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Isospin symmetry breaking at high spins in the mirror pair 67Se and 67As
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Recent experimental data have revealed large mirror energydifferences (MED) between high-spin states
in the mirror nuclei67Se and67As, the heaviest pair where MED have been determined so far. The MED
are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin
nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms
have been extensively studied in thef p shell. By employing large-scale shell model calculations,we show
that the inclusion of theg9/2 orbit causes interference between the electromagnetic spin-orbit and the Coulomb
monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from
the p3/2 and f5/2 orbits to theg9/2 orbit. The relation of the MED to deformation is discussed.

PACS numbers: 21.10.Sf, 21.30.Fe, 21.60.Cs, 27.50.+e

One of the current topics in nuclear structure physics is the
isospin symmetry breaking due to the Coulomb force and the
strong nucleon-nucleon (NN) interaction. Assuming isospin
symmetry, mirror pair nuclei, i.e. a pair of nuclei with ex-
changed proton and neutron numbers, have identical level
schemes. However, the Coulomb effects and the isospin non-
conserving NN interaction break this symmetry, leading to ob-
servable differences between energy levels of analogue states.
The so-called mirror energy differences (MED) are defined by

MEDJ = Ex(J,T,Tz =−T )−Ex(J,T,Tz = T ), (1)

where Ex(J,T,Tz) are the excitation energies of analogue
states with spinJ and isospinT,Tz. The MED are thus re-
garded as a measure of isospin symmetry breaking in an effec-
tive interaction which includes the Coulomb force. The MED
have been extensively studied for mirror pair nuclei in the up-
persd and the lowerf p shell regions (see Ref. [1] for review).
In both cases, a remarkable agreement between experimental
data and shell model calculations has been achieved, allow-
ing a clear identification of the origin of the MED based on
the isospin nonconserving Coulomb and strong NN forces [2–
18].

For mirror nuclei in the upper part of thef p shell the situa-
tion is different. The experimental information on MED is rel-
atively scarce and only recent large-scale shell model calcula-
tions including theg9/2 orbit have become available [19, 20].
Moreover due to the deformation driving effect of theg9/2
orbit, variations in the MED are expected to be strongly re-
lated to the change in the nuclear deformation. Recently new
data on theA=67 mirror nuclei67Se and67As have become
available [21]. Investigations [22] for66Ge suggested that the
spin alignment of theg9/2 neutrons occurs atJπ = 8+. As
the positive-parity band built on the 9/2+ state in67As can
be interpreted as ag9/2 proton weakly coupled to the66Ge
core, the neutron spin alignment is expected to occur at spin

25/2+(= 8++9/2+) in 67As [22, 23]. On the other hand, the
proton spin alignment takes place at the same spin in its mirror
partner67Se. As the response to the Coulomb field is different
for the corresponding high-spin states in such mirror nuclei,
one expects the Coulomb based MED contribution in67Se and
67As to give large negative value suddenly at 25/2+ where the
proton/neutron spin alignment occurs. In the lowerf p-shell
region, due to the active role played by thef7/2 shell, in the
MED the isospin nonconserving NN interaction has been sug-
gested to be at least as important as the Coulomb part [24].
In the upperf p-shell region the situation is different and one
does not expect a major contribution because thef7/2 shell is
almost not active.

For theA = 67 mirror pair nuclei, excited states have been
known for 67As [23, 25], and have been recently determined
for the mirror partner67Se [26]. This is the heaviest mir-
ror pair where the excited energy levels have been identified
with detailed experimental information. In both cases, the
low-lying 9/2+ state has been found to be isomeric, allowing
the determination of the degree of isospin symmetry break-
ing through the measurement of the mirror 9/2+ → 7/2− E1
strengths [21]. In our previous paper [19], the structure ofthis
isomeric state has been investigated using large-scale shell
model calculations. The isomerism of the 9/2+ state was
understood as due to proton and neutron configuration mix-
ing based on theg9/2 intruder orbit as well as on thef p-shell
structures.

