By its physical meaningΦz is the magnetic flux across the surface perpendicular to the axis of

a MC, whileΦϕ is the magnetic flux across the surface defined by the magneticaxis and the radial

direction. Moreover,R denotes the radius of the MC andL is longitudinal length of the cylindrical

structure. By inserting in Eqs. (34a − c) the corresponding expressions forR andL we find:

Φz = 2πR0r0B0J1

(

R0

r0

)

= const, (35a)

Φϕ = B0r0L0

[

1− J0

(

R0

r0

)]

= const, (35b)

and also

H = 2πr0R2
0B2

0L0

[

J2
1

(

R0

r0

)

− J0

(

R0

r0

)

J2

(

R0

r0

)

+ J2
0

(

R0

r0

)]

= const. (35c)

From these resultsit follows that the obtained solutionsensure the conservation of magnetic

flux and helicity inside the cylindrical MC described by our model.
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3. Radially expanding MCs

The purpose of this section is to find solutions for the physical variables in the case where only

the radial size of the MC increases. One can see that the solutions in this case do not remain self-

similar, although initially a self-similar expansion is assumed in the radial direction.

Below we consider MCsthat are expanding only radially; i.e. withVz = 0. In this case Eq. (14)

impliesΦ̇ = 0 orδ = −1. The case witḣΦ = 0 corresponds to thestationary state, which is trivial.

Let us consider the case whenΦ̇ , 0 butδ = −1. In order to provide a consistent time-scaling of

all terms in Eq. (22), we have to satisfy:

QϕQ
′
ϕ +

Q2
ϕ

ξ
=

Qϕ
ξ
∂ξ(ξQϕ) = 0. (36a)

An analysis of Eq. (6) (ξ = r/Φ(t)), Eq. (7a) (Bϕ = ΦδQϕ(ξ)) and Eq. (36a) leads to the

following expression:
1
r
∂r(rBϕ) = 0. (36b)

Here, it is taken into account that∂r = ∂ξ/Φ(t).

From Eq. (36b) we can conclude that:

Bϕ =
C
r
, (36c)

with C = const.

Note that the expression forBϕ is characterized by a singularity at the axis (r = 0). It seems

reasonable to conclude that, if we do not consider the axial stretching of self-similarly evolving

MCs, we can not obtain a physically valid solution for theBϕ− component on the axis of the MC.

4. Numerical study: higher density and higher plasma β case

In this section, we investigate the evolution of MCs in a medium by means of the model described

in Section 2. For this purpose, the Lagrangian numerical MHDcode“Graale“ (Finn et al. 2004)

is used, which enables us to check whether the above-obtained solutions maintain their self-similar

nature when they propagate in a medium. In the numerical code, azimuthal and cylindrical sym-

metries are implied. Furthermore, it is assumed that the magnetic structure expands uniformly in

the longitudinal direction, in other wordsVz = zL̇/L; with L the length of the cylinder. An analy-

sis of Eqs. (20a-20c) and Eq. (19) shows that the derived expression for the longitudinal velocity

coincides with the one implemented in the code.

The assumptions of cylindrical and azimuthal symmetries inthe code and the prescription of

the character of the longitudinal motions makes the numerical simulations 1D. In the numerical

runs the units of the physical parameters are chosen as follows: the unit lengthLunit = 0.1AU = 15·

106 km is of the order of the MC’s radius at 1 AU, the unit magnetic field Bunit = 3 nT, and the unit

number densitynunit = 10 cm−3. After taking into account that the proton massmp ≈ 1.7·10−27 kg,

one derives that the unit mass density isρunit = mpn0 = 0.8 · 10−14 kg/m3. The unit speed is the

Alfvén speed corresponding toρunit andBunit: Vunit = V0A = 20.5 km/s, which is of the order of

the MC’s edges expansion velocity in the frame of the MC (Vandas et al., 2009), and the unit time

tunit =
Lunit
Vunit
= 200 h. A domain withRmin = 0 andRmax = 10 is discretised with 2000 grid cells. The

time step used in the simulations is∆t = 5 · 10−7 (Rmin, Rmax and∆t are given in units introduced
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above-Lunit and tunit). Open boundary conditions are applied. Inside the calculation domain, we

introduce initial conditions for the physical variables intwo different regions: inside the MC and

outside the MC.

