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Abstract. For forecasting the maximum 5-day accumulated1 Introduction

precipitation over the winter season at lead times of 3, 6, 9

and 12 months over Canada from 1950 to 2007, two nonlinExtreme precipitation events, responsible for economic loss
ear and two linear regression models were used, where thgnd ecological damage, impact agriculture, energy use and
models were support vector regression (SVR) (nonlinear anthuman activity. There has been enhanced interest in recent
linear versions), nonlinear Bayesian neural network (BNN)years on the apparent increase in the frequency and/or sever-
and multiple linear regression (MLR). The 118 stations wereijty of extreme precipitation events for many regions, which
grouped into six geographic regions Eymeans clustering. might be related to the increasing concentrations of green-
For each region, the leading principal components of the win-house gases (Easterling et al., 2000; Groisman et al., 2005).
ter maximum 5-d accumulated precipitation anomalies wereThough the long-term trend of extreme precipitation events
the predictands. Potential predictors included quasi-globalvas generally not significant in most areas of Canada (Zhang
sea surface temperature anomalies and 500 hPa geopotentiglal., 2001; Kunkel, 2003), the establishment of an accurate
height anomalies over the Northern Hemisphere, as well agind timely extreme event monitoring and prediction system
six climate indices (the Nio-3.4 region sea surface tempera- is still of prime importance for alleviating the potential im-
ture, the North Atlantic Oscillation, the Pacific-North Ameri- pacts posed by climate variations and extreme weather.

can teleconnection, the Pacific Decadal Oscillation, the Scan- Numerous previous studies have shown that the BbNi
dinavia pattern, and the East Atlantic pattern). The resultsggthern Oscillation (ENSO), centered in the tropical Pa-
showed that in general the two robust SVR models tendegfic, plays an important role in North American climate vari-
to have better forecast skills than the two non-robust mOd'abiIity, especially during the winter season (Barnston, 1994:
els (MLR and BNN), and the nonlinear SVR model tended ghaphar and Barnston, 1996; Goddard et al., 2001; Wu et al.,
to forecast slightly better than the linear SVR model. Among 2005; Shabbar, 2006). Besides ENSO, other circulation pat-
the six regions, the Prairies region displayed the highest forege s, such as the North Atlantic Oscillation (NAO), Pacific-
cast skills, and the Arctic region the second highest. Thenerth American (PNA) teleconnection, Pacific Decadal Os-
strongest nonIine_arity.was manifesteq over the Prairies angjjation (PDO) etc. have been found to show influences on
the weakest nonlinearity over the Arctic. precipitation over the Northern Hemisphere (Hsieh et al.,
2006; Wu et al., 2006a, Bonsai et al., 2006; Lorenzo et al.,
2008; Lin et al., 2008), and may contribute skill in seasonal
precipitation forecasts. Most seasonal forecasts focus on pre-
dicting the seasonal mean of the precipitation instead of sea-
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compared to the seasonal mean (where the averaging of datality in the models affect forecast skills when the predictand
reduces noise and renders the distribution more Gaussian dugthe very noisy and non-Gaussian winter extreme precipita-
to the central limit theorem), hence seasonal extreme statigion anomaly. The description of the data and the forecasting
tics may be even harder to predict. methods are given in Sects. 2 and 3, respectively. Section 4

