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ABSTRACT

Context. Magnetic clouds (MCs) are “magnetized plasma clouds” ngiirthe solar wind. MCs
transport magnetic flux and helicity away from the Sun. Thetsgctures are not stationary but
feature temporal evolution. Commonly, simplified MC modaie considered.

Aims. The goal of the present study is to investigate the dynanficeare generalradially
expanding MCs. They are considered as cylindrically symmetric maigngtuctures with low
plasmas.

Methods. The self-similar approach method and a numerical approachsed.

Results. It is shown that the forces are balanced in the considerégiseilarly evolving, cylin-
drically symmetric magnetic structures. Explicit anadgtiexpressions for magnetic field, plasma
velocity, density and pressure within MCs are derived. €hmsutions are characterized by con-
served values of magnetic flux and helicity. We also inveséighe dynamics of self-similarly
evolving MCs by means of the numerical code “Graale”. In &#ddj their expansion in a medium
with higher density and higher plasras studied. It is shown that the physical parameters of the
MCs maintain their self-similar character throughout tesiolution.

Conclusions. A comparison of the dierent self-similar and numerical solutions allows us to-con
clude that the evolving MCs are quite adequately descrilyedub self-similar solutions - they
retain their self-similar, coherent nature for quite a ladimge and over large distances from the

Sun.

Key words. Magnetohydrodynamics (MHD) — Magnetic fields — Plasmas — Sunsolar
wind
1. Introduction

It is well-known thatcoronal mass gjections (CMES) are one of the most significant forms of

solar activity. They carry enormous masses of plasma tleckhy the magnetic field away into the
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interplanetary medium. Further away from the Sun, thegglacale, dynamical plasma structures
are commonly callethterplanetary coronal mass gjections (ICMESs). Magnetic clouds (MCs) form

a subset of ICMEs (Klein & Burlaga 1982, Burldga 1091, Faiawgall 1995). Spacecrafts crossing
the central parts of such MCs provide valuable informatibouw their physical characteristics. It
turns out that MCs have a strong magnetic field, low protorpernatures (low plasm@ compared

to the ambient solar wind with the same speed) and they featsubstantial and smooth rotation of
the magnetic field vector. These three features of MCs agetsel as signatures of MCs (Nakwacki
et al.[2008). The MCs are also characterized by a coherentteeahagnetic field (low level of
fluctuations). The radial dimension afMC is typically ~ 0.25 AU (at 1 AU).

Thesein situ observations of the physical properties of MCs are consitlas important steps
towards the prediction of the geophysicibetiveness of their interaction with the Earth’s magne-
tosphere, for space weather forecasts and related issues.

Different models for the structures of magnetic clouds have pesgosed. There is no gen-
eral agreement about the large scale structure of MCs. Cariyntbe local structure of MCs is
considered in the form of cylindrically symmetric forceedrconfigurations (Burlaga 1988, 1991,
Demoulin & Dassa_2009). It is often suggested that the endd©$ connect to the surface of
the Sun while, according to other models, MCs are descrikedra (Vandas et al. 2006, 2009,
Romashets et dl. 2006, 2007). In a number of studies, MCsoaigdered as force-free, static, axi-
ally symmetric flux ropes and their magnetic field is congedon the basis of Lundquist’'s model
(Burlaga 198B, Lepping et al. 1990, Farrugia ef al. 1993kddmtions show, however, that MCs
do not stay static but expand while propagating in the soladwand they keep expanding well be-
yond 1 AU (Burlaga 1991, Demoulin 2008, Demoulin & Dasso 2@&hmer & Schwenh 1998).
In a large majority of the cases it is observed that the fiqraes of the MCs propagate with higher
velocities than their back regions. This shows that, wipeet to the MC'’s own cylindrical set of
coordinates, the radial size of those cylindrical MCs iases (Nakwacki et &l. 2008). Theoretical
models including theféect of radial expansion have been proposed before (Oslobreval 1995,
Farrugia et al. 1993, Nakwacki et al. 2008). In these moadely, the radial expansion is taken into
account and solutions have been found for all plasma paesamédthere are other studies (Shimazu
& Vandad 2002, Demoulin & Das$o 2009), however, where thal @xipansion is also included.

