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Abstract. For forecasting the maximum 5-day accumulated
precipitation over the winter season at lead times of 3, 6, 9
and 12 months over Canada from 1950 to 2007, two nonlin-
ear and two linear regression models were used, where the
models were support vector regression (SVR) (nonlinear and
linear versions), nonlinear Bayesian neural network (BNN)
and multiple linear regression (MLR). The 118 stations were
grouped into six geographic regions byK-means clustering.
For each region, the leading principal components of the win-
ter maximum 5-d accumulated precipitation anomalies were
the predictands. Potential predictors included quasi-global
sea surface temperature anomalies and 500 hPa geopotential
height anomalies over the Northern Hemisphere, as well as
six climate indices (the Niño-3.4 region sea surface tempera-
ture, the North Atlantic Oscillation, the Pacific-North Ameri-
can teleconnection, the Pacific Decadal Oscillation, the Scan-
dinavia pattern, and the East Atlantic pattern). The results
showed that in general the two robust SVR models tended
to have better forecast skills than the two non-robust mod-
els (MLR and BNN), and the nonlinear SVR model tended
to forecast slightly better than the linear SVR model. Among
the six regions, the Prairies region displayed the highest fore-
cast skills, and the Arctic region the second highest. The
strongest nonlinearity was manifested over the Prairies and
the weakest nonlinearity over the Arctic.
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(whsieh@eos.ubc.ca)

1 Introduction

Extreme precipitation events, responsible for economic loss
and ecological damage, impact agriculture, energy use and
human activity. There has been enhanced interest in recent
years on the apparent increase in the frequency and/or sever-
ity of extreme precipitation events for many regions, which
might be related to the increasing concentrations of green-
house gases (Easterling et al., 2000; Groisman et al., 2005).
Though the long-term trend of extreme precipitation events
was generally not significant in most areas of Canada (Zhang
et al., 2001; Kunkel, 2003), the establishment of an accurate
and timely extreme event monitoring and prediction system
is still of prime importance for alleviating the potential im-
pacts posed by climate variations and extreme weather.

Numerous previous studies have shown that the El Niño-
Southern Oscillation (ENSO), centered in the tropical Pa-
cific, plays an important role in North American climate vari-
ability, especially during the winter season (Barnston, 1994;
Shabbar and Barnston, 1996; Goddard et al., 2001; Wu et al.,
2005; Shabbar, 2006). Besides ENSO, other circulation pat-
terns, such as the North Atlantic Oscillation (NAO), Pacific-
North American (PNA) teleconnection, Pacific Decadal Os-
cillation (PDO) etc. have been found to show influences on
precipitation over the Northern Hemisphere (Hsieh et al.,
2006; Wu et al., 2006a, Bonsai et al., 2006; Lorenzo et al.,
2008; Lin et al., 2008), and may contribute skill in seasonal
precipitation forecasts. Most seasonal forecasts focus on pre-
dicting the seasonal mean of the precipitation instead of sea-
sonal statistics of extreme precipitation events. Such sea-
sonal extreme statistics are noisier and more non-Gaussian
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compared to the seasonal mean (where the averaging of data
reduces noise and renders the distribution more Gaussian due
to the central limit theorem), hence seasonal extreme statis-
tics may be even harder to predict.

One commonly used technique for seasonal predictions
is the empirical or statistical approach, using linear statis-
tical methods such as correlation, regression (Ward and Fol-
land, 1991), and canonical correlation analysis (Shabbar and
Barnston, 1996). More recently, machine learning methods
such as neural networks (Haupt et al., 2009; Hsieh, 2009)
have been introduced for nonlinear regression and nonlin-
ear canonical correlation analysis (Wu et al., 2006a, b; Can-
non and Hsieh, 2008). Neural networks have been applied to
downscale seasonal mean precipitation from global climate
models (Tolika et al., 2007) and to infer the influence of cli-
mate indices on seasonal mean precipitation (Pasini and Lan-
gone, 2010), while a wavelet-neuro-fuzzy method has been
developed for daily precipitation forecasts (Partal and Kisi,
2007). The advantage of nonlinear methods to linear meth-
ods is generally far less evident for climate applications than
for weather applications, since averaging nonlinear daily re-
lations produces near-linear seasonal relations as a conse-
quence of the central limit theorem (Yuval and Hsieh, 2002;
Hsieh and Cannon, 2008). A seasonal extreme statistic like
the maximum amount of precipitation accumulated over 5
consecutive days in the winter season does not involve ex-
tensive averaging as in the computation of the seasonal mean,
thereby avoiding the linearization effect of the central limit
theorem. Hence despite their potentially higher noise-to-
signal level than the seasonal mean, seasonal extreme statis-
tics may be more suited than the seasonal mean for nonlinear
forecasting by machine learning methods.