One commonly used technique for seasonal predictiongresents the results of forecasting the winter extreme precip-
is the empirical or statistical approach, using linear statis-itation over Canada, followed by the conclusion in Sect. 5.
tical methods such as correlation, regression (Ward and Fol-
land, 1991), and canonical correlation analysis (Shabbar and
Barnston, 1996). More recently, machine learning methods2 Data
such as neural networks (Haupt et al., 2009; Hsieh, 2009)
have been introduced for nonlinear regression and nonlinMonthly extended reconstructed sea surface temperature
ear canonical correlation analysis (Wu et al., 2006a, b; Can{SST) data (ERSST version 3 — Smith et al., 2008) were
non and Hsieh, 2008). Neural networks have been applied tobtained from the National Oceanic and Atmospheric Ad-
downscale seasonal mean precipitation from global climatgninistration (NOAA) with a spatial resolution of 22° for
models (Tolika et al., 2007) and to infer the influence of cli- the period 1950-2007; while monthly 500 hPa geopoten-
mate indices on seasonal mean precipitation (Pasini and Larfial height (Z500) data with 2°5<2.5> horizontal resolu-
gone, 2010), while a wavelet-neuro-fuzzy method has beetion from the National Centers for Environmental Prediction
developed for daily precipitation forecasts (Partal and Kisi, (NCEP) reanalysis were used in this study for the same pe-
2007). The advantage of nonlinear methods to linear methtiod (Kalnay et al., 1996). We only used SST data within the
ods is generally far less evident for climate applications tharzonal band between 3& and 70N, and Z500 data over the
for weather applications, since averaging nonlinear daily reNorth Hemisphere (ZON-90° N), quite similar to Shabbar
lations produces near-linear seasonal relations as a consand Barnston (1996). To reduce memory need, the SST data
quence of the central limit theorem (Yuval and Hsieh, 2002;were averaged into°6c4° grids with 1020 spatial points, and
Hsieh and Cannon, 2008). A seasonal extreme statistic likéhe Z500 data into 5<5° grids with 1008 spatial points.
the maximum amount of precipitation accumulated over 5 Seasonal SST and Z500 anomalies were obtained by re-
consecutive days in the winter season does not involve exmoving the climatological seasonal cycle from the monthly
tensive averaging as in the computation of the seasonal meamean data and filtering them using a 3-month running mean.
thereby avoiding the linearization effect of the central limit After standardizing the anomalies, time-lagged copies of the
theorem. Hence despite their potentially higher noise-to-data were stacked (i.e. the original copy, plus copies time-
signal level than the seasonal mean, seasonal extreme statigégged by 3, 6 and 9 months were assembled together) and
tics may be more suited than the seasonal mean for nonlinedreated as a new enlarged dataset to be compacted by prin-
forecasting by machine learning methods. cipal component analysis (PCA). This PCA process, called

Neural network (NN) methods, generally regarded asspace-time PCA, singular spectrum analysis or extended em-
forming the first wave of breakthrough in machine learning, pirical orthogonal function (EEOF) analysis, was performed
became popular in the late 1980s for nonlinear regressio®n the SST and Z500 (standardized) anomalies separately,
problems, whereas kernel methods (e.g. support vector reeach having 5 leading principal components (PCs) retained,
gression, SVR) arrived in a second wave in the second half oexplaining 52% and 37% of the variance in the SST and Z500
the 1990s (Bishop, 2006; Hsieh, 2009). SVR has two advananomalies, respectively. These will be referred to as the SST-
tages over NN models — it avoids the multiple minima prob- PCs and Z500PCs below.
lem associated with nonlinear optimization used in NN mod- Monthly climate indices for the Nio-3.4 region SST
els, and robust error norms are used in SVR instead of th€NINO), the North Atlantic Oscillation (NAO), the Pacific-
non-robust mean squared error (MSE) norm, allowing SVRNorth American (PNA) teleconnection, the Scandinavia
to better handle datasets with outliers. The use of a suitabl¢SCA) pattern, and the East Atlantic (EA) pattern — were
nonlinear kernel function in SVR allows it to be fully nonlin- downloaded from the website of Climate Prediction Cen-
ear, while the use of a linear kernel function restricts SVR toter (CPC), NOAA. The description of listed indices can
a linear model. Nevertheless, the linear SVR model is differ-also be found from the CPC sitkt{p://www.cpc.ncep.noaa.
ent from the multiple linear regression (MLR) model, since gov/data/teledoc/telecontents.shtnilonthly values of the
the robust error norm is used in SVR but not in MLR. Appli- Pacific Decadal Oscillation (PDO) were obtained from the
cations of SVR to hydrological problems include Dibike et Joint Institute for the Study of the Atmosphere and Ocean,
al. (2001), Khan and Coulibaly (2006){iByer et al. (2007)  University of Washington Http://jisao.washington.edu/pdo/
and Anandhi et al. (2008). PDO.latest

