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Abstract. Relative binding energies (RBEs) within three isotopic chains (100−130Sn, 152−181Yb, and
181−202Pb) have been studied using the exactly solvable extended pairing model (EPM) [1]. The unique
pairing strength G, which reproduces the experimental RBEs, has been determined. Within EPM, log(G)
is a smooth function of the model space dimension dim(A), as expected for an effective coupling strength.
In particular, for the Pb and Sn isotopes G can be described by a two parameter expression that is inversely
proportional to the dimensionality of the model space, G = α dim(A)−β with β ≈ 1.

PACS. 21.10.Dr Binding energies – 71.10.Li Pairing interactions in model systems – 21.60.Cs Shell model

In many applications the infinite dimensionality of the
quantum mechanical Hilbert space is an obstacle; to over-
come it, one has to restrict the model space to a finite
dimensional subspace and construct an appropriate effec-
tive Hamiltonian. This in turn leads from a two-body to
a many-body interaction terms. Nonetheless, the effective
Hamiltonian approach has been very successful and even
pointed to the importance of three-body nuclear inter-
actions [2]. The recently introduced exactly solvable ex-
tended pairing model [1] provides a framework for study
of Hamiltonians with many-body interaction terms:

Ĥ =

p∑

j=1

ǫjnj − G

p∑

i,j=1

B+
i Bj −G

p∑

µ=2

1

(µ!)
2 × (1)

×
∑

i1 6=···6=i2µ

B+
i1
· · ·B+

iµ
Biµ+1

· · ·Bi2µ .

Ideally, one should be able to calculate binding energies
and other observables ab-initio using the exact nucleon
interaction. However, we are still lacking this capability.
Instead, we use different models for binding energies and
excitation energies. Conventionally, the liquid-drop model
is the zeroth order approximation to the binding ener-
gies while the two-body pairing interaction gives the shell
model corrections. The extended pairing model (EPM) (1)
has terms beyond the standard Nilsson plus pairing Hamil-
tonian; these terms provide an alternative description of
the relative binding energies (RBEs) of neighboring nuclei
within the same valence space. As we will discus below,
EPM is well suited to provide description of the RBEs only
within the shell-model since the equations are insensitive
to the binding energy of the core nucleus.

a Conference presenter

Beside the first two terms, Nilsson plus standard pair-
ing intgeraction, the Hamiltonian in (1) contains many-
pair interactions which connect configurations that differ
by more than a single pair. Here p is the total number of
single-particle levels considered, ǫj are single-particle en-
ergies, G is the overall pairing strength (G > 0 ), nj =

c
†
j↑cj↑ + c

†
j↓cj↓ is the number operator for the j-th single-

particle level, B+
i = c

†
i↑c

†
i↓ are pair creation operators

where c†j creates a fermion in the j-th single-particle level.
The up and down arrows refer to time-reversed states.
Since each Nilsson level can only be occupied by one pair
due to the Pauli Exclusion Principle, the operators B+

i ,
Bi, and ni form a hard-core boson algebra: [Bi, B

+
j ] =

δij(1− ni), [B+
i , B

+
j ] = 0 = (B+

i )
2.

The pairing vacuum state |j1, · · · , jm〉 is defined so
that: Bi|j1, · · · , jm〉 = 0 for 1 ≤ i ≤ p and i 6= js, where
j1, · · · , jm indicate those m levels that are occupied by
unpaired nucleons. Any state that is occupied by a sin-
gle nucleon is blocked to the hard-core bosons due to the
Pauli principle. The k-pair eigenstates of (1) has the form:

|k; ζ; j1 · · · jm〉 =
∑

i1<···<ik

C
(ζ)
i1···ik

B+
i1
· · ·B+

ik
|j1 · · · jm〉,

(2)

whereC
(ζ)
i1i2···ik

are expansion coefficients to be determined.
It is assumed that the level indices j1, · · · , jm should be
excluded from the summation in (2). For simplicity, we
focus only on the seniority zero case (m = 0).