Neural network (NN) methods, generally regarded as
forming the first wave of breakthrough in machine learning,
became popular in the late 1980s for nonlinear regression
problems, whereas kernel methods (e.g. support vector re-
gression, SVR) arrived in a second wave in the second half of
the 1990s (Bishop, 2006; Hsieh, 2009). SVR has two advan-
tages over NN models – it avoids the multiple minima prob-
lem associated with nonlinear optimization used in NN mod-
els, and robust error norms are used in SVR instead of the
non-robust mean squared error (MSE) norm, allowing SVR
to better handle datasets with outliers. The use of a suitable
nonlinear kernel function in SVR allows it to be fully nonlin-
ear, while the use of a linear kernel function restricts SVR to
a linear model. Nevertheless, the linear SVR model is differ-
ent from the multiple linear regression (MLR) model, since
the robust error norm is used in SVR but not in MLR. Appli-
cations of SVR to hydrological problems include Dibike et
al. (2001), Khan and Coulibaly (2006), Bürger et al. (2007)
and Anandhi et al. (2008).

In this paper, we have a four-way comparison of fore-
cast skills from nonlinear SVR, linear SVR, Bayesian NN
(BNN) and MLR. The objective is to see how robust and
non-robust structures as well as nonlinear and linear capa-

bility in the models affect forecast skills when the predictand
is the very noisy and non-Gaussian winter extreme precipita-
tion anomaly. The description of the data and the forecasting
methods are given in Sects. 2 and 3, respectively. Section 4
presents the results of forecasting the winter extreme precip-
itation over Canada, followed by the conclusion in Sect. 5.

2 Data

Monthly extended reconstructed sea surface temperature
(SST) data (ERSST version 3 – Smith et al., 2008) were
obtained from the National Oceanic and Atmospheric Ad-
ministration (NOAA) with a spatial resolution of 2◦

×2◦ for
the period 1950–2007; while monthly 500 hPa geopoten-
tial height (Z500) data with 2.5◦×2.5◦ horizontal resolu-
tion from the National Centers for Environmental Prediction
(NCEP) reanalysis were used in this study for the same pe-
riod (Kalnay et al., 1996). We only used SST data within the
zonal band between 30◦ S and 70◦ N, and Z500 data over the
North Hemisphere (20◦ N–90◦ N), quite similar to Shabbar
and Barnston (1996). To reduce memory need, the SST data
were averaged into 6◦×4◦ grids with 1020 spatial points, and
the Z500 data into 5◦×5◦ grids with 1008 spatial points.

Seasonal SST and Z500 anomalies were obtained by re-
moving the climatological seasonal cycle from the monthly
mean data and filtering them using a 3-month running mean.
After standardizing the anomalies, time-lagged copies of the
data were stacked (i.e. the original copy, plus copies time-
lagged by 3, 6 and 9 months were assembled together) and
treated as a new enlarged dataset to be compacted by prin-
cipal component analysis (PCA). This PCA process, called
space-time PCA, singular spectrum analysis or extended em-
pirical orthogonal function (EEOF) analysis, was performed
on the SST and Z500 (standardized) anomalies separately,
each having 5 leading principal components (PCs) retained,
explaining 52% and 37% of the variance in the SST and Z500
anomalies, respectively. These will be referred to as the SST-
PCs and Z500PCs below.

Monthly climate indices for the Niño-3.4 region SST
(NINO), the North Atlantic Oscillation (NAO), the Pacific-
North American (PNA) teleconnection, the Scandinavia
(SCA) pattern, and the East Atlantic (EA) pattern – were
downloaded from the website of Climate Prediction Cen-
ter (CPC), NOAA. The description of listed indices can
also be found from the CPC site (http://www.cpc.ncep.noaa.
gov/data/teledoc/telecontents.shtml). Monthly values of the
Pacific Decadal Oscillation (PDO) were obtained from the
Joint Institute for the Study of the Atmosphere and Ocean,
University of Washington (http://jisao.washington.edu/pdo/
PDO.latest).