In this paper, we have a four-way comparison of fore- Daily 5-d total precipitation records were obtained from
cast skills from nonlinear SVR, linear SVR, Bayesian NN 461 climate stations in Canada for the 1900-2007 period.
(BNN) and MLR. The objective is to see how robust and Only stations with data covering at least the period of 1950—
non-robust structures as well as nonlinear and linear capa2007 were considered as candidates for the analysis. This
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3.0

+ Paciic Coast Table 1. Number of stations, mean winter precipitation, and per-
g gg;ﬁ:!zra o5 centage variance of the winter extreme precipitation anomalies ex-
*  Arctic ’ plained by the first several PCs (witf?C being the number of PCs
ﬁ Great Lakes chosen as predictands based on cross-validation), for each of the six
Atlantic Coast 2.0 .
E regions over Canada.
158
é Region Stns.  Mean (mm) % vanRC)
" R1 (Pacific coast) 20 785 85 (7)
s 05 R2 (Cordillera) 43 25.9 80 (8)
R3 (Prairies) 19 14.2 73 (4)
00 R4 (Arctic) 11 8.8 65 (4)
R5 (Great Lakes) 15 36.8 79 (7)
R6 (Atlantic coast) 10 63.8 95 (8)

Fig. 1. Spatial distribution of the Canadian stations, with different

symbols used to indicate the six geographic regions determined by

a cluster analysis. The shading illustrates the Canadian topography.
dices, were taken as inputs to tkemeans algorithm. The
Euclidean distance was used in cluster analysis to measure

period was selected to maximize the number of stationglissimilarity between stations. The number of clusters was
while attempting to maintain the longest possible records.varied from 2 to 8, and 6 was chosen because of its spa-
In addition, stations with more than 5% missing data overtial consistency and clear physical/geographical interpreta-
1950-2007 were not used. Under these conditions, onlyiion. Some clustering methods (e.g. Rao and Srinivas, 2006)
118 stations qualified for further study. For each station, itsallow the number of clusters to be chosen objectively.
monthly maximum was first calculated from the daily 5-d  Figurel1 presents the spatial distribution of the Canadian
accumulated precipitation data, which suggested the heavistations, with their membership in the six clusters shown by
est precipitation event during that month. The climatolog- different symbols. The cluster analysis has divided the Cana-
ical seasonal cycle, i.e. the average of the maximum 5-ddian domain into six geographic regions. The Pacific coastal
total precipitation for each calendar month over the yearsregion (R1), under the influence of warm ocean currents and
1950-2007, was removed from the monthly maximum 5-dmoisture-laden winds, receives the most rain and snow dur-
total precipitation to give the monthly extreme precipitation ing winter. In the Cordilleran region (R2), the warm, moist
anomalies. Then the 3-month maximum of the anomaliesPacific air is forced to rise over the mountains, cools and
was taken to be the seasonal extreme precipitation anomalyalls on the western slopes in sizeable amounts of precipita-
Only winter (December to February) data from 1950/1951tion as rain at lower altitudes and snow at higher ones; how-
to 2006/2007 (57 winters) were analyzed here. The reaever, the eastern slopes and central plateau region are arid.
son that the maximum 5-d total precipitation instead of theThe Prairies (R3) receive considerably less precipitation than
daily extreme is used here because this study focuses omost other parts of Canada, often being dry for long periods.
the extreme events related to low-frequency signals of largefor the Arctic region (R4), it is extremely cold with very low
scale variations in the atmosphere-ocean system. In addprecipitation. The Great Lakes region (R5) receives rather
tion, larger-scale impacts, such as floods from heavy preuniform precipitation through the year with heavy snowfalls
cipitation are mostly due to multi-day episodes. Maxi- in winter. On the Atlantic coast (R6), extremely cold air
mum 5-d rainfall has also been chosen as one of the starmasses are modified by oceanic influences, which also cause
dard seasonal extreme precipitation indices by the Euro€onsiderable snow and precipitation in winter. The num-
pean Union STARDEX project (STAtistical and Regional ber of stations for each cluster/region and the corresponding
dynamical Downscaling of Extremes for European regions)mean precipitation, i.e. the 3-month means of the 5-d total
(http://www.cru.uea.ac.uk/projects/stardex/ precipitation over all winters and over all stations in each re-
In view of the diversity of the Canadian climate, we clas- gion, are shown in Table 1, where the mean precipitation was
sified the 118 stations into groups usikrmeans clus-  78.5mm over the Pacific coast and 63.8 mm over the Atlantic
tering (Zhang et al., 2001; Whitfield et al., 2002). The coast, much larger than the 8.8 mm over the Arctic region in
118x 118 elements of the intercorrelation matrix among sta-Winter.
tion precipitation, which assumes the internal spatial coher- For each region, we applied PCA to the seasonal extreme
ence of precipitation variability does not change with time, precipitation anomalies, and preserved the leading PCs. Ta-
and the 11&6 elements of the correlation matrix between ble 1 summarized the explained variance by the first few PCs
station precipitation and the six climate indices, which re-retained for each region in column 4. For example, the 7
flects the relationship between seasonal extreme precipitdeading PCs for the Pacific coastal region (R1) account for
tion and large-scale atmospheric teleconnection and SST in85% of total variance of the precipitation anomalies. Each
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PC was then chosen as the predictand for a forecast modetven infinite) dimensional vector, hence solving the linear
The seasonal extreme precipitation anomaly forecasts wergegression problem may be prohibitively expensive. In SVR,
reconstructed by summing the forecasted PCs multiplieda kernel trick is used, which is to replace the inner prod-
by their corresponding empirical orthogonal function (EOF) uct (¢(x),¢(x")) in the solution algorithm by a kernel func-
spatial patterns. tion K (x,x"), which does not involve handling the unwieldy
¢(x). The minimization of Eq.3) involves Lagrange multi-
pliers, and the final regression estimate can be expressed as