Evidently, the solutions inside and outside the magnetic structure should satisfy the following

jump conditions across the surface of any MC:

[̺υr] = 0 (37a)
[

̺υ2
r + p +

1
8π

B2

]

= 0 (37b)

[

1
2
̺υ3

r + (
γp
γ − 1

+
1
4π

B2)υr

]

= 0 (37c)

and, finally,

[̺υrυt] = 0 (37d)

Here, [·] denotes the jump of the quantity between the brackets across the surface of the MC.

Also, υr = Vr − Vs, whereVr andVs are the plasma and the MC’s surface velocity, respectively,

while υt denotes the plasma velocity tangential to the surface of theMC. Equation (28a) and

Eq. (26) show thatυr = 0, which is logical for ideal MHD. Equations (37a,37c,37d) are satis-

fied for arbitrary values of the plasma density and Eq. (37b) leads to the condition:
[

p +
1
8π

B2

]

= 0. (38)

We know that the plasma mass density inside the MCs is lower than outside them and the

plasmaβ within a MC is lower than in the ambient plasma. We therefore considerβ ∼ 1 in the

ambient environment andβ ∼ 0.1 inside the MC. For the magnetic field within the MC, we use

the solution expressed by Eqs. (33a-33c). For the magnetic field outside the MC, we assume that

the azimuthal component of the magnetic fieldBϕout = 0, while the longitudinal componentBzout

is uniform. We also assume that the mass density and the thermal pressure are uniform in both

regions of the computational domain.

Bearing in mind these assumptions and jump conditions (37−38), one can find explicit expres-

sions for the plasma pressure and magnetic field outside the MC.

Figure 1 represents the numerical solutions for the plasma mass density and velocity, while

Fig. 2 shows solutions for the magnetic field components at different moments in time. On panels a

and b we plotted the dimensionless values of the density, velocity and magnetic field. On panels c

and d the dependence of the modified values of the physical parameters on the self-similar variable

is presented.

The dependence of the modified mass density and velocity as well as the dependence of the

modified magnetic field components on the self-similar variable clearly shows that our solutions

maintain their self-similarity in the course of the MC expansion.

5. Discussion and Conclusions

In this paper, we presented a detailed derivation of a class of self-similar analytic solutions of the

MHD equations for both radially and axially expanding MCs and a numerical investigation of these

solutions. The usage of the self-similar approach is quite common for the modeling of various kinds

of solar plasma structures, flows and eruptions (Low 1982, Osherovich 1993, Farrugia et al. 1995,
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Nakwacki et al. 2008, Shapakidze et al. 2010). In most of the previous studies, however,only the

radial expansion of the MCs was considered. In the present study, we took into account also the

axial stretching of the MCs, which is a common observed feature of at least some MCs. We have

obtained explicit analytical expressions for the magneticfield, the plasma velocity, the density and

the plasma pressure. Essentially, our solutions maintain their self-similar nature during the whole

course of their evolution and propagation through the solarwind. These solutions are complete and

well-defined, fully analytic and, moreover, in the particular case of the absence of the longitudinal

expansion, our solutions self-consistently match the analytic solutions derived by other authors

(Farrugia et al. 1995).

Note that for the class of solutions introduced by Eqs. (7a-7d), the assumptions of self-similarity

and axial and azimuthal symmetry lead to the fact thatΦ(t) is a linear function of time (Φ(t) is the

time dependent function of the self similar variableξ = r/Φ(t)). In this case, the forces within the

MCs are bound to be balanced. We can thus conclude that the case in which the magnetic structures

are characterized by a low plasma-β, corresponds to the force-free magnetic field case. Remark that

this result is also in agreement with the conclusion ofprevious studies. We therefore believe that

this is a correct and proper time-dependent generalizationof the widely used stationary Lundquist

model (Lundquist 1950). Note also that in their recent papers Vandas et al. (2006, 2009) made

a comparison of the generalized Lundquist model with observations and found good agreements

between this classic model and the experimental data.

