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Abstract

We compute the strange quark mass from the analysis of the f1(1420) − f1(1285) mass difference

QCD sum rule, where the operator-product-expansion series is up to dimension six and to O(α3
s)

accuracy. We obtain bounds for the strange quark mass 125 MeV ≤ ms(1 GeV) ≤ 230 MeV

(i.e. 95 MeV ≤ ms(2 GeV) ≤ 174 MeV) and for the singlet-octet mixing angle 2◦ ≤ θ ≤ 68◦.

Two strategies are taken into account to further determine the mixing angle θ. (i) First, in the

previous study the Gell-Mann-Okubo mass formula together with the K1(1270)−K1(1400) mixing

angle θK1 = (−34 ± 13)◦ which was extracted from the data for B(B → K1(1270)γ),B(B →
K1(1400)γ),B(τ → K1(1270)ντ ), and B(τ → K1(1420)ντ ), gave θ = (23+17

−23)
◦. (ii) Second, from

the study of the ratio for f1(1285) → φγ and f1(1285) → ρ0γ branching fractions, we have two-

fold solution θ = (19.4+4.5
−4.6)

◦ or (51.1+4.5
−4.6)

◦. Combining these two analyses, we thus obtain θ =

(19.4+4.5
−4.6)

◦.

1Email address: kcyang@cycu.edu.tw
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1. Introduction. The light quark masses are important parameters in the standard model.

The quark mass term mixes left- and right-handed quarks in the QCD Lagrangian. The existence of

non-zero light quark masses results in the spontaneous SU(3)L×SU(3)R chiral symmetry breaking

of the QCD to be SU(3)V . Due to the symmetry breaking we have eight massless Goldstone bosons:

π,K, η, in the massless quark limit. However, actually π,K, and η are not massless mesons because

the light quark masses do not vanish. The strange quark mass measures not only the chiral but also

vector flavor SU(3) symmetry breaking which can be observed in the hadron mass spectrum and

transition amplitudes, e.g., phenomenologies in B factories. Furthermore, the theoretical prediction

for ǫ′/ǫ also depends on the accuracy of the strange quark mass [1]. Nevertheless, the quarks are

not directly observed due to the color confinement.

For the aforementioned reasons, the strange quark mass has been evaluated in various frame-

works. Together with the experimental data, the techniques of the chiral perturbation theory and

current algebra can determine quark mass ratios [2, 3]. Many attempts have been made to compute

ms using QCD sum rules, finite energy sum rules [4, 5, 6, 7, 8, 9, 10] and lattice QCD [11, 12, 13].

The running strange quark mass in the MS scheme at a scale µ ≈ 2 GeV is ms = 101+29
−21 MeV

(80-130 MeV) given in the current particle data group (PDG) average [14], where ms is estimated

from SU(3) splitting in hadron masses. This error is still large. It should be important if the error

can be further reduced.

Many sum rule calculations for ms were done from the analysis of various channels of scalar,

pseudoscalar, or vector currents. In this letter, we shall obtain the mass difference QCD sum

rules for the f1(1420) and f1(1285) to determine the magnitude of the strange quark mass. The

mass splitting is owing to the SU(3) flavor symmetry breaking. These two mesons with quantum

number JPC = 1++ are the members of the 13P1 states in the quark model language, and are

mixtures of the pure octet f8 and singlet f1, where the mixing is characterized by the mixing angle

θ. We perform a comprehensive study of the constraint on ms, which is as a function of θ, by

considering theoretical uncertainties from all inputs. We thus get the lower bound on the strange

quark mass: ms(1GeV) ≥ 125 MeV (i.e., ms(2GeV) ≥ 95 MeV), which sufficiently improves the

current PDG result. In section 2, we shall present detailed discussions on the determination of the

mixing angle θ. Substituting the K1(1270)−K1(1400) mixing angle, which was extracted from the

B → K1γ and τ → K1ντ data, to the Gell-Mann-Okubo mass formula, we can derive the value of θ.

Alternatively, from the analysis of the decay ratio for f1(1285) → φγ and f1(1285) → ρ0γ, we have

a much accurate estimation for θ. We calculate the mass difference sum rule mf1(1420) −mf1(1285)

in section 3. From the sum rule analysis, we obtain the constraint ranges for ms and θ. Finally, a

brief summary is given in section 4.