Daily 5-d total precipitation records were obtained from
461 climate stations in Canada for the 1900–2007 period.
Only stations with data covering at least the period of 1950–
2007 were considered as candidates for the analysis. This
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Fig. 1. Spatial distribution of the Canadian stations, with different
symbols used to indicate the six geographic regions determined by
a cluster analysis. The shading illustrates the Canadian topography.

period was selected to maximize the number of stations
while attempting to maintain the longest possible records.
In addition, stations with more than 5% missing data over
1950–2007 were not used. Under these conditions, only
118 stations qualified for further study. For each station, its
monthly maximum was first calculated from the daily 5-d
accumulated precipitation data, which suggested the heavi-
est precipitation event during that month. The climatolog-
ical seasonal cycle, i.e. the average of the maximum 5-d
total precipitation for each calendar month over the years
1950–2007, was removed from the monthly maximum 5-d
total precipitation to give the monthly extreme precipitation
anomalies. Then the 3-month maximum of the anomalies
was taken to be the seasonal extreme precipitation anomaly.
Only winter (December to February) data from 1950/1951
to 2006/2007 (57 winters) were analyzed here. The rea-
son that the maximum 5-d total precipitation instead of the
daily extreme is used here because this study focuses on
the extreme events related to low-frequency signals of large-
scale variations in the atmosphere-ocean system. In addi-
tion, larger-scale impacts, such as floods from heavy pre-
cipitation are mostly due to multi-day episodes. Maxi-
mum 5-d rainfall has also been chosen as one of the stan-
dard seasonal extreme precipitation indices by the Euro-
pean Union STARDEX project (STAtistical and Regional
dynamical Downscaling of Extremes for European regions)
(http://www.cru.uea.ac.uk/projects/stardex/).

In view of the diversity of the Canadian climate, we clas-
sified the 118 stations into groups usingK-means clus-
tering (Zhang et al., 2001; Whitfield et al., 2002). The
118×118 elements of the intercorrelation matrix among sta-
tion precipitation, which assumes the internal spatial coher-
ence of precipitation variability does not change with time,
and the 118×6 elements of the correlation matrix between
station precipitation and the six climate indices, which re-
flects the relationship between seasonal extreme precipita-
tion and large-scale atmospheric teleconnection and SST in-

Table 1. Number of stations, mean winter precipitation, and per-
centage variance of the winter extreme precipitation anomalies ex-
plained by the first several PCs (withnPC being the number of PCs
chosen as predictands based on cross-validation), for each of the six
regions over Canada.

Region Stns. Mean (mm) % var. (nPC)

R1 (Pacific coast) 20 78.5 85 (7)
R2 (Cordillera) 43 25.9 80 (8)
R3 (Prairies) 19 14.2 73 (4)
R4 (Arctic) 11 8.8 65 (4)
R5 (Great Lakes) 15 36.8 79 (7)
R6 (Atlantic coast) 10 63.8 95 (8)

dices, were taken as inputs to theK-means algorithm. The
Euclidean distance was used in cluster analysis to measure
dissimilarity between stations. The number of clusters was
varied from 2 to 8, and 6 was chosen because of its spa-
tial consistency and clear physical/geographical interpreta-
tion. Some clustering methods (e.g. Rao and Srinivas, 2006)
allow the number of clusters to be chosen objectively.

Figure1 presents the spatial distribution of the Canadian
stations, with their membership in the six clusters shown by
different symbols. The cluster analysis has divided the Cana-
dian domain into six geographic regions. The Pacific coastal
region (R1), under the influence of warm ocean currents and
moisture-laden winds, receives the most rain and snow dur-
ing winter. In the Cordilleran region (R2), the warm, moist
Pacific air is forced to rise over the mountains, cools and
falls on the western slopes in sizeable amounts of precipita-
tion as rain at lower altitudes and snow at higher ones; how-
ever, the eastern slopes and central plateau region are arid.
The Prairies (R3) receive considerably less precipitation than
most other parts of Canada, often being dry for long periods.
For the Arctic region (R4), it is extremely cold with very low
precipitation. The Great Lakes region (R5) receives rather
uniform precipitation through the year with heavy snowfalls
in winter. On the Atlantic coast (R6), extremely cold air
masses are modified by oceanic influences, which also cause
considerable snow and precipitation in winter. The num-
ber of stations for each cluster/region and the corresponding
mean precipitation, i.e. the 3-month means of the 5-d total
precipitation over all winters and over all stations in each re-
gion, are shown in Table 1, where the mean precipitation was
78.5 mm over the Pacific coast and 63.8 mm over the Atlantic
coast, much larger than the 8.8 mm over the Arctic region in
winter.