Previous studies also showed that inside MCs the dediifys asd~>* (Bothmer & Schwenn
1998), i.e. thevolume of MC increases a¥“, whered denotes the distance from the Sun. The
radius of the MCs, denoted biR), also increased and at a rate changing with the distanceavi
R ~ d°8 (Bothmer & Schwenh 1998). Since the surface of the MC’s csestion perpendicular to
its axis increases @& ~ d'®, and the MC’s volume increases @&, the MC'’s longitudinal size
should increase a¥®8. Therefore, according to Bothmer & Schwenn’s data, the M@gadially
expanding and also show an extension along their axis.

In the present study, we consider self-similarly expandiplindrical MCs that are able to
expand both in the radial and longitudinal directions. Wesider the problem in the frame of
the MC and in cylindrical coordinates related with the M@, iwith a longitudinal axi& that
coincides with the MC's axis. Overall cylindrical symmetfthe MC is assumed. Based on these
assumptions, we derive the appropriate full set of noriestaty MHD equations and find their

analytical solutions. The logical and natural consequefitiee assumptions of self-similarity and
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cylindrical symmetry is that the dynamic forces acting ugieen MCs are balanced. The solutions
include expressions for the plasma magnetic field, velpegigss density and thermal pressure.

An important feature of our model is that certain significaharacteristics of the MCs —
magnetic flux and helicity — are conserved. We separatelgiden also the particular case of a
MC that is allowed to expand only in the radial direction. dincbe shown that in this case, the
MHD equations do not have any physical, self-similar soluti

2. Self-similar expanding MC models
2.1. General equations and self similar expansion

In order to perform an analytic study of the dynamics of maigrabouds, we have to start from the
full set of MHD equations:

v-B=0, 1)
0B =V x[V xB], (2)
do+V-(0V) =0, 3)

old + (V- V)V = (1/47)(vxB) xB -V - p, (4)

In these equationg) denotes the thermal plasma pressures the densityV is the velocity
field andB denotes the magnetic field.

In a number of previous studies, the MCs were consideredlagldgal magnetic structures,
characterized by axial symmetry. In the present consimgraboth symmetry along thg axis
(0 = 0) and the azimuthal symmetry{ = 0) are assumed. The axially-symmetric magnetic field
can then be expressed in the following way

B=[0, B, B, (5)

whereB, = B,(r,t) andB, = By(r, t). Note that this representation satisfies the solenoidualition.
The self-similar approach, adopted here, implies that ¢éngpbral evolution of the physical
functions is controlled by the following self-similar vatile:

r
=—, 6
€= 50 (6)
where®d(t) denotes a function of time. Let us search solutions of theb\itquations in the follow-

ing form (in analogy with Low 1982):

B¢ = (DﬁQLp(é‘:)’ (7a)
B, = ®7Q,(¢), (7b)
o= dp(¢), (70)
p =D P(9), (7d)

One can see that, the type of solutions introduced by Eqgstdyavolve self-similarly and are
characterized by a particular time scaling.

Here Q,, Q,, ¢ and p are functions of the self similar variable ®°, ®”, ®* and ®® show
the time scaling of the azimuthal and longitudinal compaserf the magnetic field, the plasma
density and the plasma pressure, respectively.
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2.2. Solution of the induction equation

We consider both a radial and a longitudinal expansion oMRebut no motion in the azimuthal
direction is considered. In this case thealerian velocity field of the plasmay, can be expressed
in the following way:

V=[V;, 0, V. (8)

Here, we assume that the radial component of the veldgity V,(r,t), and thez—component
V; = V(2 1), i.e. we assume that the MC maintains its cylindrical stdyréng its evolution.
After substitution of Eq. (8) in Eq. (2) we derive:

1
0B, + Far(rvr B) =0, (9a)
After taking into account relations (6), (7b) and the relati (A1) and (A2) given in the appendix,

Eqg. (9a) can be rewritten as follows:

Q,|od + V? + @0,V |+ Q[ Vi - £0] = 0. (9b)

HereQ), corresponds tdQ,(¢)/d¢. Equation (9a) (therefore equation (9b)) is satisfied fbi-ar
trary Q, only when:
V, — &0 =0, (10a)

and

o + v? + @9V, = 0. (10b)

From Eq. (10a) and Eq. (10b) follows that radial componeihefEulerian plasma velocity is
described as follows:
V, = r0/d, (11)

and
o=-2, (12)

where® is the function of time mentioned in Eq. (6).

