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Abstract. In this note we discuss a couple of technical issues releasblving the Dyson-Schwinger equation for the
gluon propagator in Landau gauge Yang-Mills theory. In teeglinfrared functional methods extract a one-parameteiiyfa
of solutions generically showing a massive behavior refkto as 'decoupling’ but also including the so-called 'sugl
solution with a conformal infrared behavior as a limitinggeaWe emphasize that the latter cannot be ruled out by talhni
arguments related to the removal of quadratic divergeraidgransversality.
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I ntroduction with a positive exponem < 1 which under a certain reg-
ularity assumption on the ghost-gluon vertex [7] results

The infrared behavior of the Green'’s functions of Lan- to bek = k; = (93— /1201 /98~ 0.6.
dau gauge QCD has been focus of a number of discus- Both, scaling and the decoupling type of solutions
sions over the last years. In general, this interest is motogether form a one-parameter family, which has been
tivated by the desire to understand global properties obbtained analytically and as infrared limits of numerical
the theory such as the realization of the global gaugesolutions to functional equations. With fixed gluon input
charges which is closely related to the description of conthis family has been found in the ghost DSE in Ref. [3];
finement, as formulated by Kugo and Ojima many yeardull numerical solutions for the coupled ghost and gluon
ago [1], within the local field theory framework of co- system of DSEs and FRGEs have been given for the
variantly gauge-fixed Yang-Mills theory. Clearly, non- whole one-parameter family in Ref. [5]. The decoupling
perturbative approaches such as lattice QCD or funcresults agree quantitatively well with lattice datal[12].
tional methods are necessary to test these ideas. Scaling has not been observed unambiguously on the

From the functional methods, be it Dyson-Schwingerlattice so far. There is an ongoing effort, however, to
equations (DSEs) or the Functional Renormalizationunderstand why that is the case and what the differences
Group (FRG), it is now known that two types of solu- are between the functional continuum methods and those
tions exist which differ in their asymptotic infrared be- commonly used in what is called lattice Landau gauge
havior. One is a 'massive’ or 'decoupling’ type of solu- [13,/14,15].
tion, which is characterized by an infrared finite gluon Meanwhile, we would like to reply in this note to a
propagator and a ghost propagator with an infrared fi-claim made by Mike Pennington concerning an apparent
nite dressing function [2] 3] 4} 5], and the other is the soproblem with scaling from continuum arguments alone.
called 'scaling’ solution with unique infrared power laws In his plenary talk at this conference he purported that
for both propagators [6, 7) 8| 9] and all other Green'sinfrared scaling was observed only as a result of an in-
functions of Landau gauge Yang-Mills theory 10} 11]. consistency between the way in which quadratic diver-

In terms of the dressing functio®p?) andZ(p?) of  gences are being removed and the transversality of the

the ghost and gluon propagators in Landau gauge gluon DSE in Landau gauge. In the following we explain
G2 7(12 why this conclusion is itself incorrect. There is no prob-
Da(p) = — (%) , Duv(p) = (5uv _ Pu p") () , lem with quadratic divergences and transversality in the
p? p? p? 1) scaling results from the functional continuum methods.
decoupling is characterized by the infrared behavior
Z(p?) ~ p?/M?2, G(p?) — const, for p> =0, (2) Transver sality of the gluon propagator

whereas with scaling in 4 dimensions one has, In order to understand the matter let us first recall, that

Z(p?) ~ (Y%, G(p?) ~ (PP, (3)  incovariantgauges there is a Slavnov-Taylor identity for
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the gluon propagator stating that its longitudinal part isghost-gluon vertex is replaced by the tree-level vertex

not modified by interactions, of standard Faddeev-Popov theory this would require
b bed k = 3/4, which is incompatible with the self-consistently
— 0u0yDy (x—y) = %3 (x—y) . (4)  obtained value. ~ 0.6 mentioned above. Thus the non-

perturbative ghost-gluon vertex can not be identical to
In the Landau gauge limitt — 0 it then follows the tree-level one.
that the fully dressed gluon propagator remains trans- |nstead, infrared dominance of ghosts and with that the
verse which implies that its momentum space Dysonscaling solution essentially requires that the fully deekss

Schwinger equation is of the form, ghost-gluon vertex becomes itself transverse with re-
) spect to the gluon momentum in the infrarzd [7]. Under
p T 2 2 the mild additional regularity assumption one then ob-
Pl —— =2, p’Zz+ 1N 5 gularity p
HYZ(p?) P s w () ®) tains the self-consistent value= k; ~ 0.6. Other values

_ o 1/2 < k < 1 are possible when this condition is relaxed
whereZs is the gluon renormalization constan®f, =  [7]. Note, that all these analytic results were obtained in
(Suv — Py pv/p?) the transverse projector, aft},y(p?)  dimensional regularisation. They are thus unaffected by
the self-energy which is then necessarily transverse alsany technical difficulties that might arise with quadratic
In practical calculations, however, the transversality ofdivergences in numerical investigations.