It must be emphasized that our study is not the only one in which the axial stretching of the

MCs is taken into account together with their radial expansion. As a matter of fact, Shimazu &

Vandas (2002) also considered MCs with similar properties.In this particular paper, the authors

used the mathematical approach introduced by Osherovich etal. (1995). In order to separate the

time-dependent parts of the solutions from multiplicativefunctions of the self-similar variable only,

Shimazu & Vandas (2002) imply a so-called “separable magnetic” field, which was introduced in

Osherovich et al. (1995). The approach introduced in Osherovich et al. (1995), turns out to be

quite restrictive because it requires anad hoc relation between the different components of the

magnetic field. Also, in order to separate the time-dependent part from the coordinate dependent

parts in the momentum equation, in addition to the polytropic law, the authors introduced a specific

mathematical expression for the thermal pressure (see Eq. 17 Osherovich et al. 1995). Actually,

the mentioned expression relates pressure and mass density(see Eqs. (13-17) Osherovich et al.

1995). In our study, on the contrary, we used B.C. Low’s approach (1982) and required a similar

time-scaling for all parts of the Lorentz force and the forcecaused by the gradient of the thermal

pressure. We argue that our approach is more general and putsless non-physical restrictions upon

the physical parameters.

Another difference of the results presented here with those of Shimazu & Vandas (2002) is with

the temporal expansion scaling. Shimazu & Vandas assume that the longitudinal and the radial

expansion have the same time scaling, while in our work this is not assumed but it rather logically

follows as the by-product of the accurate solution of the MHD equations. In their paper, the time-

dependent function of the self-similar variable is characterized by a linear dependence on time

only when the thermal pressure is zero, while we have derived an explicit expression of this time-

dependent function of the self-similar variable and it has been shown thatΦ is a linear function of

the time variable and it does not depend on the character of the pressure function.
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Yet another difference between the results presented here and the results ofShimazu & Vandas

is related to the structure of the MC magnetic field. Shimazu &Vandas, in order to derive explicit

expressions for the magnetic field, used the assumption thatthe magnetic structure of the MC

is described by a force-free magnetic flux rope. In our study,however, we derived an explicit

expression for the magnetic field. We have derived ordinary differential equations (Eqs. (30a)-

(30b)) for the functions describing the components of the magnetic field, after solving the equation

of motion for the case which corresponds to a low plasmaβ within the MC. For a particular type

of parameters, we have found explicit, analytical solutions for the components of the magnetic

field (Eqs. (33a)-(33c)). Note that these expressions are a time dependent generalization of the

well-known Lundquist solutions (Lundquist 1950, Burlaga 1988).

Our model implies the conservation of magnetic flux and helicity by design, which is satisfac-

tory and in good agreement with previous investigations (Nakwacki et al. 2008, Demoulin & Dasso

2009, Kumar & Rust 1996).

For further confirmation of the validity of our solutions, weinvestigated the dynamics of mag-

netic clouds numerically. In the numerical code Graale we introduced our self-similar solutions as

initial conditions. The obtained numerical results showedthat during the evolution and propagation

of these MCs, their physical variables maintained their self-similar character. This circumstance

was illustrated by Fig. 1 and Fig. 2.

Obviously, the class of solutions found in this paper is quite idealized. The assumptions about

the self-similar evolution and the consideration of a cylindrical symmetric structure are quite well-

justified, but real MCs show self-similar coherence and cylindrical symmetry only approximately.

Hence, in a future study it would be reasonable and interesting to consider more realistic config-

urations. There are several issues related to the model which can be tested and generalized in a

forthcoming study:

1. Our assumptions, just like in previous investigations (Low 1982, Farrugia et al. 1995, Finn et

al. 2004, Shapakidze et al. 2010), for the systems where entropy is conserved, put a restriction

on the value of the polytropic indexγ = 4/3. We would like to develop a model that helps to

avoid this restriction.

2. Our model describes the plasma dynamics only inside the MC. In the near future, we plan to

investigate the interaction of an MC with its environment byconstructing consistent solutions

of the MHD equations outside the MC.

