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We present a sum-rule extraction of the decay constants of heavy-light mesons from the two-point

correlator of pseudoscalar currents [1]. To this end, we compare the perturbative expansions for

the correlator and the decay constant performed in terms of either the pole mass or the runningMS

mass of the heavy quark. The perturbative expansion expressed in terms of the pole mass exhibits

no sign of convergence whereas reorganizing this very expansion in terms of theMS mass yields a

rather clear hierarchy of the perturbative contributions.Accordingly, the decay constants extracted

from the pole-mass correlator turn out to be considerably smaller than those extracted from its

MS-mass counterpart. Then, making use of the OPE in terms of theMS mass we derive the decay

constants of heavy mesons with emphasis on acquiring control over the uncertainties in the decay

constants, related both to the input QCD parameters and to the limited accuracy of the method of

sum rules. Gaining this control has become possible due to the application of our novel procedure

for extracting hadron observables based on dual thresholdswhich depend on the Borel parameter.
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1. Introduction: QCD Sum Rules, Quark–Hadron Duality, and Effective Thresholds

The extraction of the decay constant of any ground-state heavy pseudoscalar meson within the
method of QCD sum rules [2] poses, for the following well-known reasons, a challenging problem:

First, one has to derive a reliable operator product expansion (OPE) for the correlation function

Π(p2)≡ i
∫

d4x exp(i px)〈0|T( j5(x) j†5(0))|0〉

of two pseudoscalar heavy-light currentsj5(x)≡ (mQ+m) q̄(x) i γ5 Q(x), with quark massesmQ, m.
Second, the knowledge of the truncated OPE for the correlator — even if the parameters of this

OPE are known precisely — allows to extract the characteristics of the bound state with only limited
accuracy which reflects the intrinsic uncertainties of the method of QCD sum rules. Gaining control
over these uncertainties is a very subtle problem [3].

Let us briefly recall the essential features of the sum-rule computation of the decay constants.
The quark–hadron duality assumption yields a relation between ground-state contribution and OPE
for the Borel-transformed correlator with a cut applied at some effective continuum thresholdseff:

f 2
QM4

Q exp(−M2
Q τ) = Πdual(τ ,seff)≡

seff
∫

(mQ+m)2

dsexp(−sτ)ρpert(s)+Πpower(τ), (1.1)

where the perturbative spectral density is obtained as expansion in powers of the strong couplingαs:

ρpert(s) = ρ (0)(s)+
αs

π
ρ (1)(s)+

(αs

π

)2
ρ (2)(s)+ · · · .

Evidently, in order to extract the decay constant one has to fix the effective continuum thresholdseff.
A crucial albeit rather obvious observation is thatseff has to be a function ofτ . Otherwise the

l.h.s. and the r.h.s. of (1.1) exhibit a differentτ-behavior. Theexact effective continuum threshold,
corresponding to exact values of hadron mass and decay constant on the l.h.s. of (1.1), is, of course,
not known. Therefore, the extraction of hadron parameters from the sum rule consists in attempting
(i) to find a reasonable approximation to the exact thresholdand (ii) to control the accuracy of this
approximation. In a series of publications [4] we have formulated all the corresponding procedures.

Let us introduce the dual invariant massMdual and the dual decay constantfdual by the relations

M2
dual(τ)≡−

d
dτ

logΠdual(τ ,seff(τ)), f 2
dual(τ)≡ M−4

Q exp(M2
Q τ)Πdual(τ ,seff(τ)). (1.2)

If the ground-state mass is known, any deviation of the dual mass from the actual ground-state mass
yields an indication of the amount of excited-state contribution picked up by our dual correlator.
Assuming a particular behavior of the effective threshold with τ and requiring the least deviation of
the dual mass in (1.2) from the actual massMQ in theτ-window yields a variational solution for the
effective thresholdseff(τ). As soon as the latter has been fixed we get the decay constant from (1.2).
The standard assumption for the effective threshold is aτ-independent constant. In addition to this
approximation, we have considered polynomials inτ . Reproducing the actual mass considerably
improves forτ-dependent thresholds. This means that a dual correlator with τ-dependent threshold
isolates the ground-state contribution much better and is less contaminated by the excited states than
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a dual correlator with standardτ-independent threshold. As consequence, the accuracy of extracted
hadron observables is significantly increased. Recent experience from potential models reveals that
the band of values obtained from the linear, quadratic, and cubic Ansätze for the effective threshold
encompasses the true value of the decay constant [4]. Moreover, we managed to demonstrate that
the extraction procedures in quantum mechanics and QCD are even quantitatively rather similar [5].
This contribution reports our recent findings [1, 6] for pseudoscalar-heavy-meson decay constants.

2. OPE and Heavy-Quark Mass

For heavy-light correlators and decay constants it makes a big difference which scheme for the
heavy-quark mass is used. We adopt the OPE for this correlator to three-loop accuracy [7], which
was obtained in terms of the pole mass of the heavy quark. The pole-mass scheme is the standard
one; it has been used for a long time since the pioneering workof Ref. [8]. An alternative is to
reorganize the perturbative expansion in terms of the running MS mass [9]. Since the correlator is
known toα2

s accuracy, the relation between the pole and theMS mass to the same accuracy is used.
Figure 1 depicts the corresponding spectral densities and our sum-rulefB estimates for both cases.
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Figure 1: OPE expressed in terms of the pole mass (left) and theMS mass (right) of theb quark: First row:
spectral densities. Second row: corresponding sum-rule estimates for fB; a constant effective continuum
threshold is fixed in each case by requiring maximum stability of the extracted decay constant, thuss0 6= s̄0.