For each region, we applied PCA to the seasonal extreme
precipitation anomalies, and preserved the leading PCs. Ta-
ble 1 summarized the explained variance by the first few PCs
retained for each region in column 4. For example, the 7
leading PCs for the Pacific coastal region (R1) account for
85% of total variance of the precipitation anomalies. Each
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PC was then chosen as the predictand for a forecast model.
The seasonal extreme precipitation anomaly forecasts were
reconstructed by summing the forecasted PCs multiplied
by their corresponding empirical orthogonal function (EOF)
spatial patterns.

3 Methodology

3.1 Support vector regression

Support vector machines were originally designed for clas-
sification problems (Vapnik, 1995). They were then ex-
tended to nonlinear regression problems (Vapnik et al., 1997;
Bishop, 2006). Here we describe the essence of support vec-
tor regression (SVR).

Let x denote them inputs or predictors andy denote the
single output variable or predictand. By introducing a non-
linear mapping functionφ, the nonlinear regression problem
betweenx andy can be converted to a linear regression prob-
lem betweenφ andy, i.e.

f (x,w) = 〈w,φ(x)〉+b, (1)

where〈,〉 denotes the inner product, andw and b are the
regression coefficients obtained by minimizing the error be-
tweenf and the observed values ofy. To measure this er-
ror, instead of the commonly used mean squared error norm,
SVR uses theε-insensitive error norm defined by

|f (x,w)−y|ε =

{
0, if |f −y| < ε

|f −y|−ε, otherwise,
(2)

i.e. when the difference betweenf andy is smaller thanε,
the error is ignored, whereas when the difference betweenf

andy is large, the error approximates the mean absolute er-
ror, which unlike the mean squared error, is robust to outliers
in the data.

The w and b coefficients are estimated by minimizing
the regularized error functionR using sample data(xi,yi),
where

R =
C

N

N∑
i=1

|f (xi,w)−yi |ε +
1

2
‖w‖

2, (3)

with C andε prescribed parameters (commonly referred to as
hyperparameters), andN the sample size. The second term is
called the regularization (or weight penalty) term, and when
a small value ofC is used, the regularization term becomes
prominent relative to the first term, and the minimization of
R forces thew coefficients to have small magnitude, thereby
limiting model complexity.

The conversion of a nonlinear regression problem to a lin-
ear regression problem (Eq.1) eliminates the need for non-
linear optimization, which has to deal with the presence of
multiple local minima in the error function, as in the case
of NN methods. However,φ(x) may be a very high (or

even infinite) dimensional vector, hence solving the linear
regression problem may be prohibitively expensive. In SVR,
a kernel trick is used, which is to replace the inner prod-
uct 〈φ(x),φ(x′)〉 in the solution algorithm by a kernel func-
tion K(x,x′), which does not involve handling the unwieldy
φ(x). The minimization of Eq. (3) involves Lagrange multi-
pliers, and the final regression estimate can be expressed as
in the form (Bishop, 2006)

f (x) =

N∑
i=1

αiK(x,xi)+β. (4)

Performance of the SVR model depends on the choice
of the kernel function and the hyperparameters. In
this study, we used the linear kernel,K(x,xi)=〈x,xi〉,
and the Gaussian or radial basis function (RBF) kernel,
K(x,xi)=exp

(
−‖x−xi‖

2/(2σ 2)
)
, with the hyperparameter

σ controlling the width of the Gaussian function. When
the linear kernel is used, the SVR performs robust linear re-
gression, whereas with the RBF kernel, the SVR model per-
forms robust nonlinear regression. We used the SVR codes
by Chang and Lin (2001), downloadable from the LibSVM
website (http://www.csie.ntu.edu.tw/∼cjlin/libsvm). The hy-
perparameters,C, ε, andσ (for the RBF kernel) can be tuned
instead of predefined subjectively.