2. Singlet-octet mixing angle of the 1++ nonet. In the quark model, a1(1260),

f1(1285), f1(1420), and K1A are classified in 1++ multiplets, which, in terms of spectroscopic

notation n2S+1LJ , are 13P1 p-wave mesons. Analogous to η and η′, because of SU(3) breaking

effects, f1(1285) and f1(1420) are the mixing states of the pure octet f8 ad singlet f1,

|f1(1285))〉 = |f1〉 cos θ + |f8〉 sin θ, |f1(1420)〉 = −|f1〉 sin θ + |f8〉 cos θ . (1)
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In the present letter, we adopt

f1 =
1√
3
(ūu+ d̄d+ s̄s), (2)

f8 =
1√
6
(ūu+ d̄d− 2s̄s), (3)

where there is a relative sign difference between the s̄s contents of f1 and f8 in our convention.

From the Gell-Mann-Okubo mass formula, the mixing angle θ satisfies

cos2 θ =
3m2

f1(1285)
−
(

4m2
K1A

−m2
a1

)

3
(

m2
f1(1285)

−m2
f1(1420)

) , (4)

where

m2
K1A

= 〈K1A|H|K1A〉 = m2
K1(1400)

cos2 θK1 +m2
K1(1270)

sin2 θK1 , (5)

with H being the Hamiltonian. Here θK1 is the K1(1400) − K1(1270) mixing angle. The sign of

the mixing angle θ can be determined from the mass relation [14]

tan θ =
4m2

K1A
−m2

a1 − 3m2
f1(1420)

3m2
18

, (6)

where m2
18 = 〈f1|H|f8〉 ≃ (m2

a1 −m2
K1A

)2
√
2/3 < 0, we find θ > 0. Due to the strange and non-

strange light quark mass difference, K1A is not the mass eigenstate and it can mix with K1B , which

is one of the members in the 11P1 multiplets. From the convention in [15] (see also discussions in

[16, 17]), we write the two physical states K1(1270) and K1(1400) in the following relations,

|K1(1270)〉 = |K1A〉 sin θK + |K1B〉 cos θK ,

|K1(1400)〉 = |K1A〉 cos θK − |K1B〉 sin θK . (7)

The mixing angle was found to be |θK1 | ≈ 33◦, 57◦ in [15] and ≈ ±37◦,±58◦ in [18]. A similar

range 35◦ . |θK1 | . 55◦ was obtained in [19]. The sign ambiguity for θK1 is due to the fact that

one can add arbitrary phases to |K̄1A〉 and |K̄1B〉. This sign ambiguity can be removed by fixing

the signs of decay constants fK1A
and f⊥K1B

, which are defined by

〈0|ψ̄γµγ5s|K̄1A(P, λ)〉 = −i fK1A
mK1A

ǫ(λ)µ , (8)

〈0|ψ̄σµνs|K̄1B(P, λ)〉 = if⊥K1B
ǫµναβǫ

α
(λ)P

β , (9)

where ǫ0123 = −1 and ψ ≡ u or d. Following the convention in [17], we adopt fK1A
> 0, f⊥K1B

> 0,

so that θK1 should be negative to account for the observable B(B → K1(1270)γ) ≫ B(B →
K1(1400)γ) [20, 21]. Furthermore, from the data of τ → K1(1270)ντ and K1(1400)ντ decays

together with the sum rule results for the K1A and K1B decay constants, the mixing angle θK1 =

(−34± 13)◦ was obtained in [21]. Substituting this value into (4), we then obtain θquad = (23+17
−23)

◦
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[22], i.e., θquad = 0◦ − 40◦ 2. Since K∗K and KKπ are the dominant modes of f1(1420) whereas

f0(1285) decays mainly to the 4π states, this suggests that the quark content is primarily ss̄ for

f1(1420) and nn̄ = (uū+ dd̄)/
√
2 for f1(1285). Therefore, the mixing relations can be rewritten to

exhibit the nn̄ and ss̄ components which decouple for the ideal mixing angle θi = tan−1(1/
√
2) ≃

35.3◦. Let ᾱ = θi − θ, we rewrite these two states in the flavor basis 3,

f1(1285) =
1√
2
(ūu+ d̄d) cos ᾱ+ s̄s sin ᾱ ,

f1(1420) =
1√
2
(ūu+ d̄d) sin ᾱ− s̄s cos ᾱ . (10)

An alternative strategy for extracting θ can be achieved from the ratio of f1(1285) → φγ and

f1(1285) → ρ0γ branching fractions. Because the electromagnetic (EM) interaction Lagrangian is

given by

LI = −Aµ
em(euūγµu+ edd̄γµd+ ess̄γµs)

= −Aµ
em

(

(eu + ed)
ūγµu+ d̄γµd

2
+ (eu − ed)

ūγµu− d̄γµd

2
+ ess̄γµs

)

, (11)

we therefore obtain

B(f1(1285) → φγ)