3 Methodology in the form (Bishop, 2006)
3.1 Support vector regression N

fE)=) K x,x)+8. @
Support vector machines were originally designed for clas- i=1
sification problems (Vapnik, 1995). They were then ex- performance of the SVR model depends on the choice
tended to nonlinear regression problems (Vapnik etal., 1997pf the kernel function and the hyperparameters. In
Bishop, 2006). Here we describe the essence of support veghjs study, we used the linear kernek (x,x;)=(x,x;),
tor regression (SVR). and the Gaussian or radial basis function (RBF) kernel,

Let x denote then inputs or predictors ang denote the K (x,x;)=exp(—|lx—x; ||2/(202)), with the hyperparameter
single output variable or predictand. By introducing a non- 4 controlling the width of the Gaussian function. When
linear mapping functiog, the nonlinear regression problem the finear kernel is used, the SVR performs robust linear re-
betweenx andy can be converted to a linear regression prob-gression, whereas with the RBF kernel, the SVR model per-
lem betweer andy, i.e. forms robust nonlinear regression. We used the SVR codes

by Chang and Lin (2001), downloadable from the LibSVM
flx,w)=(w,¢(x)+b, (1) website Ottp://www.csie.ntu.edu.twkjlin/libsvm). The hy-
where (,) denotes the inner product, angandb are the  Perparameters;, ¢, ando (for the RBF kernel) can be tuned
regression coefficients obtained by minimizing the error be-instead of predefined subjectively.
tween f and the observed values of To measure this er-
ror, instead of the commonly used mean squared error norm;
SVR uses the-insensitive error norm defined by

.2 Bayesian neural network (BNN)

As NN models are now commonly used in hydrology (Solo-

0, it |f—yl<e matine and Ostfeld, 2008), we will only briefly outline the

|f(x,w)—yl.= { |f —yl—e. otherwise (2)  approach used in our study. An NN model is trained from
’ ’ a data setx, y), with x the predictors ang the predictand,
i.e. when the difference betweghandy is smaller thare, by adjusting network parameters or weightso as to mini-

the error is ignored, whereas when the difference between mize a regularized error function

andy is large, the error approximates the mean absolute er- N

ror, which unlike the mean squared error, is robust to outliers C 2 2

) ’ E =— W) —Y; , 5

i the data. (w) = ;mx, w) = i)+ |w] 5)
The w and b coefficients are estimated by minimizing

