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A new microscopic nucleon-nucleon (NN) interaction has been derived for the first time from
the popular relativistic mean field theory (RMFT) Lagrangian. The NN interaction so obtained
remarkably relate to the inbuilt fundamental parameters of RMFT. Furthermore, by folding it with
the RMFT-densities of cluster and daughter nuclei to obtain the optical potential, it’s application is
also examined to study the exotic cluster radioactive decays, and results obtained found comparable
with the successfully used M3Y phenomenological effective NN interactions. The presently derived
NN-interaction can also be used to calculate a number of other nuclear observables.

PACS numbers: 13.75.Cs, 21.30.-x, 21.60.-n

Nucleon-nucleon (NN) interaction is an active area of
research since the discovery of neutron, decades back.
NN interaction was conceived to be mediated by mesons,
much before their discovery. Though substantial progress
has taken place to understand it in a number of theoret-
ical (and experimental) attempts, so far it has remained
an open problem. Large number of interactions have
been constructed via studying NN scattering. But exten-
sive modification in the scattering behaviour due to the
presence of many other nucleons inside the nucleus make
it appropriate to use the phenomenological effective or
averaged interactions instead, which typically depend on
the local density of nuclear matter. The nucleus-nucleus
potentials obtained by using effective NN interactions are
used to study the number of observed nuclear phenom-
ena and hence also provide a useful understanding of the
NN interaction. For example, the effective NN interac-
tion has been remarkably related to the nucleus-nucleus
potential in the double folding model (DFM) [1].
The microscopic heavy-ion scattering potential of in-

terest is obtained in DFM [1] by using an effective
nucleon-nucleon (NN) interaction, like the M3Y plus a
zero-range pseudo-potential or a density-dependent M3Y
(DDM3Y), folded over the matter densities of the inter-
acting nuclei. It is relevant to mention here that the
simplified spin- and isospin-independent (S=T=0) M3Y
effective NN interaction [1] has been used widely and suc-
cessfully in a number of applications (see, e.g., [2–4]). Ac-
tually, an effective NN interaction is S (and T)-dependent
[5, 6], and generally carries three components as

veff = V C(r) + V LS(r)~L.~S + V T (r)Ŝ12, (1)

where r is the relative distance and ~L.~S and Ŝ12 are the
usual spin-orbit and tensor operators, respectively. The
central component [5] is

vCeff = V0(r)+Vσ(r)σ1.σ2+Vτ (r)τ1.τ2+Vστ (r)(σ1.σ2)(τ1.τ2),
(2)

with radial and spin-, isospin-, spin-isospin-dependent
parts, respectively. In principle, Quantum Chromody-
namics (QCD) may be used to obtain the radial depen-
dence of these components, instead, these are normally
expressed in terms of Yukawa’s or other functional fits
to the experimental data. Hence, the available NN po-
tentials are phenomenological in nature and a complete
microscopic NN potential derived from QCD is yet to be
achieved.
In this Letter, we have derived the microscopic NN

interaction from the linear relativistic mean field theory
(RMFT) [7–10] Lagrangian, rather than using a simple
phenomenological prescription. It is relevant to mention
here that the RMFT is an established approach for the
accurate description of nuclear bulk properties (the bind-
ing energy, root-mean-square radii and clustering) over
the entire region of nuclear chart including the super-
heavy nuclei. This has also been applied successfully to
infinite nuclear matter, like the equation of state EOS
and neutron star [11]. The NN interaction derived in
such a manner could be used to obtain the double folding
potential, which can have crucial significance for futher
understanding of the NN interaction, a number of nuclear
properties, as well as for the experiments to be planned
in this direction. We employ it here to study the exotic
cluster radioactive decays and compare our results with
that of the use of phenomenological M3Y effective NN
interaction.
The linear, relativistic mean field Lagrangian density

for a nucleon-meson many-body system [7–10] is

L = ψi{iγ
µ∂µ −M}ψi +

1

2
∂µσ∂µσ −

1

2
m2

σσ
2 − gσψiψiσ

−
1

4
ΩµνΩµν +

1

2
m2

wV
µVµ − gwψiγ

µψiVµ −
1

4
~Bµν . ~Bµν

+
1

2
m2

ρ
~Rµ. ~Rµ − gρψiγ

µ~τψi. ~Rµ −
1

2
m2

δδ
2 + gδψiδ~τψi, (3)