3.2 Bayesian neural network (BNN)

As NN models are now commonly used in hydrology (Solo-
matine and Ostfeld, 2008), we will only briefly outline the
approach used in our study. An NN model is trained from
a data set(x,y), with x the predictors andy the predictand,
by adjusting network parameters or weightsw so as to mini-
mize a regularized error function

E(w) =
C

N

N∑
i=1

(f (xi,w)−yi)
2
+‖w‖

2, (5)

where the first term is the parameterC times the mean
squared error, while the second term is the regularization
term. A smallC will strongly suppress the magnitude of
w found by the optimization process, thereby yielding a less
complex (i.e. less nonlinear) model. The best value forC

is commonly chosen upon validating the model performance
over independent data not used in training the model. With
the optimalC, the model should be neither overfitting nor
underfitting the data.

An alternative to using validation to find the best value for
C is BNN (MacKay, 1992), a neural network designed based
on a Bayesian probabilistic formulation. The idea of BNN
is to treat the network parameters or weights as random vari-
ables, obeying an assumed prior distribution. Once observed
data are available, the prior distribution is updated to a pos-
terior distribution using Bayes’ theorem. BNN automatically
determines the optimal value ofC without the need of valida-
tion data (Bishop, 2006). In this study, the BNN model used
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was from the NETLAB toolbox (Nabney, 2002), with a stan-
dard mapping functionf , i.e. a layer of hyperbolic tangent
mapping followed by linear mapping. As NN suffers from
multiple minima inE, an ensemble of 30 BNN models was
built from random initial weights, and the mean of the fore-
casts from the 30 ensemble members was taken as the final
forecast of the BNN model.

3.3 Cross-validation

For seasonal forecasting, the sample size to the number of
predictors is relatively small, since we have 5 SSTPCs, 5
Z500PCs and 6 climate indices as predictors. Hence PCA
is again applied to these predictor time series to further re-
duce the number of predictors. An additional advantage of
PCA is to produce uncorrelated predictors. To determine
p, the optimal number of PCs to retain as predictors, cross-
validation is needed. In ann-fold cross-validation procedure,
the data record is divided inton segments, a segment is re-
served as validation data, and the other segments as train-
ing data. The model is trained using the training data, then
validated or tested on the independent data in the validation
segment. By rotating the validation segments, the entire data
record can be used for validation (Bishop, 2006). As men-
tioned earlier, for each region (as determined by the cluster
analysis), PCA was applied to the seasonal extreme precip-
itation anomalies for all the stations in that region, yielding
the predictand PCs. Cross-validation is also needed to deter-
mine nPC, the optimal number of predictand PCs to retain
for each region (Table 1).

For the SVR model, we used the Cherkassky and Ma
(2004) approach to estimate the value of the hyperparam-
eters, and then use a finer grid search to pinpoint the op-
timal values of the hyperparameters under cross-validation.
To use independent data to test or verify the model forecasts,
a second round of cross-validation is needed, hence a double
cross-validation procedure (see the Appendix for details).

3.4 Forecast skill scores

To evaluate model performance on forecasting the seasonal
extreme precipitation, we reported the Pearson correlation
coefficient (CORR), the Willmott index of agreement (IOA)
between the observed and model-predicted values, the skill
score based on the mean absolute error (MAE) of the fore-
cast, and SkillV=SDp/SDo, the ratio of the standard devia-
tion (SD) of the model predictions to that of the observations.
All four skill scores are used because they indicate different
components of model error. While CORR is a common mea-
sure of the linear dependence between the forecast and the
observation, it does not take forecast bias into account, thus it
is possible for a forecast with large errors to still have a good
CORR score. IOA is defined as (Willmott, 1982):

IOA = 1−

∑N
i=1(Pi −Oi)

2∑N
i=1

(
|Pi −O|+|Oi −O|

)2
, (6)

whereN is the number of samples at the station,Oi andPi

are, respectively, the observed and predicted values for the
ith sample,O is the average of the observed values, and
0≤IOA≤1, with 1 being perfect score. IOA has been pro-
posed as an alternative to CORR, but it is sensitive to the
difference between the mean ofPi and O as well as the
difference between the standard deviation ofPi and that of
Oi . MAE measures the mean absolute error between the ob-
served and predicted values, i.e.

MAE =
1

N

N∑
i=1

|Pi −Oi |. (7)

MAE is considered a more natural and superior measure of
average error than the commonly used root mean squared
error (Willmott and Matsuura, 2005). To compare fore-
casting performance across different regions, instead of
MAE, we used the MAE skill score (MAESS), defined by
MAESS=1−MAE/MAEc, where

MAEc =
1

N

N∑
i=1

∣∣O −Oi

∣∣, (8)

is the MAE of the climatological forecasts. The MAESS
is positive (negative) when the accuracy of the forecasts is
greater (less) than the accuracy of the climatological fore-
casts. The SkillV score is used to measure how close the pre-
dicted standard deviation approaches the observed one, with
the perfect score being 1.