the regularized error functioR using sample daté;, y;), where the first term is the parametér_times the me_an_
where squared error, while the second term is the regularization

term. A smallC will strongly suppress the magnitude of
w found by the optimization process, thereby yielding a less
complex (i.e. less nonlinear) model. The best valuedor
is commonly chosen upon validating the model performance
with C ande prescribed parameters (commonly referred to asover independent data not used in training the model. With
hyperparameters), ard the sample size. The second termis the optimalC, the model should be neither overfitting nor
called the regularization (or weight penalty) term, and whenunderfitting the data.
a small value ofC is used, the regularization term becomes An alternative to using validation to find the best value for
prominent relative to the first term, and the minimization of C is BNN (MacKay, 1992), a neural network designed based
R forces thew coefficients to have small magnitude, thereby on a Bayesian probabilistic formulation. The idea of BNN
limiting model complexity. is to treat the network parameters or weights as random vari-
The conversion of a nonlinear regression problem to a lin-ables, obeying an assumed prior distribution. Once observed
ear regression problem (E#) eliminates the need for non- data are available, the prior distribution is updated to a pos-
linear optimization, which has to deal with the presence ofterior distribution using Bayes’ theorem. BNN automatically
multiple local minima in the error function, as in the case determines the optimal value 6fwithout the need of valida-
of NN methods. Howeverg(x) may be a very high (or tion data (Bishop, 2006). In this study, the BNN model used

cY 1, 5
R=5> 1 fGeiw) = yile + 5 lwll?, ©)
i=1
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was from the NETLAB toolbox (Nabney, 2002), with a stan- whereN is the number of samples at the statioh,and P;

dard mapping functiory, i.e. a layer of hyperbolic tangent are, respectively, the observed and predicted values for the
mapping followed by linear mapping. As NN suffers from ith sample,O is the average of the observed values, and
multiple minima inE, an ensemble of 30 BNN models was 0<IOA<1, with 1 being perfect score. IOA has been pro-
built from random initial weights, and the mean of the fore- posed as an alternative to CORR, but it is sensitive to the
casts from the 30 ensemble members was taken as the findifference between the mean # and O as well as the

forecast of the BNN model. difference between the standard deviationPpfand that of

0;. MAE measures the mean absolute error between the ob-
3.3 Cross-validation served and predicted values, i.e.
For seasonal forecasting, the sample size to the number of 1
predictors is relatively small, since we have 5 SSTPCs, SMAE = _Z”Di —0il. ©)
Z500PCs and 6 climate indices as predictors. Hence PCA Ni=

is again applied to these predictor time series to further re-

. o AE is considered a more natural and superior measure of
duce the number of predictors. An additional advantage otM P

. . . ~aver rror than th mmonl r mean r

PCA is to produce uncorrelated predictors. To determlnea erage erro than the commonly used root mean squared
! ) : error (Willmott and Matsuura, 2005). To compare fore-

p, the optimal number of PCs to retain as predictors, cross-

validation is needed. In anfold cross-validation procedure casting performance across different regions, instead of
S . P . ' MAE, we used the MAE skill score (MAESS), defined by
the data record is divided into segments, a segment is re-

served as validation data, and the other segments as trairMAESSzl_MAE/MAEC’ where

ing data. The model is trained using the training data, then 1N
validated or tested on the independent data in the validatioMAE; = —Z|5— O;
segment. By rotating the validation segments, the entire data Ni=
record can be used for validation (Bishop, 2006). As men-,

tioned earlier, for each region (as determined by the clustet> the MAE of the climatological forecasts. The MAESS

analysis), PCA was applied to the seasonal extreme precip'—S positive (negative) when the accuracy (.Df the for.ecasts IS
reater (less) than the accuracy of the climatological fore-

itation anomalies for all the stations in that region, yielding 9 . .
the predictand PCs. Cross-validation is also needed to deteﬁ—?sttsd Tth?jk:g ZC?/:etliS #sed :O m(ra]asuﬂr]e hc;)w crl\c;sz thne p\r/si-th
mine nPC, the optimal number of predictand PCs to retain cted standard deviation approaches the observed one,
: the perfect score being 1.
for each region (Table 1).
For the SVR model, we used the Cherkassky and Ma
(2004) approach to estimate the value of the hyperparam,