Although Hamiltonian (1) contains many-body inter-
action terms that are non-perturbative, the contribution
of the higher and higher energy configurations is more
and more suppressed due to the structure of the equation
that needs to be solved to determine the eigensystem of
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the Hamiltonian (1). The eigensystem E
(ζ)
k and C

(ζ)
i1i2···ik

depend on only one parameter z(ζ), where the quantum
number ζ [1] is understood as the ζ-th solution of (5):

E
(ζ)
k = z(ζ) −G(k − 1), (3)

C
(ζ)
i1i2···ik

=
1

z(ζ) − Ei1...ik

, Ei1...ik =

k∑

µ=1

2ǫiµ , (4)

1 =
∑

i1<i2<···<ik

G

Ei1...ik − z(ζ)
. (5)

Due to the space limitations many details and results
of the current application of this exactly solvable model
are omitted, however, a more detailed paper is available
[3]. For the current application the single-particle energies
are calculated using the Nilsson deformed shell model with
parameters from [4]. Experimental BEs are taken from [5].
Theoretical RBE are calculated relative to a specific core,
152Yb, 100Sn, and 208Pb for the cases considered. The RBE
of the nucleus next to the core is used to determine an en-
ergy scale for the Nilsson single-particle energies. For an
even number of neutrons, we considered only pairs of par-
ticles (hard bosons). For an odd number of neutrons, we
apply Pauli blocking to the Fermi level of the last unpaired
fermion and considered the remaining fermions as if they
were an even fermion system. The valence model space
consists of the neutron single-particle levels between two
closed shells with magic numbers 50-82 and 82-126. By
using (3) and (5), values of G are determined so that the
experimental and theoretical RBE match exactly.

Figure 1 shows results for the 181−202Pb isotopes. The
RBEs are relative to 208Pb which is set to zero, and the
core nucleus is chosen to be 164Pb. For the Yb and Sn
isotopes the core nucleus is also the zero RBE reference
nucleus (100Sn and 152Yb). In this respect, the calcula-
tions for the Pb-isotopes are different because the core
nucleus (164Pb) and the zero binding energy reference nu-
cleus (208Pb) are not the same. One can see from Figure 1
that a quadratic fit to ln(G) as function of A fits the data
well. In this particular case, the pairing strength G(A) for
all 21 nuclei in the range A=181 − 202) was also fit to
a simple two-parameter function that is inversely propor-
tional to the dimensionality of the model space dim(A),
namely, by G(A) = α dim(A)−β . Similar results have been
obtained for the Sn-isotopes as well using 132Sn as zero.

In conclusion, we studied RBEs of nuclei in three iso-
topic chains, 100−130Sn, 152−181Yb, and 181−202Pb, within
the recently proposed EPM [1] by using Nilsson single-
particle energies as the input mean-field energies. Over-
all, the results suggest that the model is applicable to
neighboring heavy nuclei and provides, within a pure shell-
model approach, an alternative mean of calculating a RBE.
In order to achieve that, the pairing strength is allowed to
change as a smooth function of the model space dimen-
sion. It is important to understand that the A-dependence
of G is indirect, since G only depends on the model space
dimension, which by itself is different for different nuclei.
In particular, in all the cases studied ln(G) has a smooth
quadratic behavior for even and odd A with a minimum
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Fig. 1. The solid line gives the theoretical RBE for the Pb
isotopes relative to the 208Pb nucleus. The insets show the fit
to the values of G that reproduce exactly the experimental
data using 164Pb core. The lower inset shows the two fitting
functions: log(G(A)) = 382.3502−4.1375A+0.0111A2 for even
values of A and log(G(A)) = 391.6113 − 4.2374A + 0.0114A2

for odd values of A. The upper inset shows a fit to G(A)
that is inversely proportional to the size of the model space,
(dim(A)), that is valid for even as well as odd values of A:
G(A) = 366.7702 dim(A)−0.9972. The Nilsson BE energy is the
lowest energy of the non-interacting system.

in the middle of the model space where the dimensional-
ity of the space is a maximal; ln(G) for even A and odd
A are very similar which suggests that further detailed
analyses may result in the same functional form for even
A and odd A isotopes as found in the case of the Pb-
isotopes and Sn-isotopes. It is a non-trivial result that G
is inversely proportional to the space dimension dim in
the two cases found (Pb-isotopes and Sn-isotopes) which
requires further studies.
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