One can check that far = —2 the longitudinal magnetic flug; is conserved. Nakwacki et al.
(2008) analyzed dierent MC models and derived expressions for the magnetictfiexnagnetic
helicity and the magnetic energy per unit length along thetfibbe. The models which are in good
agreement with observations are characterized by the n@igm of ¢,, see also Berdichevsky et
al. (2003).

Let us analyze the-component of the induction equation, Eq. (2):

o(By) + B,d:V; + 3: (Vi B,) = 0. (13)
The combination of Egs. (11) and (13) leads to the followmg@artant relation:
(6 + 1)D/® + 9V, = 0. (14)

After taking into account expressions (5) and (8) in comtimawith the assumption of az-
imuthal symmetry, one can see that radial component of tthecion equation, Eq. (2), is auto-
matically satisfied and does not lead to any additionalirtigns.
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2.3. Self-similar solutions

After inserting the expression for the plasma density (t@)ether with the velocity from Eqg. (8),
with Eq. (11) for the radial component, in the mass consemdaw Eg. (3), we obtain another
important relation, viz.

(@ +2)D/D + 8,V = 0. (15)

Obviously, in order to have consistency between Egs. (14)a8), one should have: + 2 =
0+1.
The zcomponent of the equation of motion, Eq. (4), helps to @éeam expression for the
component of the plasma velocity:
0tV + V20V, = 0. (16a)

Let us try to solve the partial fierential equation (16a) by using the variable separaticm-te

nigue, i.e. we assume that

Vi(z ) = Z(T (V). (160)
Substitution of expression (16b) in Eq. (16a) yields:
TZ+2T%Z =0, (17a)

hereF = d;F denotes the first order time derivative of a functrHereafter we will use, for
indicating second order derivatives, the notatibr: 2F. While Z’ stands fodZ/dz.
It follows from Eq. (17a) that: .
T
T2
Equation (17b) can be decomposed into two ODEs, viz.

=7 = congt, (170)

—— =2 (17c)

and
Z = (17d)

Here, 1 is an arbitrary constant.
After solving the ODEs (17c¢-17d) with the assumption thatha surface = 0,V, = 0, we

derive the following expressions:
To

T=—"— 1
1+ /1T0t’ ( 8a)
and:

Z=2z (18b)

whered andTy are constants.

After inserting Eqgs. (18a-18b) in Eq. (16b), we obtain theted expression fov,:
K

V= T3 kt (19)

Here,k = AT,.
We assumed that locally the MC could be described as a cidalditructure. Let us investigate
the evolution of the lengtlh of this cylindrical structure. For this purpose, let us disxthe

temporal evolution of the-coordinate of the plasma element located at the positierl. at time
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t. The Lagrangian velocity of this element coincides with Ehéerian velocity of the plasma flow

attimet and z = L. If at a certain time the coordinate of this element jthen its Lagrangian

velocity is:
dL
V= —. 2
L= (208)
From Eg. (19) we then have:
dL Lk
dt 14kt (200)

The solution of this ordinary flierential equation (20b) gives the following expression tfoe

longitudinal size of the considered cylindrical structure

L = Lo(L + ki), (20c)

where Ly is the length of the cylinder att = 0.
The radial component of the equation of motion, in comboratvith the expressions for the
magnetic field, the velocity and the plasma density leads to:

OUDp = Fy. (21)

Here, F, denotes the radial component of the total force. In termp,d®,,, andé, this force
component can be expressed as (details of the derivatiarieme in the appendix):

1
Fr = -

1 3 Qi 1
an EQQQZ + @ (_ + Q;Qw]} - " P, (22)

3

WhereQ{‘,,Z =dQ,,/d¢, andp = df/dé. In order to have a self-consistent time scaling for all ®rm

in Eg. (22), one has to require that —2 andB = —4. From a comparison of Eq. (14) to Eq. (15),
follows that if§ = -2, thena = -3.