. . oY 4 Forecast results
eters, and then use a finer grid search to pinpoint the op-

timal values of the hyperparameters under cross-validationgpg cross-validated forecast scores averaged over all stations
To use independent data to test or verify the model forecasts, o5ch region at lead times of 3, 6, 9 and 12 months using

a second round of cross-validation is needed, hence a doublg. MR SVR with linear kernel (SVR-L), nonlinear SVR
cross-validation procedure (see the Appendix for details). \\ith RBE kernel (SVR-R) and BNN models are shown in

Figs.2—7 for the six regions.
For the Pacific coastal area (Fig), CORR, I0A and

To evaluate model performance on forecasting the seasonAESS showed that in general the SVR-R model tended
extreme precipitation, we reported the Pearson correlatiof© do slightly better than the SVR-L model, and both did
coefficient (CORR), the Willmott index of agreement (I10A) better than the MLR and BNN models. Only the SVR-
between the observed and model-predicted values, the skiff model attained slightly positive MAESS for most lead
score based on the mean absolute error (MAE) of the foretimes (Fig.2c), while both linear models and BNN displayed
cast, and Skilf=SDy/SDs, the ratio of the standard devia- negativg MAESS, indicating that_ they underperformed cli-
tion (SD) of the model predictions to that of the observations.Matological forecasts. The relatively poor performance of
All four skill scores are used because they indicate differentMAESS relative to CORR can be partly explained by the
components of model error. While CORR is a common mea-Skilly score shown in Fig2d, which shows all models dra-
sure of the linear dependence between the forecast and tHgatically under-predicting the magnitude of the anomalies.
observation, it does not take forecast bias into account, thus #fonically, BNN had the best Ski)l scores as well as the
is possible for a forecast with large errors to still have a goodWorst MAESS among the four models. The reason is that
CORR score. I0A is defined as (Willmott, 1982): BNN being a non-robust nonlinear model is easily overfitted
N 5 to the very noisy data. Even with an ensemble average to al-
2.im1(Pi — 0i) (6) leviate overfitting, BNN generated relatively large amplitude
ZlNzl(|Pi —0|+|0; _6|)2’ forecasts compared to the other three models which are less

: ®)

3.4 Forecast skill scores

IOA=1-—
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Fig. 2. Cross-validated forecast scorda) CORR, (b) I0A, (c) Fig. 3. Same as Fig2, except over the Cordillera (region R2).
MAESS and(d) Skilly, in the Pacific coastal region (region R1)

for the winter extreme precipitation at lead times of 3, 6, 9 and @ ®)

12 months using the MLR, SVR with linear kernel (SVR-L), non- 08

linear SVR with RBF kernel (SVR-R) and BNN models. Lead time o *

of 3months means that predictor data up till September—NovemberE 2: Zi( % 06 %
were used to forecast the December—February extreme precipitaQ 'O Q é g @ 3 Qo4 '% é 3
tion. The “waistline” of the boxplot shows the median of all the val- P ? 02} e e é o
ues in the region R1, while the 25th and 75th percentiles are shown, _, o

respectively, as the bottom and top of each box. Distance betweer 3 8 arrd 12 3 Eead . 12

the 25th and 75th percentiles is the interquartile range (IQR). Data © B
points more than 1.5 IQR from the median are considered outliers, 1

°

and are shown as small circles (none in this figure). The whiskers 02 g ? * 08l ° é $ %
indicate the data point nearest but not exceeding 1.5 IQR from the, o ? é o6 % f% .
median. “<§é-o.2 ?% % z!ls =" o * é*
-0.4 é o4 %‘* %3
-06 02 °
prone to overfitting. Thus, BNN by displaying larger vari- 3 & T 12 8 it
ance but less accuracy in terms of MAESS is exhibiting the [ Jwr [ Jsvai EEEESWAR [deww |

