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Measuring the thermalization time
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A new method of measuring the pressure anisotropy in the early stage of heavy-ion col-
lisions is discussed. It is shown that the transverse momentum spectra, elliptic flow and
interferometry radii are not sensitive to the early anisotropy. We propose the directed flow
as a measure of the early transverse and longitudinal pressures. Calculations indicate that
the transverse and longitudinal pressures equilibrate in less than 0.25 fm/c.

1 Introduction

The dynamics of ultrarelativistic heavy-ion collisions can be described using the hydrodynamic
model [1, 2, 3]. The fireball created in the collision consists of a dense matter close to equilib-
rium. The fireball expands hydrodynamically and a collective velocity field builds up. Particle
production happens through the statistical emission on the freeze-out hypersurface. The spec-
tra of emitted particles reflect the underlying collective velocity field of the fluid. In particular,
the transverse momentum spectra and the elliptic flow coefficient for different particles species
can be described quantitatively using hydrodynamics.

The hydrodynamic model requires that the fluid is in local thermal equilibrium. Limitations
of this ideal fluid picture are discussed in terms of possible viscous corrections to the hydro-
dynamic equations or in terms of the limited time interval when the collective expansion takes
place. Quantitative estimates show that the shear viscosity coefficient is small [4, 5] and the
viscosity corrections influence significantly only the elliptic flow results. The length of the hy-
drodynamic stage is determined by the initial time τ0 needed to form the fireball. Calculations
using a hard equation of state of the hot matter do not require a short initial time to describe
the spectra, but to describe the femtoscopy results a short formation time τ0 = 0.1-0.25 fm/c is
preferred [6, 7]. In a boost invariant geometry, observables such as the transverse momentum
spectra, elliptic flow and interferometry radii reflect the accumulated transverse flow of the
fluid. The longitudinal expansion sets the cooling rate of the fluid. However, during a short
expansion, scenarios with different longitudinal pressures, and hence, different cooling rates,
lead to similar transverse collective flows [8, 9].

The initial time τ0, when the transverse expansion starts is not equivalent to the time re-
quired for the equilibration of the system. A necessary condition for the thermalization is that
the transverse and longitudinal pressures in the fluid become similar. One expects that in
the initial stage of the collision, the longitudinal pressure is smaller than the transverse one.
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Possible implementations of such a transient, nonequilibrium pressure anisotropy in hydrody-
namic equations have been discussed [10, 11, 12]. However, as noted above, the presence of
the pressure anisotropy in the initial stage does not change the transverse spectra, elliptic flow
or femtoscopy results. It has been proposed to look at photon or dilepton emission instead
[13, 14, 15], but drawing conclusions on the thermalization rates is difficult due to unknown
backgrounds. We show that the directed flow of particles is an observable extremely sensitive
to the initial pressure anisotropy [16] and it can be used to estimate the thermalization time.

2 Calculations

The spectra of emitted particles are written as

dN

d2p⊥dy
=

dN

2πp⊥dp⊥dy
(1 + 2v1 cos(φ) + 2v2 cos(2φ) + . . . ) , (1)

where v1 and v2 are the directed and elliptic flow coefficients. In symmetric collisions the
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Figure 1: (left panel) The initial energy density distribution in space-time rapidity. The energy
density is a sum of a two components from forward and backward going wounded nucleons
[17]. (right panel) Contour plot of the initial energy density in the (x-η‖) plane. The tilt of
the source away from the collisions axis results from the forward (backward) peaked emission
from wounded nucleons. The solid and dashed lines represent the two extreme estimates of the
source tilt in the Glauber model.

directed flow coefficient v1 is zero at central rapidities, and becomes negative (positive) at
forward (backward) rapidities [18]. The formation of directed flow in ultrarelativistic collisions
requires a mechanism that breaks the symmetry with respect to the collisions axis and some
effective transverse and longitudinal acceleration of the fluid elements. The asymmetric emission
(Fig. 1, left panel) in space-time rapidity from the forward and backward going wounded
nucleons [21, 22] results in a tilt of the initial fireball away from the collision axis. In the
right panel of Fig. 1 is shown the energy density for the tilted source. The solid and dashed
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lines represent two different source densities calculated in the Glauber model. The difference
between the two distributions is a measure of the uncertainty in the initial conditions. We
use the 3 + 1 dimensional hydrodynamic model with a parameterization of the equation of
state based on lattice QCD results [19]. The model describes the p⊥ particle spectra and the
pseudorapidity distributions for Au-Au collisions at

√
s = 200 GeV [20]. In the first fm/c of

the hydrodynamic evolution of the tilted source, the simultaneous action of the transverse and
longitudinal pressures generates a negative elliptic flow, similar as observed experimentally [17].
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Figure 2: (left panel) Time evolution of the energy density, the longitudinal and transverse
pressures at the center of the fireball, PL(τ0) = 0, τiso = 0.25 fm/c. (right panel) Pion and kaon
transverse momentum spectra calculated in the ideal fluid and anisotropic pressures scenarios
compared to PHENIX Collaboration data [23].