where, the field for σ meson is denoted by σ, that for ω
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FIG. 1: (a) R3Y (for different parameter sets of Table I) and M3Y effective NN interaction potential as a function of r. (b)
The total nucleus-nucleus optical potential V (R) and the individual contributions [Vn(R)(M3Y +EX) and Vn(R)(R3Y +EX)
for HS parameter set, and the Coulomb VC(R)] as a function of radial separation R. (c) The inset of (b); same as (b) but with
a changed scale in order to magnify the barrier height and position.

meson by Vµ, and that for the iso-vector ρ and δ mesons

by ~Rµ and δ, respectively. Aµ denotes the electromag-
netic field. The ψi are the Dirac spinors for the nucleons.
An iso-spin is denoted by τ . Here gσ, gω, gρ and gδ are
the coupling constants for σ, ω, ρ and δ mesons, respec-
tively. M, mσ, mω, mρ and mδ are the masses of the
nucleons, σ, ω, ρ and δ mesons, respectively. Ωµν and
~Bµν are the field tensors for the V µ and ~Rµ, respectively.
In this Langrangian the contribution of π meson has not
been taken in to account as, at the mean-field level, its
contribution is zero due to its pseudoscalar nature [8, 12].
From the above relativistic Lagrangian, we obtain the

field equations for the nucleons and mesons as,
(

−iα.▽+β(M + gσσ) + gωω +

gρτ3ρ3 + gδδτ
)

ψi = ǫiψi, (4)

(−▽2 +m2
σ)σ(r) = −gσρs(r), (5)

(−▽2 +m2
ω)V (r) = gωρ(r), (6)

(−▽2 +m2
ρ)ρ(r) = gρρ3(r), (7)

(−▽2 +m2
δ)δ(r) = −gδρ3(r), (8)

respectively, for Dirac nucleons, σ, ω, ρ, δ mesons.
In the limit of one-meson exchange, for a heavy and

static baryonic medium, the solution of single nucleon-
nucleon potential for scalar (σ, δ) and vector (ω, ρ) fields

are Vσ(r) = −
g2

σ

4π
e−mσr

r , Vδ(r) = −
g2

δ

4π
e−mδr

r and Vω(r) =
g2

ω

4π
e−mωr

r , Vρ(r) = +
g2

ρ

4π
e−mρr

r , respectively. The resultant
effective nucleon-nucleon interaction, obtained from the
summation of the scalar and vector parts of the single
meson fields, is defined as [12–14]

veff (r) = Vω + Vρ + Vσ + Vδ

=
g2ω
4π

e−mωr

r
+
g2ρ
4π

e−mρr

r
−
g2σ
4π

e−mσr

r
−
g2δ
4π

e−mδr

r
.(9)

For a normal nuclear medium, the contribution Vδ of δ-
meson can be neglected, compared to the magnitudes of
both Vω and Vσ . Hence, Eq. (9) becomes

veff (r) =
g2ω
4π

e−mωr

r
+
g2ρ
4π

e−mρr

r
−
g2σ
4π

e−mσr

r
, (10)

where, the values of
g2

ω

π ,
g2

ρ

π and
g2

σ

π are listed in Table
I for different parameter sets of RMF models [7, 9, 15],

except for W and L1 sets for which only
g2

ω

π and
g2

σ

π are
given since contribution of ρ meson is ignored for these
parameter sets.
Using the HS parameters of Table I in Eq. (10), we

get

veff (r) = 11956
e−3.97r

4r
+ 4099

e−3.90r

4r
− 6882

e−2.64r

4r
,

(11)
and for the L1 parameters, Eq. (10) becomes

veff (r) = 9967
e−3.97r

4r
− 6660

e−2.79r

4r
, (12)

with the corresponding effective NN-potentials as shown
in Fig. 1(a).
On the other hand, the M3Y effective interaction, ob-

tained from a fit of the G-matrix elements based on Reid-
Elliott soft-core NN interaction [1], in an oscillator basis,
is the sum of three Yukawa’s (M3Y) with ranges 0.25 fm
for a medium-range attractive part, 0.4 fm for a short-
range repulsive part and 1.414 fm to ensure a long-range
tail of the one-pion exchange potential (OPEP). The
widely used M3Y effective interaction veff (r) is given
by

veff (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
, (13)
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TABLE I: The values of mσ, mω, mρ (in MeV) and gσ, gω, gρ for different RMF works, along with
g2σ
π
,

g2ω
π
,

g2ρ
π

(in MeV).

