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Scaling, decoupling and transversality of the gluon
propagator
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Abstract. In this note we discuss a couple of technical issues relevantto solving the Dyson-Schwinger equation for the
gluon propagator in Landau gauge Yang-Mills theory. In the deep infrared functional methods extract a one-parameter family
of solutions generically showing a massive behavior referred to as ’decoupling’ but also including the so-called ’scaling’
solution with a conformal infrared behavior as a limiting case. We emphasize that the latter cannot be ruled out by technical
arguments related to the removal of quadratic divergenciesand transversality.
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Introduction

The infrared behavior of the Green’s functions of Lan-
dau gauge QCD has been focus of a number of discus-
sions over the last years. In general, this interest is mo-
tivated by the desire to understand global properties of
the theory such as the realization of the global gauge
charges which is closely related to the description of con-
finement, as formulated by Kugo and Ojima many years
ago [1], within the local field theory framework of co-
variantly gauge-fixed Yang-Mills theory. Clearly, non-
perturbative approaches such as lattice QCD or func-
tional methods are necessary to test these ideas.

From the functional methods, be it Dyson-Schwinger
equations (DSEs) or the Functional Renormalization
Group (FRG), it is now known that two types of solu-
tions exist which differ in their asymptotic infrared be-
havior. One is a ’massive’ or ’decoupling’ type of solu-
tion, which is characterized by an infrared finite gluon
propagator and a ghost propagator with an infrared fi-
nite dressing function [2, 3, 4, 5], and the other is the so-
called ’scaling’ solution with unique infrared power laws
for both propagators [6, 7, 8, 9] and all other Green’s
functions of Landau gauge Yang-Mills theory [10, 11].

In terms of the dressing functionsG(p2) andZ(p2) of
the ghost and gluon propagators in Landau gauge

DG(p) =−
G(p2)

p2 , Dµν(p) =

(

δµν −
pµ pν

p2

)

Z(p2)

p2 ,

(1)
decoupling is characterized by the infrared behavior

Z(p2)∼ p2/M2 , G(p2)→ const. , for p2 → 0, (2)

whereas with scaling in 4 dimensions one has,

Z(p2)∼ (p2)2κ , G(p2)∼ (p2)−κ , (3)

with a positive exponentκ < 1 which under a certain reg-
ularity assumption on the ghost-gluon vertex [7] results
to beκ = κc = (93−

√
1201)/98≈ 0.6.

Both, scaling and the decoupling type of solutions
together form a one-parameter family, which has been
obtained analytically and as infrared limits of numerical
solutions to functional equations. With fixed gluon input
this family has been found in the ghost DSE in Ref. [3];
full numerical solutions for the coupled ghost and gluon
system of DSEs and FRGEs have been given for the
whole one-parameter family in Ref. [5]. The decoupling
results agree quantitatively well with lattice data [12].
Scaling has not been observed unambiguously on the
lattice so far. There is an ongoing effort, however, to
understand why that is the case and what the differences
are between the functional continuum methods and those
commonly used in what is called lattice Landau gauge
[13, 14, 15].

Meanwhile, we would like to reply in this note to a
claim made by Mike Pennington concerning an apparent
problem with scaling from continuum arguments alone.
In his plenary talk at this conference he purported that
infrared scaling was observed only as a result of an in-
consistency between the way in which quadratic diver-
gences are being removed and the transversality of the
gluon DSE in Landau gauge. In the following we explain
why this conclusion is itself incorrect. There is no prob-
lem with quadratic divergences and transversality in the
scaling results from the functional continuum methods.