At the same time, from Eg. (15) and Eq. (19):
® Kk

O L1+k
Equation (23) is an ordinary fierential equation in terms di(t). After solving this ODE, we find

(23)

the following explicit expression fob(t):
® = Do(1 + kt). (24)

Here®y is a constant parameter.

The substitution of expression (24) in Eq. (21) leads to aportant conclusion: calculating
the magnetic and pressure gradient forces, we see thatd@ethsimilarly evolving, cylindrical,
axially-symmetric structure the magnetic foré€g, = 1/(4r)(v x B) x B and the thermal pressure

gradient forceF, = — v -p are exactly balanced, i.e.
Fr=Fm+Fp=0. (25)

If we associate the valug of the self-similar variablé with the boundary of the MC, then the

expression of the MC Lagrangian velocity is given by (Low 2P8

drR do
Vs = E = foa (26)

After substitution of the expression (24) forin Eq. (26), we can derive a time-dependent solution
for the MC radius:
R = Rp(1 + kt). (27)

Note that the form of this expression coincides with the amergby Nakwacki et al[ (2008).
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2.4. Plasma and force-free field evolution

The rest of the solutions readily follows from the derivedatipns, yielding:

rk
V= oo (28a)
0
©= T+ k)P (280)
and .
=P _ (280)
P= ark*

Here,g'and g are arbitrary functions of = r/®.

After analysis of the expressions for pressure and den28p-28c), one can check that, for
systems characterized by entropy conservation, the gntapservation law is satisfied only if the
polytropic indexy = 4/3. Actually, this is a common feature of allftérent self-similar systems
(Low[1982, Farrugia et dl. 1995, Finn etlal. 2004).

From various observations it is known that MCs are charaetémwith low plasm#'s (Burlaga
et al[1981, Burlaga 1991, Bothmer & Schwénn 1998). The thkpmessure term in the total force
could be neglected and this implies that we have to consaricecte-free magnetic field that evolves
in a self-similar way. The cylindrically symmetric forcee structure of the MC’s magnetic field
is indeed advocated by a number of researches (Burlaga L8pping et al_ 1990, Farrugia et al.
1993, Farrugia et &l. 1995, Nakwacki et'al. 2008, Demoulin@s&n 2009). A force-free magnetic
field satisfies the following relation:

vV x B = uB. (29)

If we rewrite the vectorial equation (29) for each compor@ntectors, taking in to account ex-
pressions (7a), (7b) and (12), we obtain:

~Q, = u0Q,. (30a)

Q, + % = udQ,, (30b)

hereQ,, , stands fodQ, ,/d¢. If we take the derivative of both terms of Eq. (30a) with resipto
the variablet, we get:

~Q} = p0Q;. (300)

Here it was assumed thaj: does not depend or¥. In general, however,u could be a function
of &
If we take in to account expressions (30a) and (30c), we cawediecom Eq. (30b) an ordinary

differential equation fo®;:
// Q/Z

_ - + 120%Q, = 0. (31a)
With the following transformation of variables:= u®¢, we can rewrite Eq. (31a) as follows:
d’Q, 1dQ,
dX2 + ;(W + QZ =0. (3]b)

Actually Eq. (31b) is a Bessel equation of zero order, withfthllowing solution:

Qz = Jo(X) = CoJo(u®é), (329)
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where Jo(X) is the Bessel function of the first kin€ is a constant parameter. Notice that the
solution which is not characterized with a singularitykat 0 has been chosen. The substitution of
Eqg. (32a) in relation (30a) leads to an expressior(Jgr

Q, = Ji(¥) = Codu(u®é), (32)

with J;(X) the Bessel function of the first kind.