classic symptom of overfitting.
For the Cordilleran region (Fig3), CORR, 10A and  rig 4. Same as Fig, except over the Prairies (region R3).
MAESS again showed that in general the SVR-R model did
slightly better than the SVR-L model, and both did better
than the MLR and BNN models, which actually attained neg- SVR-R did best among the four models, outperforming cli-
ative median CORR scores for all lead times. Again, all four matological forecasts due to its positive MAESS values. In
models tended to under-predict the magnitude of the anomaskilly (Fig. 4d), again BNN forecasted anomalies with stan-
lies (Fig.3d), leading to their low MAESS (Fig3c). Only  dard deviations most similar to those observed, however, the
SVR-R managed to attain positive MAESS for most lead BNN forecasts are unimpressive in terms of the CORR, I0A
times, as it did slightly better than SVR-L, and much bet- and MAESS scores. Overall, among all 6 regions, this region
ter than MLR and BNN in terms of the MAESS. Overall, the shows the highest forecast scores and the clearest advantage
Cordilleran region (R2) has lower skills and more outliers of incorporating nonlinearity in the models. Using canonical
(shown by small circles) than the Pacific coastal region (R1).correlation analysis to forecast Canadian winter mean sea-
The overall skills in the dry Prairies region (R3) (F#). sonal climate, Shabbar and Barnston (1996) also found the
is in general higher than those in regions R1 and R2. Forhighest skills manifested in the Prairies.
CORR (Fig.4a), the SVR-R model shows the best forecast For the dry Arctic region (R4), the overall skills (Fig)
performance at all lead times, with median values above 0.4vere about the second highest among the six regions. Here
up to 9-month lead time. Both SVR models did much bet-the SVR-L model clearly outperformed the MLR, but the
ter than MLR and BNN, and the advantage of the SVR-RSVR-R model did not improve on the SVR-L model, and
model over the SVR-L model is manifested. In the MAESS, in fact tended to do slightly worse. Hence, in contrast to the
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Fig. 5. Same as FigR, except over the Arctic (region R4). Fig. 6. Same as Fig, except over the Great Lakes (region R5).
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Prairies, the Arctic region shows that incorporating nonlin- ~ °°
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earity was unnecessary; however, incorporating robustness itz Rk
the linear regression was important as MLR could not match8 é& Zi‘ é
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coastal region (R6) (Figi) have the lowest skills among the -04 o
six regions. In both regions, both the SVR-L and SVR-R e 0 D Timo

models did better than MLR and BNN, suggesting that ro- © C)
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regions R1-R3 showed almost no decline of skills at longer =

leads, indicating that the signal is of low-frequency origin.
Regions R4—-R6 tended to show skills at 3-month lead to be
slightly lower than those at 9-month lead, hence forecasts
of winter extreme precipitation made during the summer-
autumn seasons tended to be slightly less skillful than thos?:. . . .

S . . - Fig. 7. F he Atl R6).
made earlier in the year. The climate indices for atmospheric 'g. 7. Same as Fig2, except over the Atlantic coast (region R6)

circulation used in our models are usually manifested more the Prairies. the f ‘ lati 4031005
strongly in winter than in summer, hence their weaker sig-In € Fraires, the lorécast correlation was around ©.510 ..

nals when forecasts were made during the summer-autumhp©’ the Pacific coastal area, the correlation was always above

seasons could explain the slightly lower skills. This type ofo'3 except at the 9-month lead. For the Cordillera, Great

forecast behaviour is not unprecedented, as the ENSO syé‘-a_llfﬁs and ?t:ag.t'f %rias’ thfe tfr? regifst skills We;ﬁ weakerl.
tem is also known to have a “spring forecast barrier”, i.e. € spatial distribution ot the difierence in the correla-

lower skills for forecasts issued during spring due to the Wealgig_n sgoreﬁ betw?]en the SVR-R mpdel anhd the SI\./R'L rg(i;jsl
signal to noise ratio at that time of year (Xue et al., 1994;( ig. 9) shows that at most stat|on_s, the nonlinear .
Zheng and Zhu, 2010). method has an advantage over the linear one, though its ad-