4 Forecast results

The cross-validated forecast scores averaged over all stations
in each region at lead times of 3, 6, 9 and 12 months using
the MLR, SVR with linear kernel (SVR-L), nonlinear SVR
with RBF kernel (SVR-R) and BNN models are shown in
Figs.2–7 for the six regions.

For the Pacific coastal area (Fig.2), CORR, IOA and
MAESS showed that in general the SVR-R model tended
to do slightly better than the SVR-L model, and both did
better than the MLR and BNN models. Only the SVR-
R model attained slightly positive MAESS for most lead
times (Fig.2c), while both linear models and BNN displayed
negative MAESS, indicating that they underperformed cli-
matological forecasts. The relatively poor performance of
MAESS relative to CORR can be partly explained by the
SkillV score shown in Fig.2d, which shows all models dra-
matically under-predicting the magnitude of the anomalies.
Ironically, BNN had the best SkillV scores as well as the
worst MAESS among the four models. The reason is that
BNN being a non-robust nonlinear model is easily overfitted
to the very noisy data. Even with an ensemble average to al-
leviate overfitting, BNN generated relatively large amplitude
forecasts compared to the other three models which are less
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Fig. 2. Cross-validated forecast scores,(a) CORR, (b) IOA, (c)
MAESS and(d) SkillV , in the Pacific coastal region (region R1)
for the winter extreme precipitation at lead times of 3, 6, 9 and
12 months using the MLR, SVR with linear kernel (SVR-L), non-
linear SVR with RBF kernel (SVR-R) and BNN models. Lead time
of 3 months means that predictor data up till September–November
were used to forecast the December–February extreme precipita-
tion. The “waistline” of the boxplot shows the median of all the val-
ues in the region R1, while the 25th and 75th percentiles are shown,
respectively, as the bottom and top of each box. Distance between
the 25th and 75th percentiles is the interquartile range (IQR). Data
points more than 1.5 IQR from the median are considered outliers,
and are shown as small circles (none in this figure). The whiskers
indicate the data point nearest but not exceeding 1.5 IQR from the
median.

prone to overfitting. Thus, BNN by displaying larger vari-
ance but less accuracy in terms of MAESS is exhibiting the
classic symptom of overfitting.

For the Cordilleran region (Fig.3), CORR, IOA and
MAESS again showed that in general the SVR-R model did
slightly better than the SVR-L model, and both did better
than the MLR and BNN models, which actually attained neg-
ative median CORR scores for all lead times. Again, all four
models tended to under-predict the magnitude of the anoma-
lies (Fig.3d), leading to their low MAESS (Fig.3c). Only
SVR-R managed to attain positive MAESS for most lead
times, as it did slightly better than SVR-L, and much bet-
ter than MLR and BNN in terms of the MAESS. Overall, the
Cordilleran region (R2) has lower skills and more outliers
(shown by small circles) than the Pacific coastal region (R1).

The overall skills in the dry Prairies region (R3) (Fig.4)
is in general higher than those in regions R1 and R2. For
CORR (Fig.4a), the SVR-R model shows the best forecast
performance at all lead times, with median values above 0.4
up to 9-month lead time. Both SVR models did much bet-
ter than MLR and BNN, and the advantage of the SVR-R
model over the SVR-L model is manifested. In the MAESS,

3 6 9 12
0.4
0.2

0
0.2
0.4
0.6

CO
RR

Lead Time

(a)

3 6 9 12
0

0.2

0.4

0.6

0.8

IO
A

Lead Time

(b)

3 6 9 12
0.6

0.4

0.2

0

0.2

M
AE

SS

Lead Time

(c)

3 6 9 12

0.2

0.4

0.6

0.8

1

Sk
ill V

Lead Time

(d)

 

 

MLR SVR L SVR R BNN

Fig. 3. Same as Fig.2, except over the Cordillera (region R2).
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Fig. 4. Same as Fig.2, except over the Prairies (region R3).