From Egs. (32a-b) we see thaQ, and Q, are the functions of u®é&. Since we assumed
above thaty is not a function of &, that @ is only a function of t (Eq. (6)), and that Q,, are
functions of only ¢ (Egs. (7a,7b)), it follows thatu® = const. The substitution of Egs. (32a),
(32b), (24) and (6) in Egs. (7a) and (7b) respectively, takqinto account thaté = o = -2,

leads to the following expressions for the components of thmagnetic field:

=0, (339)
B ( ) (330)
v @+ kt)2 ro(1 + kt)
and
B, = 1+ kt)2 (ro(l + kt)) (3%0)

where By and rg are constants.

(CO/CDS is changed byBy and ué&/®q is substituted by 1/rg.)

From Egs. (33 — ¢) we can calculate important expressions for the magnetcdhd the
helicity (Nakwaci et al. 2008) associated with the MC:

2r B
R 0

@: = ZRE s iR, (34a)
®, = S L~ B(R). (34

and 02
R2(1 kt)4L(J1(XR) B RLHR) + T(R)). (34c)

wherey = 1/(ro(1 + kt)).

By its physical meaning@; is the magnetic flux across the surface perpendicular toxiseo&
a MC, while®, is the magnetic flux across the surface defined by the magmédsi@nd the radial
direction. MoreoverR denotes the radius of the MC ahds longitudinal length of the cylindrical
structure. By inserting in Egs. (84- ¢) the corresponding expressions fandL we find:

O, = 27RoroBoJ; (;&) = congt, (3539)
0
(DLp = BorolLo |:1 - Jo(;&)] = congt, (35b)
0

and also

= const. (35¢)
fo 0 0

H = 2nroR2B2Lo [Jf(%) - Jo(&) JZ(;&) + Jé(;&)

From these resulis follows that the obtained solutionsensure the conservation of magnetic
flux and helicity inside the cylindrical MC described by ouodel.
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3. Radially expanding MCs

The purpose of this section is to find solutions for the phaisiariables in the case where only
the radial size of the MC increases. One can see that theswdun this case do not remain self-
similar, although initially a self-similar expansion issasned in the radial direction.

Below we consider MCghat are expanding only radially; i.e. with = 0. In this case Eq. (14)
implies® = 0 or§ = —1. The case witlb = 0 corresponds to thetationary state, which is trivial.
Let us consider the case whén 0 buts = —1. In order to provide a consistent time-scaling of
all terms in Eq. (22), we have to satisfy:

&% _Q

Q.Q, + ? = ?‘paf(wi) =0. (369)

An analysis of Eq. (6)4 = r/®(t)), Eq. (7a) B, = ®°Q,(¢)) and Eq. (36a) leads to the
following expression:
%ar(r B,) = 0. (36b)

Here, it is taken into account that = 9,/ (t).
From Eg. (36b) we can conclude that:

B_

cC
(2 ?’ (36c)
with C = const.
Note that the expression fd@, is characterized by a singularity at the axis=( 0). It seems
reasonable to conclude that, if we do not consider the aui@iching of self-similarly evolving

MCs, we can not obtain a physically valid solution for 8- component on the axis of the MC.

4. Numerical study: higher density and higher plasma g case

In this section, we investigate the evolution of MCs in a metdby means of the model described
in Section 2. For this purpose, the Lagrangian numerical MidBe“Graale* (Finn et al[ 2004)
is used, which enables us to check whether the above-obtsihgtions maintain their self-similar
nature when they propagate in a medium. In the numerical, adeuthal and cylindrical sym-
metries are implied. Furthermore, it is assumed that thenetagstructure expands uniformly in
the longitudinal direction, in other wordg = zL/L; with L the length of the cylinder. An analy-
sis of Egs. (20a-20c) and Eg. (19) shows that the derivedessjn for the longitudinal velocity
coincides with the one implemented in the code.