Instead of averaging forecast skills over each region, Wevantage decreases with increasing lead time. The advantage

next displayed the forecast correlation skills of the SVR-R of the ”0”””6?“ SVR model is most p_romir_1en_t in the Prairies
model at each station (Fig). Positive correlation occurred up to a lead time Of. 9 mo_nths. Nonlinearity is not advanta-
at the vast majority of stations at all lead times, with a few geXus_ O.Yer tTe gr Ct'lc rgglorrl]. i b he SVR
stations constantly showing good performance for all the IeadR msljngll Zrn% ct);eli/lpLgl(?:?gtl S slhc()avrvesnt%it \?vti\g]egr?lt 2 fow i
times. The SVR-R model gave several of its best forecasts for . ; ' only

the Arctic stations, with correlations around 0.7 — althoughexceptlons’ the SVR-R model is clearly superior to the MLR

over all stations in the Arctic region, the averaged correlation;nvztizl g\zﬁrt:ymasr?)ilsthaengo?:e?!tilgﬁi:(;?ss' by at least 0.2 on
was lower than that in the Prairies region. Over most stations 9 '
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Fig. 8. Spatial distribution of the forecast correlation skills of the Fig. 10. Difference between the forecast correlation skills of the

SVR-R model at individual stations over Canada at lead times ofSVR-R model and that of the MLR model at lead times(&f 3,

(a) 3, (b) 6, (c) 9 and(d) 12 months. (b) 6, (c) 9 and(d) 12 months. The two numbers beside each panel
give the number of stations where the SVR-R correlation is higher
(lower) than that of the MLR model, as indicated by the-) sign.

The strongest nonlinearity was found over the Prairies ac-
cording to the difference in the forecast performance between
the SVR-R and SVR-L models. This indicates that in the
Prairies, gains in forecast skills came not only from using

. {;%2;’21;)] a_robust error norm, but also from the nonlinear influencg of
Zj 0 [0.25 05] ¥ th climate fluctuations such as ENSO and other teleconnections
A [05,075] F on the extreme precipitation.
. f 4 N et Arctic winter precipitation is different from that in the
Q.5 o it 2N other five regions as all of Arctic winter precipitation is snow
% ﬁ;@‘# b E%H’fﬁ;w fog with relatively low water content that is easily moved by
(c) Lead = 9, (d)Lead = 12 . ¢ strong winds. There are many occurrences of strong winds

in the Arctic winter where snow is advected from other areas
under clear skies, which causes biases in catchments. This

Fig. 9. Difference between the forecast correlation skills of the non- . . . .
may explain why Arctic winter precipitation appears more

linear SVR model (SVR-R) and that of the linear SVR model (SVR- i h h e h .
L) at lead times ofa) 3, (b) 6, (c) 9 and(d) 12 months. The two inear t an_t € preup_nanon in other regions.
numbers beside each panel give the number of stations where the COMparing the skill levels of the six regions, we found
SVR-R correlation is higher (lower) than that of the SVR-L model, highest skill in the Prairies, presumably due to the strong
as indicated by the-(—) sign. nonlinear signal there, followed by the Arctic (despite the
lack of a nonlinear signal), then the Pacific coastal region,
followed by the Cordillera region, and finally by the low
5 Conclusions skill regions of the Atlantic coast and the Great Lakes, where
presumably the lack of a strong ENSO signal there con-
SVR models, with linear and RBF kernels, have been ap+riputed to the low skills (Shabbar et al., 1997; Shabbar,
plied to predict the seasonal extreme precipitation anomalieop6). Overall, the forecast skills attained by the various
in winter over Canada. In general, the robust SVR modelsmodels were modest — even when the correlation skill was
clearly outperformed the non-robust MLR and BNN mod- positive, the MAE skill was often below that from climato-
els in terms of forecast skills, thereby demonstrating thelogical forecasts.
value of models with robust error norms for dealing with disadvantage of nonlinear methods such as SVR and
the very noisy and non-Gaussian winter extreme precipitagNN is that it is generally futile to determine the contribu-
tion data. Meanwhile the performance of the nonlinear SVRtjon of forecast skill from individual predictors when there
model (SVR-R) tended to be slightly better than the linearare many predictors. The compression of predictors by PCA

SVR model (SVR-L), with the exception of the Arctic re- fyrther made determining the contributions from individual
gion, which seemed to lack a nonlinear signal. predictors infeasible.
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