SVR-R did best among the four models, outperforming cli-
matological forecasts due to its positive MAESS values. In
SkillV (Fig. 4d), again BNN forecasted anomalies with stan-
dard deviations most similar to those observed, however, the
BNN forecasts are unimpressive in terms of the CORR, IOA
and MAESS scores. Overall, among all 6 regions, this region
shows the highest forecast scores and the clearest advantage
of incorporating nonlinearity in the models. Using canonical
correlation analysis to forecast Canadian winter mean sea-
sonal climate, Shabbar and Barnston (1996) also found the
highest skills manifested in the Prairies.

For the dry Arctic region (R4), the overall skills (Fig.5)
were about the second highest among the six regions. Here
the SVR-L model clearly outperformed the MLR, but the
SVR-R model did not improve on the SVR-L model, and
in fact tended to do slightly worse. Hence, in contrast to the
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Fig. 5. Same as Fig.2, except over the Arctic (region R4).

Prairies, the Arctic region shows that incorporating nonlin-
earity was unnecessary; however, incorporating robustness in
the linear regression was important as MLR could not match
SVR-L. The Great Lake region (R5) (Fig.6) and the Atlantic
coastal region (R6) (Fig.7) have the lowest skills among the
six regions. In both regions, both the SVR-L and SVR-R
models did better than MLR and BNN, suggesting that ro-
bustness helps. However, there is little advantage in using
the nonlinear SVR-R over the linear SVR-L.

As to the dependence of forecast skills on the lead time,
regions R1–R3 showed almost no decline of skills at longer
leads, indicating that the signal is of low-frequency origin.
Regions R4–R6 tended to show skills at 3-month lead to be
slightly lower than those at 9-month lead, hence forecasts
of winter extreme precipitation made during the summer-
autumn seasons tended to be slightly less skillful than those
made earlier in the year. The climate indices for atmospheric
circulation used in our models are usually manifested more
strongly in winter than in summer, hence their weaker sig-
nals when forecasts were made during the summer-autumn
seasons could explain the slightly lower skills. This type of
forecast behaviour is not unprecedented, as the ENSO sys-
tem is also known to have a “spring forecast barrier”, i.e.
lower skills for forecasts issued during spring due to the weak
signal to noise ratio at that time of year (Xue et al., 1994;
Zheng and Zhu, 2010).

Instead of averaging forecast skills over each region, we
next displayed the forecast correlation skills of the SVR-R
model at each station (Fig.8). Positive correlation occurred
at the vast majority of stations at all lead times, with a few
stations constantly showing good performance for all the lead
times. The SVR-R model gave several of its best forecasts for
the Arctic stations, with correlations around 0.7 – although
over all stations in the Arctic region, the averaged correlation
was lower than that in the Prairies region. Over most stations
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Fig. 6. Same as Fig.2, except over the Great Lakes (region R5).
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Fig. 7. Same as Fig.2, except over the Atlantic coast (region R6).

in the Prairies, the forecast correlation was around 0.3 to 0.5.
For the Pacific coastal area, the correlation was always above
0.3 except at the 9-month lead. For the Cordillera, Great
Lakes and Atlantic areas, the forecast skills were weaker.

The spatial distribution of the difference in the correla-
tion scores between the SVR-R model and the SVR-L model
(Fig. 9) shows that at most stations, the nonlinear SVR
method has an advantage over the linear one, though its ad-
vantage decreases with increasing lead time. The advantage
of the nonlinear SVR model is most prominent in the Prairies
up to a lead time of 9 months. Nonlinearity is not advanta-
geous over the Arctic region.

A similar plot displaying the difference between the SVR-
R model and the MLR (Fig.10) shows that with only a few
exceptions, the SVR-R model is clearly superior to the MLR
model over all areas and at all lead times, by at least 0.2 on
average in terms of the correlation score.
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Fig. 8. Spatial distribution of the forecast correlation skills of the
SVR-R model at individual stations over Canada at lead times of
(a) 3, (b) 6, (c) 9 and(d) 12 months.
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Fig. 9. Difference between the forecast correlation skills of the non-
linear SVR model (SVR-R) and that of the linear SVR model (SVR-
L) at lead times of(a) 3, (b) 6, (c) 9 and(d) 12 months. The two
numbers beside each panel give the number of stations where the
SVR-R correlation is higher (lower) than that of the SVR-L model,
as indicated by the+(−) sign.