The assumptions of cylindrical and azimuthal symmetriethéncode and the prescription of
the character of the longitudinal motions makes the nuraksitulations 1D. In the numerical
runs the units of the physical parameters are chosen as/lthe unit length. iy = 0.1AU = 15-
10° km is of the order of the MC'’s radius at 1 AU, the unit magnettdB,,; = 3 nT, and the unit
number densityni; = 10 cnT3. After taking into account that the proton mass~ 1.7-107%7 kg,
one derives that the unit mass densityis: = mpno = 0.8- 10714 kg/m®. The unit speed is the
Alfvén speed corresponding f®nit and Bynit: Vunit = Voa = 20.5 kmys, which is of the order of
the MC's edges expansion velocity in the frame of the MC (\&elt al.. 2009), and the unit time
tunit = \L,E:i; = 200 h. A domain wittRRy, = 0 andRax = 10 is discretised with 2000 grid cells. The
time step used in the simulationsA$ = 5- 1077 (Ryin, Rmax @andAt are given in units introduced
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abovel ,nir andtynit). Open boundary conditions are applied. Inside the cdiomalomain, we
introduce initial conditions for the physical variablestivo different regions: inside the MC and
outside the MC.

Evidently, the solutions inside and outside the magneticctiire should satisfy the following

jump conditions across the surface of any MC:

[ovr] =0 (379)
erz +p+ iBZ] =0 (3)
8r
1 3 vPo, 1o |
[zgvr + (7 3 + 4ﬁB Jur =0 (37c)
and, finally,
[ovi] =0 (37d)

Here, [] denotes the jump of the quantity between the brackets a¢hessurface of the MC.
Also, vy = V; — Vg, whereV, andV; are the plasma and the MC'’s surface velocity, respectively,
while v; denotes the plasma velocity tangential to the surface ofMfBe Equation (28a) and
Eq. (26) show that;, = 0, which is logical for ideal MHD. Equations (37a,37c,37d® aatis-
fied for arbitrary values of the plasma density and Eq. (32&jl$ to the condition:

p+ iBZ] =0. (38)
8r

We know that the plasma mass density inside the MCs is lowanr tutside them and the
plasmagg within a MC is lower than in the ambient plasma. We therefaresiderg ~ 1 in the
ambient environment angl ~ 0.1 inside the MC. For the magnetic field within the MC, we use
the solution expressed by Egs. (33a-33c). For the magnekicdutside the MC, we assume that
the azimuthal component of the magnetic fi@lgh: = 0, while the longitudinal componeByo
is uniform. We also assume that the mass density and the she@messure are uniform in both
regions of the computational domain.

Bearing in mind these assumptions and jump conditions-(33), one can find explicit expres-
sions for the plasma pressure and magnetic field outside @e M

Figure 1 represents the numerical solutions for the plasmssmdensity and velocity, while
Fig. 2 shows solutions for the magnetic field componentsfigrgint moments in time. On panels a
and b we plotted the dimensionless values of the densitgcitgland magnetic field. On panels ¢
and d the dependence of the modified values of the physicaigers on the self-similar variable
is presented.

The dependence of the modified mass density and velocity hsasvéhe dependence of the
modified magnetic field components on the self-similar \dealearly shows that our solutions
maintain their self-similarity in the course of the MC expam.

5. Discussion and Conclusions

In this paper, we presented a detailed derivation of a classlBbsimilar analytic solutions of the

MHD equations for both radially and axially expanding MCslamumerical investigation of these
solutions. The usage of the self-similar approach is quiteraon for the modeling of various kinds
of solar plasma structures, flows and eruptions (Low 198Re@wicH 1998, Farrugia et al. 1995,
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Nakwacki et all_2008, Shapakidze et[al. 2010). In most of tegipus studies, howevesnly the
radial expansion of the MCs was considered. In the presadystve took into account also the
axial stretching of the MCs, which is a common observed featd at least some MCs. We have
obtained explicit analytical expressions for the magnféid, the plasma velocity, the density and
the plasma pressure. Essentially, our solutions mainiaim self-similar nature during the whole
course of their evolution and propagation through the seiad. These solutions are complete and
well-defined, fully analytic and, moreover, in the partanutase of the absence of the longitudinal
expansion, our solutions self-consistently match theyaicasolutions derived by other authors
(Farrugia et al. 1995).