Set mσ mω mρ gσ gω gρ
g2σ
π

g2ω
π

g2ρ
π

HS [7] 520 783 770 10.47 13.80 08.08 6882.64 11956.94 4099.06
Z [9] 551.31 780 763 11.19 13.83 10.89 7861.80 12008.98 7445.91
W [9] 550 783 − 09.57 11.67 − 5750.24 8550.74 −

L1 [9] 550 783 − 10.30 12.60 − 6660.95 9967.88 −

where ranges are in fm and the strength in MeV.
Note that Eq. (13) represents the spin- and isospin-
independent parts of the central component of the ef-
fective NN interaction [Eqs. (1) and (2)], and that the
OPEP contribution is absent here. Comparing Eqs. (11)
and/ (12) and (13), we find similarity in the behaviour
of the NN-interaction and feel that equation (10) can be
used to obtain the nucleus-nucleus optical potential.
Now we demonstrate the application of equations (10)

and (13) to various nuclear systems for evaluating some
of the physical observables in the phenomenon of exotic
cluster radioactivity (CR). Fig. 1(a) illustrates the com-
parison between the M3Y effective NN interaction (Eq.
(13), solid line) and its equivalent, the RMF based 3
Yukawa’s (denoted R3Y) presentations of Eq. (10) which
is based on RMF considerations involving the coupling
constants gω, gρ, gσ and the meson masses mω, mρ, mσ.
Using the preformed cluster model (PCM) of Gupta

and collaborators [16, 17], we deduce empirically the clus-

ter preformation probability P0
c(emp) from experimen-

tal data on a few exotic cluster radioactive (CR) decays
in the trans-lead region having doubly magic 208Pb as
daughters, using the HS parameter set based spherical,
relativistic mean field (RMF-HS) densities. It is rele-
vant to mention here that the mass and charge densities
calculated by using the RMF theory by some of us and
collaborators [18], support the clustering effects in vari-
ous heavy parents with observed cluster decays. In PCM,
the decay constant λ or half-life time T1/2 is defined as
[4, 16, 17]

λPCM =
ln 2

T1/2
= ν0P0P, (14)

with the assault frequency ν0 ∼ 1021 s−1 for all the
cluster-decays [17]. An empirical estimate of the pre-
formation factor P0 can be obtained as [4]

P0
emp =

λExpt

ν0P
, (15)

from the experimental λExpt values [17] and calculated

ν0P . In the following, the values of P0
c(emp) deduced by

using the R3Y and M3Y NN interactions are compared.
The nuclear interaction potential, Vn(R), between the

cluster (c) and daughter (d) nuclei, with the respective
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FIG. 2: The P0
c(emp) for the cluster-decays, respectively, from

various parents evaluated with the use of R3Y and M3Y ef-
fective NN interaction compared with the phenomenological
model of Blendowske-Walliser.

RMF-HS calculated nuclear matter densities ρc and ρd,
is

Vn(~R) =

∫

ρc(~rc)ρd(~rd)veff (|~rc − ~rd + ~R|≡r)d3rcd
3rd,

(16)
obtained by using the well known double folding proce-
dure [1] to the M3Y (or R3Y, proposed in the present
study) interaction, supplemented by zero-range pseudo-
potential representing the single-nucleon exchange effects
(EX). Adding Coulomb potential VC(R) (=ZdZce

2/R)
results in cluster-daughter interaction potential V (R)
[= Vn(R) + VC(R)], used for calculating the WKB pen-
etrability P, representing relative motion R. The other
details of the methodology followed are given in Ref. [4].