Transversality of the gluon propagator

In order to understand the matter let us first recall, that
in covariant gauges there is a Slavnov-Taylor identity for
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the gluon propagator stating that its longitudinal part is
not modified by interactions,

− ∂µ∂ν Dab
µν(x− y) = ξ δ abδ 4(x− y) . (4)

In the Landau gauge limitξ → 0 it then follows
that the fully dressed gluon propagator remains trans-
verse which implies that its momentum space Dyson-
Schwinger equation is of the form,

P
T
µν

p2

Z(p2)
= P

T
µν p2Z3+Πµν(p

2) (5)

whereZ3 is the gluon renormalization constant,PT
µν =

(

δµν − pµ pν/p2
)

the transverse projector, andΠµν(p2)
the self-energy which is then necessarily transverse also.
In practical calculations, however, the transversality of
Πµν is often difficult to maintain in specific truncations.
The main sources of transversality violations are thereby
the following: (i) Numerical solutions of dimension-
ally regularized integral equations are extremely cum-
bersome [16]. In practice one therefore uses different
schemes such as momentum subtractions with a hard cut-
off. While these schemes in general preserve multiplica-
tive renormalizability of the theory, they violate Eq. (4).
(ii) Ansaetze for the different vertices inΠµν(p2), nec-
essary to close the gluon DSE, may be inadequate to pre-
serve transversality. In both cases, (i) and (ii), artificial
longitudinal contributionsPL

µν L(p2) arise on the right
hand side of the gluon DSE,

Πµν (p
2) = P

T
µνΠ(p2)+P

L
µνL(p2) (6)

with PL
µν = pµ pν/p2. A different but closely related

problem is the appearance of quadratic divergences in
Πµν . Again, these are absent in dimensional regulariza-
tion, but they occur with the cutoff procedure typically
used in numerical studies of the gluon DSE [2, 5, 17].

When discussing the non-perturbative infrared prop-
erties of the gluon, care must be taken that artifacts like
non-transversality or the appearance of quadratic diver-
gencies do not affect the results. This may be particularly
important when it comes to the discussion of scaling vs
decoupling, Eqs.(2), (3). In his talk, Mike Pennington has
addressed this problem, claiming thatthe very appear-
ance of the scaling solution (3) is such an artifact. His
argument relies on the assumption that the ghost-gluon
vertex is essentially bare in the infrared. If one then uses a
particular method to remove quadratic divergencies (see
Eq. (8) below) the scaling solution disappears.

This problem has been addressed already in Ref. [7]:
Scaling goes hand-in-hand with the infrared dominance
of ghosts, i.e. the ghost-loop dominatesΠµν(p2), i.e.,
for p2 → 0. Therefore, the ghost-loop must itself be
transverse in the infrared. In a truncation where the full

ghost-gluon vertex is replaced by the tree-level vertex
of standard Faddeev-Popov theory this would require
κ = 3/4, which is incompatible with the self-consistently
obtained valueκc ≈ 0.6 mentioned above. Thus the non-
perturbative ghost-gluon vertex can not be identical to
the tree-level one.

Instead, infrared dominance of ghosts and with that the
scaling solution essentially requires that the fully dressed
ghost-gluon vertex becomes itself transverse with re-
spect to the gluon momentum in the infrared [7]. Under
the mild additional regularity assumption one then ob-
tains the self-consistent valueκ = κc ≈ 0.6. Other values
1/2< κ < 1 are possible when this condition is relaxed
[7]. Note, that all these analytic results were obtained in
dimensional regularisation. They are thus unaffected by
any technical difficulties that might arise with quadratic
divergences in numerical investigations.

One method to remove quadratic divergences in the
gluon DSE goes back to Brown and Pennington [18].
They decomposed the gluon self-energy into

Πµν(p
2) = δµν F1(p

2)− pµ pνF2(p
2) , (7)

and noted that quadratic divergences can only occur in
the term proportional toδµν . Consequently, they sug-
gested to project out this contribution. This is done by
contracting the gluon-DSE with a general projector [17]

P
ζ
µν =

(

δµν − ζ
pµ pν

p2

)

, (8)

and settingζ = 4 in d = 4 dimensions. This removes
quadratic divergencies and leads to a dependence of
Z(p2) on F2(p2) alone. Alas, let us see what one ob-
tains for generalζ upon contracting the gluon-DSE in

the form of Eqs. (5) and (6) withPζ
µν :

p2

Z(p2)
= p2Z3+Π(p2)+

1− ζ
3

L(p2) . (9)

Clearly, if the gluon DSE is transverse,L(p2) = 0, and
the resulting Eq. (9) is independent of the parameterζ
and therefore also free from quadratic divergences. Con-
versely, the requiredζ -independence provides a valuable
test of specific truncations in numerical studies.