3. We investigated the obtained analytical solutions numerically using a 1D MHD code and a sim-

ple model for the flow outside the MC was implemented. It wouldbe interesting and reasonable

to study the MC evolution also with 3D numerical codes, wherea more complicated and re-

alistic background flow can be implemented (in preparation). For this purpose the obtained

solutions could be used as initial state in the 3D numerical simulation codes. We are interested

in an investigation of the different possible boundary conditions on the surface of the magnetic

cloud.
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Appendix A:

In this appendix we would like to give some details of derivation for Eq. (21) and Eq. (22).

During the process of derivation were implied following relations:

∂r =
1
Φ
∂ξ, (A1)

∂t = −
ξ

Φ
Φ̇∂ξ. (A2)

These relations follow from Eq. (6).

Equation (21) is the radial component of the equation of motion-Eq. (4). In cylindrical coordi-

nates the left term of Eq. (4) can be written as follows:

ρ [∂t + (V · ∇)Vr] = ρ [∂tVr + Vr∂rVr] . (A3)

If we take into account relation (6) and expression forVr (Eq. 11) we can obtain following

expressions:

∂tVr = r
Φ̈

Φ
− r

(

Φ̇

Φ

)2

, (A4)

Vr∂rVr = r

(

Φ̇

Φ

)2

. (A5)

After substitution of Eq. (A4) and Eq. (A5) into Eq. (A3) we get:

ρ [∂t + (V · ∇)Vr] = ρξΦ̈. (A6)

If we combine of Eq.(7c) and Eq (A6) we obtain:

ρ [∂t + (V · ∇)Vr] = ΦαξΦ̈ρ̃, (A7)

the left term of Eq. (21).

In order to derive the first part of the right term of Eq. (22) let us introduce the following

notation:

∇ × B ≡ J. (A8)

After taking into account expressions for magnetic field (7a-7b) withσ = −2 we get:

Jr =
1
r
∂ϕBz − ∂zBϕ = 0, (A9)

Jϕ = ∂zBr − ∂rBz = −∂rBz = −
Q′z
Φ3
, (A10)

and

Jz =
1
r
∂r(rBϕ) −

1
r
∂ϕBr =

1
r
∂r(rBϕ) =

QϕΦδ−1

ξ
+ Q′ϕΦ

δ−1. (A11)
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Since we know expressions of vectorJ we can derive the vectorial product ofJ andB which

represents the first part of the right term of Eq. (22).

Combination of relation (A1) with the expression for pressure Eq. (7d) leads to the expression

of the second part of the right term of Eq. (22).
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Fig. A.1.Snapshots of the evolution of the plasma density and velocity field. Panel a) represents the

dependence of the plasma density on the radial coordinate for four moments in time; Panel b) shows

the dependence on the plasma velocity on the radial coordinate for four time moments; Panel c) and

Panel d) illustrate the dependence of the modified density and the modified velocity, respectively,

on the self similar variable. Parameter values for this casearek = 2, B0 = 1, ̺out = 3̺in, βin = 0.1,

βout = 1, andΦ0 = 1. Black line corresponds tot = 0, red line represents the momentt = 0.5/3,

green line shows the time moment 1/3, and blue line corresponds to the momentt = 0.5.
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Fig. A.2. Snapshots of the evolution of the magnetic field components.Panel a) represents the de-

pendence of the azimuthal component of the magnetic field on the radial coordinate for four time

moments; Panel b) shows the dependence of thez-component of the magnetic field on the radial

coordinate for four time moments; Panel c) and Panel d) illustrate the dependence of the modi-

fied azimuthal andz-components of the magnetic field, respectively, on the selfsimilar variable.

Parameter values for this case arek = 2, B0 = 1,̺out = 3̺in, βin = 0.1,βout = 1, r0 = 1, andΦ0 = 1.

Black line corresponds tot = 0, red line represents the momentt = 0.5/3, the line shows the time

moment 1/3, and blue line corresponds to the momentt = 0.5.


	1 Introduction
	2 Self-similar expanding MC models
	2.1 General equations and self similar expansion
	2.2 Solution of the induction equation
	2.3 Self-similar solutions
	2.4 Plasma and force-free field evolution

	3 Radially expanding MCs
	4 Numerical study: higher density and higher plasma  case
	5 Discussion and Conclusions
	A 