My is often difficult to maintain in specific truncations.  One method to remove quadratic divergences in the
The main sources of transversality violations are therebyluon DSE goes back to Brown and Pennington [18].
the following: (i) Numerical solutions of dimension- They decomposed the gluon self-energy into

ally regularized integral equations are extremely cum-

be)r/sorge [16]. In prgcticeqone therefore uses d};fferent Mav (P%) = 8uvFa(p?) = PupvFa(p?) Y
schemes such as momentum subtractions with a hard cuénd noted that quadratic divergences can only occur in
off. While these schemes in general preserve multiplicathe term proportional t@y,. Consequently, they sug-
tive renormalizability of the theory, they violate Efjl (4). gested to project out this contribution. This is done by
(if) Ansaetze for the different vertices M, (p?), nec-  contracting the gluon-DSE with a general projectof [17]
essary to close the gluon DSE, may be inadequate to pre-

serve transversality. In both cases, (i) and (ii), artificia yﬁv = (5uv - p;f”) ) (8)
longitudinal contributions?;, L(p?) arise on the right _ _ _ _ _
hand side of the gluon DSE, and setting{ = 4 in d = 4 dimensions. This removes
quadratic divergencies and leads to a dependence of
M (p?) = 2,,N(p%) + 25, L(P°) (6)  Z(p?) on Fx(p?) alone. Alas, let us see what one ob-

tains for general upon contracting the gluon-DSE in
with 9’};\,_ = pupv/p>. A different but closely related  the form of Eqs.[(5) and16) witt@ﬁv:
problem is the appearance of quadratic divergences in 5
Myuv. Again, these are absent in dimensional regulariza- P~ _ p?Zs + I'I(pz) n 1-¢ (pz) _ 9)
tion, but they occur with the cutoff procedure typically Z(p?)

3

used in numerical studies of the gluon DSE |2, 5, 17]. Clearly, if the gluon DSE is transverse(p?) — 0, and

When discussing the non-perturbative infrared ProP+e res’ulting Eq.09) is independent of the paréméter
erties of the gluon, care must be taken that artifacts like, | '« ofore also free from quadratic divergences. Con-
non-transversality or the appearance of quadratic diver\—/ersely the required-independence providesavaluéble
gencies do not affect the results. This may be particularl){ '

important when it comes to the discussion of scaling vs
decoupling, Eq4.{2)[.13). In his talk, Mike Pennington has

addressed this problem, claiming tftae very appear- of them rely on a nontrivial ghost-gluon vertex thus

ance of the scaling solutiofl(3) is such an artitalelis dismissing Mike’s criticism of the inconsistency that

e e o1 e Sssumplon 1k he 90 9U0lses i th bire one. One i based on the Pinch-

. y L : E"echnique/Background Field Method, see|[19], for
particular method to remove quadratic divergencies (Se%hich the truncation of Ref,[2] has also been analyzed
Eq. (8) below) the scaling solution disappears. '

This problem has been addressed already in Bef. [7]§nalyt|cally in dimensional regularizatidnThe other

Scaling goes hand-in-hand with the infrared dominance

of ghosts, i.e. the ghost-loop dominaﬂagv(pz), ie., _ _
1 Note, however, that the numerical solutions presented infBhave

2 .
for p= — 0: Thergfore, the ghOSHOOP must itself be been obtained using a hard UV-cutoff and therefore need théeked
transverse in the infrared. In a truncation where the fullseparately for transversality.

est of specific truncations in numerical studies.
Two transverse truncations passing this test have
been constructed explicitly in the literature, and both




approach is the one used in Réf. [5]. There, Ansaetze for Conclusions

the ghost-gluon and three-gluon vertices have been con-

structed explicitly such that the gluon-DSE is free from In this note we have pointed out that a claim made by
guadratic divergencies and the residual contributiondviike Pennington in his plenary talk is not correct. He
to L(p?) are minimized. The ghost-gluon vertex used purported that the infrared scaling solution for the ghost
there reduces in the infrared to the minimally dressedand gluon propagators of Landau gauge Yang-Mills the-
transverse one proposed In [7]. It contains a bare parnbry is a mere artifact of a technical inaccuracy in the
and a nontrivial longitudinal part that serves to canceltreatment of the gluon DSE. This is based an the overly
all contributions toL(p?), thus explicitly establishing simplistic truncation which cannot be combined with
exact transversality of the ghost-loop in the infrared. an earlier proposal to remove artificial quadratic diver-
Numerically, the remaining contributions 1ap?) for  gences in an untlraviolet cutoff regularization. This is-
all momentap? stay well below one percent &1(p?). sue has been completely solved over the years, however.
In particularL(p?) — 0 for p?> — 0. This therefore es- The infrared-scaling solution for the Yang-Mills sector
tablishes unambiguously that the DSE results bf [5] areof QCD does not have fundamental problems related to
not affected by transversality violating artifacts: there quaderatic divergences or transversality.

is a one-parameter family of solutions in the infrared
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