Two transverse truncations passing this test have
been constructed explicitly in the literature, and both
of them rely on a nontrivial ghost-gluon vertex thus
dismissing Mike’s criticism of the inconsistency that
arises with the bare one. One is based on the Pinch-
Technique/Background Field Method, see [19], for
which the truncation of Ref. [2] has also been analyzed
analytically in dimensional regularization.1 The other

1 Note, however, that the numerical solutions presented in Ref. [2] have
been obtained using a hard UV-cutoff and therefore need to bechecked
separately for transversality.



approach is the one used in Ref. [5]. There, Ansaetze for
the ghost-gluon and three-gluon vertices have been con-
structed explicitly such that the gluon-DSE is free from
quadratic divergencies and the residual contributions
to L(p2) are minimized. The ghost-gluon vertex used
there reduces in the infrared to the minimally dressed
transverse one proposed in [7]. It contains a bare part
and a nontrivial longitudinal part that serves to cancel
all contributions toL(p2), thus explicitly establishing
exact transversality of the ghost-loop in the infrared.
Numerically, the remaining contributions toL(p2) for
all momentap2 stay well below one percent ofΠ(p2).
In particularL(p2) → 0 for p2 → 0. This therefore es-
tablishes unambiguously that the DSE results of [5] are
not affected by transversality violating artifacts: there
is a one-parameter family of solutions in the infrared
including decouplingandscaling solutions.

The earlier truncation scheme from Ref. [17], which
was particularly criticized by Mike Pennington in his ple-
nary talk, was indeed less far developed and not mani-
festly transverse. The artificial longitudinal termL(p2)
in Eq. (9) was removed by transverse projection, using
ζ = 1 rather thanζ = 4 as suggested by Brown and Pen-
nington before, which meant that quadratic divergences
had to be dealt with in a different manner. Even though
this procedure might seem less elegant, there were good
reasons at the time for that given in [7]. Before we briefly
explain those, it can now be verified a posteriori, by com-
paring the earlier results from [17] to those of Ref. [5],
to verify that they are almost identical (forζ = 1).

The reason why transverse projection ontoΠ(p2) in
Eq. (6) must be done [7] rather thanζ = 4 projection onto
F2(q2) in (7), in a not manifestly transverse truncation
where this can make a difference, relates to an ambigu-
ity in the Landau gauge: the existence of a second gauge
parameter which interpolates between standard Faddeev-
Popov theory and the ghost/anti-ghost symmetric Curci-
Ferrari gauges. In Landau gauge there is no distinction,
however, and any quantity depending on this parameter is
thus ambiguous. In [7] it was shown thatF2(p2) is such
a quantity whileΠ(p2) is not. So we have understood
over the years that it is the original proposal from [18]
to avoid quadratic divergences which is ambiguous, un-
fortunately. Luckily, however, the problem is now com-
pletely solved with the manifestly transverse truncations
that were developed since then.

Finally, we emphasize that the problem with quadratic
divergences is completely unheard of in the FRGEs
which are finite by construction. Yet, one still finds the
full one-parameter family of scaling and decoupling so-
lutions [9, 5]. Apart from the extreme infrared, where this
parameter matters, these solutions all agree and are fur-
thermore in almost perfect agreement with lattice data.

Conclusions

In this note we have pointed out that a claim made by
Mike Pennington in his plenary talk is not correct. He
purported that the infrared scaling solution for the ghost
and gluon propagators of Landau gauge Yang-Mills the-
ory is a mere artifact of a technical inaccuracy in the
treatment of the gluon DSE. This is based an the overly
simplistic truncation which cannot be combined with
an earlier proposal to remove artificial quadratic diver-
gences in an untlraviolet cutoff regularization. This is-
sue has been completely solved over the years, however.
The infrared-scaling solution for the Yang-Mills sector
of QCD does not have fundamental problems related to
quaderatic divergences or transversality.
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