B(f1(1285) → ρ0γ)
=

( 〈φ|ess̄γµs|f1(1285)〉
〈ρ|(eu − ed)(ūγµu− d̄γµd)/2|f1(1285)〉

)2
(

m2
f1

−m2
φ

m2
f1

−m2
ρ

)3

︸ ︷︷ ︸

phase factor

=

( −e/3
2e/3 + e/3

)2

︸ ︷︷ ︸

EM factor

( 〈φ|s̄γµs|f1(1285)〉
〈ρ|(ūγµu− d̄γµd)/2|f1(1285)〉

)2
(

m2
f1

−m2
φ

m2
f1

−m2
ρ

)3

︸ ︷︷ ︸

phase factor

≈ 4

9

(
mφfφ
mρfρ

)2

tan2 ᾱ

(

m2
f1

−m2
φ

m2
f1

−m2
ρ

)3

, (12)

where f1 ≡ f1(1285), and we have taken the single-pole approximation 4:

〈φ|s̄γµs|f1(1285)〉
〈ρ|(ūγµu− d̄γµd)/2|f1(1285)〉

≈ mφfφgf1φφ

mρfρgf1ρρ/
√
2

sin ᾱ

cos ᾱ/
√
2

≈ mφfφ
mρfρ

× 2 tan ᾱ . (13)

2 Replacing the meson mass squared m2 by m throughout (4), we obtain θlin = (23+17
−23)

◦. The difference

is negligible. Our result can be compared with that using θK1
= −57◦ into (4), one has θquad = 52◦.

3In PDG [14], the mixing angle is defined as α = θ− θi + π/2. Comparing it with our definition, we have

α = π/2− ᾱ.
4The following approximation was used in [23]:

〈φ|s̄γµs|f1(1285)〉
〈ρ|(ūγµu− d̄γµd)/2|f1(1285)〉

≈ 2 tan ᾱ .
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Using fρ = 209 ± 1 MeV, fφ = 221 ± 3 MeV [24], and the current data B(f1(1285) → φγ) =

(7.4±2.6)×10−4 and B(f1(1285) → ρ0γ) = (5.5±1.3)% [14] as inputs, we obtain ᾱ = ±(15.8+4.5
−4.6)

◦,

i.e., two fold solution θ = (19.4+4.5
−4.6)

◦ or (51.1+4.5
−4.6)

◦. Combining with these two analyses, we thus

find that θ = (19.4+4.5
−4.6)

◦ is much preferred and in good agreement with experimental observables.

3. Mass of the strange quark. We proceed to evaluate the strange quark mass from the

mass difference sum rules of the f1(1285) and f1(1420) mesons. We consider the following two-point

correlation functions,

Πµν(q
2) = i

∫

d4xeiqx〈0|T(jµ(x)j†ν(0))|0〉 = −Π1(q
2)gµν +Π2(q

2)qµqν , (14)

Π′
µν(q

2) = i

∫

d4xeiqx〈0|T(j′µ(x)j′†ν (0))|0〉 = −Π′
1(q

2)gµν +Π′
2(q

2)qµqν . (15)

The interpolating currents satisfying the relations:

〈0|j(′)µ (0)|f (′)1 (P, λ)〉 = −if
f
(′)
1
m

f
(′)
1
ǫ(λ)µ , (16)

are

jµ = cos θj(1)µ + sin θj(8)µ , (17)

j′µ = − sin θj(1)µ + cos θj(8)µ , (18)

where

j(1)µ =
1√
3
(ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s) , (19)

j(8)µ =
1√
6
(ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s) , (20)

and we have used the short-hand notations for f1 ≡ f1(1285) and f ′1 ≡ f1(1420). In the massless

quark limit, we have Π1 = q2Π2 and Π′
1 = q2Π′

2 due to the current conservation of jµ and j′µ.

Here we focus on Π
(′)
1 since it receives contributions only from axial-vector (3P1) mesons, whereas

Π
(′)
2 contains effects from pseudoscalar mesons. The lowest-lying f

(′)
1 meson contribution can be

approximated via the dispersion relation as [25]

m2

f
(′)
1

f2
f
(′)
1

m2

f
(′)
1

− q2
=

1

π

∫ sf
(′)

0

0
ds

ImΠ
(′)OPE
1 (s)

s− q2
, (21)

where Π
(′)OPE
1 is the QCD operator-product-expansion (OPE) result of Π

(′)
1 at the quark-gluon

level [17], and s
f
(′)
1

0 is the threshold of the higher resonant states. The four-quark condensates are

expressed as

〈0|q̄Γiλ
aqq̄Γiλ

aq|0〉 = −a2
1

16N2
c

Tr(ΓiΓi)Tr(λ
aλa)〈q̄q〉2 , (22)

where a2 = 1 corresponds to the vacuum saturation approximation. In the present work, we have