Note that for the class of solutions introduced by Egs. (@pthe assumptions of self-similarity
and axial and azimuthal symmetry lead to the fact thid} is a linear function of timed(t) is the
time dependent function of the self similar variable r/®(t)). In this case, the forces within the
MCs are bound to be balanced. We can thus conclude that taéncakich the magnetic structures
are characterized by a low plasmigeorresponds to the force-free magnetic field case. Rerhatk t
this result is also in agreement with the conclusiomprdvious studies. We therefore believe that
this is a correct and proper time-dependent generalizafitime widely used stationary Lundquist
model (Lundquist 1950). Note also that in their recent pspéndas et al! (2006, 2009) made
a comparison of the generalized Lundquist model with ots@ms and found good agreements
between this classic model and the experimental data.

It must be emphasized that our study is not the only one in lwtiie axial stretching of the
MCs is taken into account together with their radial expansAs a matter of fact, Shimazu &
Vandas|((2002) also considered MCs with similar propertieshis particular paper, the authors
used the mathematical approach introduced by Osheroviah §995). In order to separate the
time-dependent parts of the solutions from multiplicafivections of the self-similar variable only,
Shimazu & Vandas (2002) imply a so-called “separable magjhiétld, which was introduced in
Osherovich et al[(1995). The approach introduced in Ostighrcet al. (1995), turns out to be
quite restrictive because it requires ath hoc relation between the fierent components of the
magnetic field. Also, in order to separate the time-depenpi@rn from the coordinate dependent
parts in the momentum equation, in addition to the polytdgw, the authors introduced a specific
mathematical expression for the thermal pressure (see EQsherovich et al. 1995). Actually,
the mentioned expression relates pressure and mass désestyqgs. (13-17) Osherovich et al.
1995). In our study, on the contrary, we used B.C. Low’s apphd(1982) and required a similar
time-scaling for all parts of the Lorentz force and the foceesed by the gradient of the thermal
pressure. We argue that our approach is more general antépsitson-physical restrictions upon
the physical parameters.

Another diference of the results presented here with those of Shimazan&las[(2002) is with
the temporal expansion scaling. Shimazu & Vandas assuntiehhdongitudinal and the radial
expansion have the same time scaling, while in our work ghiet assumed but it rather logically
follows as the by-product of the accurate solution of the MHD equatitn their paper, the time-
dependent function of the self-similar variable is chagezed by a linear dependence on time
only when the thermal pressure is zero, while we have derived plicéexpression of this time-
dependent function of the self-similar variable and it hasrbshown thab is a linear function of
the time variable and it does not depend on the characteeqfréssure function.
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Yet another dierence between the results presented here and the resghswdzu & Vandas
is related to the structure of the MC magnetic field. Shima2dafdas, in order to derive explicit
expressions for the magnetic field, used the assumptiontiteatagnetic structure of the MC
is described by a force-free magnetic flux rope. In our stimbyyever, we derived an explicit
expression for the magnetic field. We have derived ordinaffgréntial equations (Egs. (30a)-
(30b)) for the functions describing the components of thgme#ic field, after solving the equation
of motion for the case which corresponds to a low plagmathin the MC. For a particular type
of parameters, we have found explicit, analytical solwiéor the components of the magnetic
field (Egs. (33a)-(33c)). Note that these expressions ama@ dependent generalization of the
well-known Lundquist solutions (Lundquist 1950, Burla@88).

Our model implies the conservation of magnetic flux and fitglizy design, which is satisfac-
tory and in good agreement with previous investigationkiiecki et all 2008, Demoulin & Dasso
2009, Kumar & Rust 1996).

For further confirmation of the validity of our solutions, Wwerestigated the dynamics of mag-
netic clouds numerically. In the numerical code Graale vi@uced our self-similar solutions as
initial conditions. The obtained numerical results showed during the evolution and propagation
of these MCs, their physical variables maintained theif-siahilar character. This circumstance
was illustrated by Fig. 1 and Fig. 2.