Several important lessons may be learnt from the instructive plots in Fig. 1:

(i) The perturbative expansion for the decay constant in terms of the pole mass exhibits no sign of
convergence; each of the terms — LO, NLO, NNLO — gives a positive contribution of similar size.
Thus, there is no reason to expect that higher orders give smaller contributions. As a consequence,
the decay constant extracted from the pole-mass OPE considerably underestimates the actual value.
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(ii) Reorganizing the perturbative series in terms of theMS mass of the heavy quark leads to a clear
hierarchy of the perturbative contributions [9]. Notice, however, that also in this case the situation is
not perfect: the full spectral density — which is a positive-definite function — is negative at small
values ofs. This is an artifact of the truncation and indicates that thecontributions of higher-order
terms are non-negligible.

(iii) The absolute value of the decay constant obtained fromthe pole-mass OPE proves to bealmost
50% smallerthan in the case of theMS scheme. Let us emphasize that, nevertheless, in both cases
the decay constant exhibits perfect stability over a wide range of the Borel parameterτ . Thus, mere
Borel stability is, by far, not sufficient to guarantee the reliability of the sum-rule extraction of
bound-state parameters.We have pointed out this fact already more than once [3]. Unfortunately,
some authors still adhere to the idea that Borel stability isa “proof” of the reliability of their results.

Because of the obvious problems with the pole-mass OPE for the correlator, following [9] we
make use of the OPE formulated in terms of theMS mass for the extraction of the decay constants.

3. Decay Constants ofD and Ds Mesons

The application of our modified extraction prescriptions relying on theτ-dependent effective
threshold leads to the following results for charmed mesons(a detailed analysis can be found in [1]):

fD = (206.2±7.3(OPE)±5.1(syst)) MeV,

fDs = (245.3±15.7(OPE)±4.5(syst)) MeV.

The OPE-related error is obtained by bootstrapping, allowing for a variation of all QCD parameters
(i.e., quark masses,αs, condensates) in the relevant ranges. One observes a perfect agreement of our
predictions with the respective lattice results (Fig. 2). It should be emphasized that ourτ-dependent
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Figure 2: Comparison of our findings forfD and fDs with lattice results and experiment; for details, see [1].
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threshold is a crucial ingredient for a successful extraction of the decay constants from the sum rule.
Obviously, the standardτ-independent naïve approximation yields a much lower valuefor fD which
lies rather far from the empirical data deduced from experimentand from the lattice computations.

Let us emphasize the following: In quantum-mechanical potential models [4] we succeeded to
show that taking into account theτ-dependence of the effective threshold considerably improves the
accuracy of the duality approximation and the quality of thesum-rule estimates.The investigation
of the decay constant of theD meson clearly demonstrates that also in QCD theτ-dependent
threshold leads to a much better accuracy of the duality approximation (see Figs. 1, 3, 5, and 8
of Ref. [1]) and to a discernible improvement of the accuracyof the extracted decay constant.
This perfectly confirms our observation [5] that the extraction procedures in QCD and in quantum
mechanics are very similar to each other — both qualitatively and quantitatively. Moreover, ourD
meson analysis gives strong arguments that our algorithm provides quite realistic systematic errors.

4. MS Mass of theb Quark and Decay Constants ofB and Bs Mesons

The values of the beauty-meson decay constants extracted from QCD sum rules are extremely
sensitive to the chosenb massmb(mb). For instance, the rangemb(mb) = (4.163±0.016) GeV [10]
yields results for the decay constants that are barely compatible with the lattice calculations (Fig. 3).
Requiring our sum-rule result forfB to match the average of the lattice determinations entails the
rather precise value of theb-quark mass

mb(mb) = (4.245±0.025) GeV.

Our sum-rule estimates forfB and fBs corresponding to this value of theb-quark mass thus become

fB = (193.4±12.3(OPE)±4.3(syst)) MeV,

fBs = (232.5±18.6(OPE)±2.4(syst)) MeV.
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Figure 3: Comparison of our results forfB and fBs with lattice results; for a detailed list of references, cf.[1].

5



OPE, Heavy-Quark Mass, and Heavy-Meson Decay Constants Dmitri Melikhov

5. Summary and Conclusions

The main insights gained in our comprehensive inspection [1, 3, 4, 5, 6] of the QCD sum-rule
approach and its potential improvement by reasonable modifications can be summarized as follows:

1. Theτ-dependence of the effective continuum threshold emerges naturally when one attempts to
make the duality relation exact: this dependence is obviousfrom (1.1). We would like to emphasize
the following two points: (a) In principle, theτ-dependence cannot be in conflict with any property
of quantum field theories. (b) Many examples, in particular,the analysis of the decay constants ofD
mesons presented here, show that it indeed improves visiblythe quality of the sum-rule predictions.

2. Our analysis ofcharmed mesonsclearly demonstrates that the use of Borel-parameter-dependent
thresholds leads to two essential improvements: (i) The accuracy of decay constants extracted from
sum rules is considerably improved. (ii) It has become possible to obtain realistic systematic errors
and to reduce their values to the level of a few percent. The application of our prescription brings the
QCD sum-rule results into perfect agreement with the findings of both lattice QCD and experiment.

3. Thebeauty-mesondecay constants prove to be extremely sensitive to the chosen value ofmb(mb);
matching the results from QCD sum rules forfB to the average of the lattice evaluations allows us
to provide a rather accurate estimate of theb-quark mass. Ourmb(mb) value is in good agreement
with several lattice results but, interestingly, does not overlap with the recent accurate determination
presented in Ref. [10] (for details, see Ref. [1]). Of course, this intriguing puzzle should be clarified.
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