5 Conclusions

SVR models, with linear and RBF kernels, have been ap-
plied to predict the seasonal extreme precipitation anomalies
in winter over Canada. In general, the robust SVR models
clearly outperformed the non-robust MLR and BNN mod-
els in terms of forecast skills, thereby demonstrating the
value of models with robust error norms for dealing with
the very noisy and non-Gaussian winter extreme precipita-
tion data. Meanwhile the performance of the nonlinear SVR
model (SVR-R) tended to be slightly better than the linear
SVR model (SVR-L), with the exception of the Arctic re-
gion, which seemed to lack a nonlinear signal.
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Fig. 10. Difference between the forecast correlation skills of the
SVR-R model and that of the MLR model at lead times of(a) 3,
(b) 6, (c) 9 and(d) 12 months. The two numbers beside each panel
give the number of stations where the SVR-R correlation is higher
(lower) than that of the MLR model, as indicated by the+(−) sign.

The strongest nonlinearity was found over the Prairies ac-
cording to the difference in the forecast performance between
the SVR-R and SVR-L models. This indicates that in the
Prairies, gains in forecast skills came not only from using
a robust error norm, but also from the nonlinear influence of
climate fluctuations such as ENSO and other teleconnections
on the extreme precipitation.

Arctic winter precipitation is different from that in the
other five regions as all of Arctic winter precipitation is snow
with relatively low water content that is easily moved by
strong winds. There are many occurrences of strong winds
in the Arctic winter where snow is advected from other areas
under clear skies, which causes biases in catchments. This
may explain why Arctic winter precipitation appears more
linear than the precipitation in other regions.

Comparing the skill levels of the six regions, we found
highest skill in the Prairies, presumably due to the strong
nonlinear signal there, followed by the Arctic (despite the
lack of a nonlinear signal), then the Pacific coastal region,
followed by the Cordillera region, and finally by the low
skill regions of the Atlantic coast and the Great Lakes, where
presumably the lack of a strong ENSO signal there con-
tributed to the low skills (Shabbar et al., 1997; Shabbar,
2006). Overall, the forecast skills attained by the various
models were modest – even when the correlation skill was
positive, the MAE skill was often below that from climato-
logical forecasts.

A disadvantage of nonlinear methods such as SVR and
BNN is that it is generally futile to determine the contribu-
tion of forecast skill from individual predictors when there
are many predictors. The compression of predictors by PCA
further made determining the contributions from individual
predictors infeasible.
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Fig. A1. Schematic diagram illustrating the double cross-validation
procedure. In the outer round (CV1), the training data are shown
in grey and the 3-year validation data shaded. The 1-year data seg-
ments (shown in white) bridging the training data and the validation
data are not used, to avoid autocorrelation leaking information from
the training data to the adjacent validation data. The validation data
segment is moved repeatedly in 3-year increments from the start of
the data record to the end in this cross-validation loop, so forecast
performance is validated over the whole record. Meanwhile in the
inner loop (CV2), the training data from CV1 are assembled and
divided into 7 segments, with 6 used for training and one (shaded)
for validation. Again the training and validation segments are ro-
tated in the loop so all segments are eventually used for validation
to determine the optimal model values/hyperparameters. The opti-
mal model determined from CV2 is then used to forecast over the
3-year validation segment in CV1.

Appendix A

Double cross-validation

The procedure of Sect. 3.3 actually involves two rounds of
cross-validation, an outer round (CV1) and an inner round
(CV2) (Fig. A1). For CV1, the first 5 yr of data were re-
served for forecast testing, and the remaining data were used
as training data. Forecast testing was only done on the mid-
dle 3 yr of the 5-yr data segment to alleviate the leakage of
low-frequency signals from the training data to the adjacent
test data. We repeated the above process by moving the 5-yr
window of test data forward by 3 yr each time until the whole
record was used for forecast testing.

On the training data, a 7-fold cross-validation (CV2) was
implemented to determine the optimal values forp (the op-
timal number of predictor PCs),nPC (the optimal num-
ber of predictand PCs) and the hyperparameters: First the
Cherkassky and Ma (2004) estimates were used for the hy-
perparameters, and the optimalp was estimated in CV2.
Then a finer grid search for the optimal hyperparameter val-
ues and for the optimalnPC was undertaken in CV2. The
model trained with these optimalp, nPC and hyperparame-
ters was then used to forecast the test/validation data under
CV1. For BNN, the optimal number of hidden neurons to
use in a neural network model was found from CV2.
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