Obviously, the class of solutions found in this paper isgidealized. The assumptions about
the self-similar evolution and the consideration of a ajtinal symmetric structure are quite well-
justified, but real MCs show self-similar coherence andndyiical symmetry only approximately.
Hence, in a future study it would be reasonable and intergs$ti consider more realistic config-
urations. There are several issues related to the modehvdaic be tested and generalized in a
forthcoming study:

1. Our assumptions, just like in previous investigationswl1982, Farrugia et &al. 1995, Finn et
al.[2004, Shapakidze et al. 2010), for the systems wheremnis conserved, put a restriction
on the value of the polytropic index = 4/3. We would like to develop a model that helps to
avoid this restriction.

2. Our model describes the plasma dynamics only inside thelW@e near future, we plan to
investigate the interaction of an MC with its environmentdmystructing consistent solutions
of the MHD equations outside the MC.

3. We investigated the obtained analytical solutions nica#y using a 1D MHD code and a sim-
ple model for the flow outside the MC was implemented. It wdagdnteresting and reasonable
to study the MC evolution also with 3D numerical codes, whreraore complicated and re-
alistic background flow can be implemented (in preparatiéo) this purpose the obtained
solutions could be used as initial state in the 3D numerioaligtion codes. We are interested
in an investigation of the éierent possible boundary conditions on the surface of thenetag
cloud.
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Appendix A:

In this appendix we would like to give some details of deiafor Eq. (21) and Eq. (22).

During the process of derivation were implied followingaigbns:

1
Or = &0 (A1)
£
6( = —aq)ag. (AZ)

These relations follow from Eq. (6).
Equation (21) is the radial component of the equation of amtq. (4). In cylindrical coordi-

nates the left term of Eq. (4) can be written as follows:
P [(91 + (V . V)Vr] =p [6tVr + VrarVr] . (A3)

If we take into account relation (6) and expression¥pr(Eq. 11) we can obtain following

expressions:

. )
) [
6tVr = ra -r (6) N (A4)
L\ 2
O]

After substitution of Eq. (A4) and Eq. (A5) into Eq. (A3) wetge

ploc+ (V- VIV] = péd. (A6)
If we combine of Eq.(7c) and Eq (A6) we obtain:
plo+ (V- V)V = 0£dp, (A7)

the left term of Eq. (21).
In order to derive the first part of the right term of Eqg. (22) Us introduce the following
notation:

VxB=J. (A8)

After taking into account expressions for magnetic field {bawith o = —2 we get:

1
J = F3¢Bz— 6ZB¢ =0, (A9)
J, =9;B — 9B, = -6,B; = Q Al10
Lp—zr_rz—_rz—_g, ( )
and 5o1
1 1 1 ®°-
3= 26:(rB,) ~ ~0,Br = ~0/(1B,) = 2 N Qo (A11)
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Since we know expressions of vectbwe can derive the vectorial product dfandB which
represents the first part of the right term of Eq. (22).

Combination of relation (A1) with the expression for pregslq. (7d) leads to the expression
of the second part of the right term of Eq. (22).
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Fig. A.1. Snapshots of the evolution of the plasma density and vgltielt. Panel a) represents the
dependence of the plasma density on the radial coordinafi@fomoments in time; Panel b) shows
the dependence on the plasma velocity on the radial codedimifour time moments; Panel ¢) and
Panel d) illustrate the dependence of the modified densdtlze modified velocity, respectively,
on the self similar variable. Parameter values for this eask = 2, By = 1, oout = 30in, Bin = 0.1,
Bout = 1, anddq = 1. Black line corresponds to= 0, red line represents the moment 0.5/3,

green line shows the time moment3l and blue line corresponds to the momieat0.5.
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Fig. A.2. Snapshots of the evolution of the magnetic field compon@atsel a) represents the de-
pendence of the azimuthal component of the magnetic fielth@madial coordinate for four time
moments; Panel b) shows the dependence oftmmponent of the magnetic field on the radial
coordinate for four time moments; Panel c) and Panel d)titis the dependence of the modi-
fied azimuthal and-components of the magnetic field, respectively, on thessiflar variable.
Parameter values for this case kre 2, By = 1, 001t = 30in, Bin = 0.1, B0t = 1,10 = 1, and®q = 1.
Black line corresponds tb= 0, red line represents the moment 0.5/3, the line shows the time
moment ¥3, and blue line corresponds to the momieat0.5.
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