Fig. 1(b) illustrates the total interaction potentials
V (R) for 14C decay of 222Ra, obtained for both the
M3Y+EX and R3Y+EX NN interactions using RMF-HS
densities. The penetration path with an energy equal to
the Q-value of decay is also shown here. Note that, com-
pared to the M3Y NN interaction, the barrier is a bit
lowered for the R3Y case (shown more clearly in the in-
set Fig. 1(c)) and hence P increased by a few orders, as
is shown in Table II for some decays. Consequently, the
deduced P0

c(emp)(R3Y + EX) are also affected. How-
ever, interestingly, in Fig. 2 we find that the values of
P0

c(emp)(R3Y +EX) are closer to the well accepted phe-
nomenological formula of Blendowske-Walliser (BW) [19]

whereas the same for P0
c(emp)(M3Y + EX) are within
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TABLE II: P and P0
c(emp) for cluster-decays of some parents with 208Pb as the daughter nucleus, calculated for the R3Y+EX

and compared with the M3Y+EX NN interaction potential, for RMF-HS densities. The experimental data on cluster-decay
constant λc

Expt are from [17], and the Q-values are calculated by using the experimental ground-state binding energies [20].

Parent Cluster Q P λc
Expt P0

c(emp)

(MeV) (M3Y + EX) (R3Y + EX) (s−1) (M3Y + EX) (R3Y + EX)
222Ra 14C 33.050 1.728 × 10−25 2.277 × 10−24 6.749 × 10−12 1.044 × 10−08 7.921 × 10−10

230U 22Ne 61.388 1.378 × 10−29 7.615 × 10−27 4.243 × 10−19 7.664 × 10−12 1.387 × 10−14

231Pa 23F 51.844 6.613 × 10−33 1.593 × 10−30 1.682 × 10−25 7.062 × 10−15 2.932 × 10−17

232U 24Ne 62.311 1.047 × 10−28 1.753 × 10−26 2.720 × 10−21 6.731 × 10−15 4.019 × 10−17

236Pu 28Mg 79.670 5.710 × 10−27 3.815 × 10−23 1.469 × 10−22 6.401 × 10−18 9.580 × 10−22

238Pu 30Mg 76.824 1.873 × 10−30 1.185 × 10−25 1.412 × 10−26 1.984 × 10−18 3.136 × 10−23

two to three orders of magnitude with the BW results.
Evidently, the effective NN interaction obtained from the
RMF Lagrangian, the R3Y, is applicable to study the ex-
otic cluster radioactive decays within a satisfactory pre-
cision. However, the present study has been carried out
by taking in to consideration only the linear terms of
the σ, ω and ρ meson fields. Apparently, it is relevant
as well as interesting to study the link between the RMF
phenomenology and the effective NN interaction with the
further inclusion of the non-linear terms of these fields.
Concluding, for the first time to our knowledge, we

have shown in this Letter that the effective nucleon-
nucleon interaction, here called R3Y, could be derived
from the simple linear Walecka Lagragian, rather than
using the simple phenomenological prescription. It is
presented eloquently in terms of the well known inbuilt
RMFT parameters of σ, ω and ρ meson fields, i.e., their
masses (mσ, mω, mρ) and coupling constants (gσ, gω,
gρ). Thus, the phenomenological M3Y NN interaction
can be replaced by the presently derived R3Y interac-
tion(s) for most of the calculations of nuclear observables.
Moreover, we have generated here a bridge between R3Y
and M3Y for the nucleus-nucleus folding optical poten-
tial which can be considered as a unification of the RMF
model to predict the nuclear cluster activities, so that we
can explain the cluster decay properties of the clustering
nuclei using the R3Y instead of the M3Y potential. The
improvement of R3Y interaction for use of the most suc-
cessful non-linear RMF or E-RMF Lagrangian is straight
forward. Furthermore, the present findings could be con-
sidered as the motivation for other similar models for the
generation of different types of NN-interactions as well
as the additional feather to RMFT for its being consid-
ered as a unified formalism to study a number of nuclear
phenomena and, above all, one more step forward to un-
derstand the NN interaction within a well established
theoretical formalism, the RMFT.
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