Γ = γµ and γµγ5, for which a2 = 1 ∼ 1.2 was estimated in [26]. For Π
(′)OPE
1 , we take into account
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the terms with dimension ≤ 6, where the term with dimension=0 is up to O(α3
s), and the terms

with dimension=4 are up to O(α2
s). We do not include the radiative correction to the dimension=6

terms since all the uncertainties can be lumped into a2. Note that such radiative corrections for

terms with dimensions=0 and 4 are the same as the vector meson case and can read from [6].

Further applying the Borel (inverse-Laplace) transformation [25],

B[f(q2)] = lim
n→∞

−q2→∞

−q2/n2=M2fixed

(−q2)n+1

[

d

dq2

]n

f(q2), (23)

to both sides of (21) to improve the convergence of the OPE series and further suppress the

contributions from higher resonances, the sum rules thus read

f2f1m
2
f1e

−m2
f1

/M2

=

s
f1
0∫

0

s ds e−s/M2

4π2

[

1 +
αs

π
+ 1.6398

α2
s

π2
−
(

10.2839 − b20π
4

3

)
α3
s

π3

]

− 1

12

(

1− 11

18

αs

π

)

〈αs

π
G2〉

+

[
4

27

αs

π
+

(

−257

486
+

4

3
ζ(3)

)
α2
s

π2

]
∑

qi≡u,d,s

〈miq̄iqi〉

+
cos2 θ

3

[

2a1 (2mq〈q̄q〉+ms〈s̄s〉)−
352παs

81M2
a2
(
2〈q̄q〉2 + 〈s̄s〉2

)

]

+
sin2 θ

3

[

2a1 (mq〈q̄q〉+ 2ms〈s̄s〉)−
352παs

81M2
a2
(
〈q̄q〉2 + 2〈s̄s〉2

)

]

+
2
√
2

3
cos θ sin θ

[

2a1 (mq〈q̄q〉 −ms〈s̄s〉)−
352παs

81M2
a2
(
〈q̄q〉2 − 〈s̄s〉2

)

]

, (24)

f2f ′

1
m2

f ′

1
e
−m2

f ′
1
/M2

=

s
f ′1
0∫

0

s ds e−s/M2

4π2

[

1 +
αs

π
+ 1.6398

α2
s

π2
−
(

10.2839 − b20π
4

3

)
α3
s

π3

]

− 1

12

(

1− 11

18

αs

π

)

〈αs

π
G2〉

+

[
4

27

αs

π
+

(

−257

486
+

4

3
ζ(3)

)
α2
s

π2

]
∑

qi≡u,d,s

〈miq̄iqi〉

+
sin2 θ

3

[

2a1 (2mq〈q̄q〉+ms〈s̄s〉)−
352παs

81M2
a2
(
2〈q̄q〉2 + 〈s̄s〉2

)

]

+
cos2 θ

3

[

2a1 (mq〈q̄q〉+ 2ms〈s̄s〉)−
352παs

81M2
a2
(
〈q̄q〉2 + 2〈s̄s〉2

)

]

6



−2
√
2

3
cos θ sin θ

[

2a1 (mq〈q̄q〉 −ms〈s̄s〉)−
352παs

81M2
a2
(
〈q̄q〉2 − 〈s̄s〉2

)

]

, (25)

where

mq〈q̄q〉 ≡
1

2

(
mu〈ūu〉+md〈d̄d〉

)
, 〈q̄q〉2 ≡ 1

2

(
〈ūu〉2 + 〈d̄d〉2

)
,

a1 = 1 +
1

3

αs

π
+

11

2

α2
s

π2
, b0 =

33− 2nf
12π

, (26)

with nf the number of flavors. The mass sum rules for f1(1285) and f1(1420) can be obtained by

applying the differential operator M4∂ ln /∂M2 to both sides of (24) and (25), respectively.

In the numerical analysis, we shall use Λ
(3)NLO
QCD = 0.360 GeV, corresponding to αs(1GeV) =

0.495, Λ
(4)NLO
QCD = 0.313 GeV, and the following values at the scale µ = 1 GeV [25, 27]:

〈αsG
a
µνG

aµν〉 = (0.474 ± 0.120) GeV4/(4π) ,

〈ūu〉 ∼= 〈d̄d〉 = −(0.245 ± 0.010)3 GeV3 ,

〈s̄s〉 = (0.8± 0.1)〈ūu〉 ,
mu +md = (11± 2) MeV ,

a2 ≃ 1 ∼ 1.2 .