We study the dynamics of the system with anisotropic pressures. In the early stage of the
collisions, the energy momentum tensor in the local rest frame of the fluid is

T µν =









ǫ 0 0 0
0 Peq + π/2 0 0
0 0 Peq + π/2 0
0 0 0 Peq − π









. (2)

The correction π changes changes the transverse P⊥ = Peq + π/2 and the longitudinal P‖ =
Peq − π pressures. In principle, the stress correction to the pressures could be calculated from
some underlying theory. The mechanisms of the pressure equilibration is still the subject of
studies [26, 27, 28, 29, 30, 31]. Moreover, the models are studied in simplified geometries. In
the first moments of the collisions the viscous hydrodynamics cannot be used to determine the
stress correction, because the system is far from equilibrium. We are interested in the possibility
of observing the occurrence of the pressure asymmetry, irrespective of its origin. We assume a
simple time dependence of the correction [10]

π(τ) = Peq(τ0)e
(τ0−τ)/τiso . (3)

It means that initially the longitudinal pressures is zero and that the pressure anisotropy de-
creases with a relaxation time τiso (Fig. 2). The initial density is rescaled to take into account
the entropy production in the dissipative, anisotropic stage.
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Figure 3: (left panel) Interferometry radii in central Au-Au collisions at
√
s = 200 GeV calcu-

lated for different initial anisotropy scenarios compared to STAR Collaboration data [24]. (right
panel) Elliptic flow for charged particles as function of transverse momentum for different initial
anisotropy scenarios compared to PHENIX Collaboration data [25].

We simulate Au-Au collisions at
√
s = 200 GeV using the perfect fluid hydrodynamics

(τiso = 0) and using a hydrodynamic model with the pressure anisotropy with τiso = 0.25 and
0.5 fm/c. The transverse momentum spectra are very similar (Fig. 2). Also the interferometry
radii and the elliptic flow coefficient come out almost the same in the different simulations
(Fig. 3). These results reflect the universality of the transverse flow for different longitudinal
pressures [9]. Moreover, these observable are determined by the form of the transverse flow at
the freeze-out. The final transverse flow is built up during the whole evolution, not only in the
first stage of the collisions, when the pressure anisotropy is present.

On the other hand, the directed flow is a quantity that is very sensitive to the longitudinal
pressure. The acceleration of the fluid element that generates the directed flow requires the
simultaneous acceleration in the transverse and longitudinal directions

∂τvx = −
∂xP⊥

ǫ+ P
, (4)

∂τY = −
∂η‖

P‖

τ(ǫ + P )
, (5)

The direction of the acceleration in the x direction is usually anti-correlated with the direction
of the acceleration for the fluid rapidity Y . It leads to a negative directed flow. Calculations
show that the directed flow is formed in the first fm/c of the hydrodynamic expansion [17].
If in that time the longitudinal pressure is reduced, the final directed flow is smaller. In
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Figure 4: The directed flow calculated in 3 + 1 dimensional hydrodynamics with isotropic
pressure (left panel) and for the pressure anisotropy with a relaxation time τiso = 0.25 fm/c
(right panel). The shaded band represents the model uncertainty related to initial tilt of the
source in the Glauber model. Data are from the STAR Collaboration for Au-Au collisions with
centrality 5-40% at

√
s = 200 GeV (dots) [18].

Fig. 4 is shown the calculated directed flow as function of pseudorapidity compared to STAR
Collaboration data [18]. In the left panel the results for the perfect fluid hydrodynamics are
shown. The shaded band represents the uncertainty related to the range of the initial tilt of the
fireball. The results for the dynamics with asymmetric pressures are plotted in the right panel.
Taking into account the uncertainty of the initial conditions we obtain the allowed limits for
the thermalization (isotropization) time

0 ≤ τiso ≤ 0.25 fm/c . (6)

3 Conclusions

We study the hydrodynamic expansion of the fireball created in a relativistic heavy-ion colli-
sion with unequal transverse and longitudinal pressures. Using a simple ansatz for the pres-
sure anisotropy in the initial stage of the collision, we study the possibility of observing the
anisotropy. We show that the transverse momentum spectra, elliptic flow and femtoscopy
observables are not sensitive to this effect. Instead we propose to look at the directed flow
generated in the collision. The directed flow is sensitive to the early pressure anisotropy for
two reasons,

• it is formed in the first stage of the expansion,

• it is built trough a simultaneous action of the transverse and longitudinal pressures.

The directed flow is reduced if the longitudinal pressure is smaller. Comparison to experimen-
tal data sets a limit on the relaxation time for the pressure equilibration τiso ≤ 0.25 fm/c.
The directed flow could serve as a sensitive constraint for microscopic models of the initial
equilibration [27, 28, 29, 30, 31, 32].
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[16] P. Bożek and I. Wyskiel-Piekarska, (2010), arXiv: 1009.0701.
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