(27)

We do not consider the isospin breaking effect between 〈ūu〉 and 〈d̄d〉 since 〈d̄d〉/〈ūu〉−1 ≈ −0.007

[3] is negligible in the present analysis. The threshold is allowed by sf10 = 2.85 ± 0.15 GeV2 and

determined by the maximum stability of the mass sum rule. For an estimate on the threshold

difference, we parametrize in the form (

√

s
f ′

1
0 −

√

sf10 )/

√

sf10 = δ × (mf ′

1
− mf1)/mf1 , with δ =

1.0 ± 0.3. In other words, we assign a 30% uncertainty to the default value. We search for the

allowed solutions for strange quark mass and the singlet-octet mixing angle θ under the following

constraints: (i) Comparing with the observables, the errors for the mass sum rule results of the

f1(1285) and f1(1420) in the Borel window 0.9 GeV2 ≤M2 ≤ 1.3 GeV2 are constrained to be less

than 4% in average. In this Borel window, the contribution originating from higher resonances

(and the continuum), modeled by

1

π

∫ ∞

sf
(′)

0

ds e−s/M2
ImΠ

(′)OPE
1 (s) , (28)

is less than 35% and the highest OPE term (with dimension six) at the quark level is no more

than 1%. (ii) The deviation between the f1(1420) − f1(1285) mass difference sum rule result

and the central value of the data [14] is within 1σ error: |(mf ′

1
− mf1)sum rule − 144.6 MeV| ≤

1.5 MeV. (iii) We use the following correlations for the light quark masses and condensates, 〈q̄q〉 =
−f2π+m

2
π+/[2(mu+md)] and 〈ūu+ s̄s〉 = −(0.7 ∼ 0.8)f2K+m

2
K+/ms, where fπ+ = (130.41±20) MeV

and fK+ = (156.1 ± 0.8) MeV [14]. Fig. 1 shows the allowed region in the (ms, θ) plane, where

ms corresponds to the scale µ = 1 GeV. The variations of the relevant input parameters are given

by (27) and δ, s0. The constraints of the fit are the above-mentioned three points. We obtain

the bounds for the strange quark mass and singlet-octet mixing angle: 125 MeV ≤ ms(1 GeV) ≤
230 MeV (i.e. 95 MeV ≤ ms(2 GeV) ≤ 174 MeV) and 2◦ ≤ θ ≤ 68◦. It is interesting to note

that the allowed parameter spaces are quite small for the ranges: ms(1 GeV) ≤ 130 MeV and

ms(1 GeV) ≥ 220 MeV.
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100. 150. 200. 250.
0o

45o

90o

135o

180o

ms HMeVL

Θ

Figure 1: The allowed region in the (ms, θ) plane derived from the f1(1420)−
f1(1285) mass difference sum rule, where we generate 4×106 random points and

8055 points are satisfied with the constraints withinms ∈ [115 MeV, 250 MeV],

θ ∈ [0◦, 180◦] and the allowed parameter spaces (see the text for details). The

ms is at the scale 1 GeV.

4. Summary. We have estimated the strange quark mass from the analysis of the

f1(1420) − f1(1285) mass difference QCD sum rule. We have expanded the OPE series up to

dimension six, where the term with dimension zero is up to O(α3
s), and the dimension 4 terms

are up to O(α2
s). The bounds for the strange quark mass and mixing angle are obtained to be

125 MeV ≤ ms(1 GeV) ≤ 230 MeV (i.e. 95 MeV ≤ ms(2 GeV) ≤ 174 MeV) and 2◦ ≤ θ ≤ 68◦.

The lower bound for the strange quark mass sufficiently improves the current PDG result.

In addition, we have adopted two different strategies for determining the mixing angle θ: (i)

Using the Gell-Mann-Okubo mass formula and the K1(1270) − K1(1400) mixing angle θK1 =

(−34±13)◦ which was extracted from the data for B(B → K1(1270)γ),B(B → K1(1400)γ),B(τ →
K1(1270)ντ ), and B(τ → K1(1420)ντ ), the result is θ = (23+17

−23)
◦. (ii) On the hand, from the anal-

ysis of the ratio of B(f1(1285) → φγ) and B(f1(1285) → ρ0γ), we have ᾱ = θi − θ = ±(15.8+4.5
−4.6)

◦,

i.e., θ = (19.4+4.5
−4.6)

◦ or (51.1+4.5
−4.6)

◦. Combining these two analyses, we deduce the mixing angle

θ = (19.4+4.5
−4.6)

◦.
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