In this Rapid Communication, we investigate the MED in
the mirror pair67Se and67As discussing the origin of isospin
symmetry breaking in the upperf p-shell region. Theoreti-
cal calculations are performed using the spherical shell model
in the p f5/2g9/2 model space. We employ the recently pro-
posed JUN45 interaction [20], a realistic effective interaction
based on the Bonn-C potential and ajusted to the experimen-
tal data of nuclei in theA = 63∼ 96 mass region. To de-
scribe the MED, the first attempt was carried out by adding the
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Coulomb term to the KB3 interaction matrix elements [27].
However, those calculations did not succeed to describe the
experimental MED for the mirror pairs of massA = 47 and
A = 49. A better agreement with the data has been obtained
using the formalism introduced by Zukeret al. [24]. In this
description the Coulomb matrix elements in the valence space
represent only the multipole part of the Coulomb interaction
whereas the contribution of the other nucleons is describedby
the Coulomb monopole effect. The Coulomb interaction is
therefore separated into a monopole termVCm and a multipole
term VCM. While VCm accounts for single-particle and bulk
effects,VCM contains all the rest. The monopole termVCm is
further divided into the single particle correctionεll , the radial
termVCr and the spin orbit termεls. The contribution ofεll to
the monopole term is given by [6]

εll =
−4.5Z13/12

cs [2l(l +1)− p(p+3)]

A1/3(p+3/2)
, (2)

where Zcs is the proton number corresponding to a closed
shell, p the principal quantum number, andl the orbital mo-
mentum. Due to such single particle correction, in67Se the
protong9/2 and f5/2 orbits are lowered roughly by 95 keV
and 58 keV, respectively, while the energy of thep3/2 orbit
is raised by about 135 keV. The relative energy gap between
the protong9/2 and f5/2 orbits is reduced of only 37 keV, and
therefore there is basically no effect on single-particle levels
due to theεll term.

The radial termVCr reflects the change in radii along the ro-
tational band, and in thef p shell is proportional to the change
in occupancy of thep3/2 orbit as a function of spinJ. It can be
expressed as∆MED(VCr) = am(〈mp3/2〉9/2/2− 〈mp3/2〉J/2),
where〈mp3/2〉J with mp3/2 = zp3/2+ np3/2 is the expectation
value of the proton and neutron number in thep3/2 orbit at
spinJ andam is the strength parameter fitted to the experimen-
tal data. When the occupation of thep3/2 protons decreases,
valence protons in orbits with smaller radii are nearer to the
charged core, which results in a gain of Coulomb energy [1].
In the p f5/2g9/2 shell, thep3/2 orbit has larger radius than the
f5/2 andg9/2 orbits and therefore the Coulomb repulsion in-
creases as the number of protons increases. Here the role of
the p1/2 orbit is less important simply because thep1/2 occu-
pancy is small, and furthermore it does not change very much
as a function of the angular momentumJ.

The single-particle shiftεls takes into account the relativis-
tic spin-orbit interaction [28]. This interaction comes from
the Larmor precession of the nucleons in the electric field due
to their magnetic moments, which, as well known, affects the
single-particle energy spectrum.εls can be written as [28]

εls = (gs − gl)
1

2m2
Nc2

(

1
r

dVc

dr

)

〈l̂ · ŝ〉, (3)

wheremN is the nucleon mass, and the free values of the gyro-
magnetic factors,gπ

s =5.586,gπ
l =1 for protons andgν

s =-3.828,
gν

l =0 for neutrons, are used. In the present work, by assum-
ing a uniformly charged sphere,εls is calculated using the

0

1

2

3

4

5

6

7

8

7/2-

13/2+
15/2+

29/2+

19/2+

11/2+

13/2+

15/2+

7/2-

25/2+

21/2+

7/2-

5/2-

JUN45

13/2+

19/2+

17/2+

11/2+ 13/2+

9/2+

17/2+

21/2+

25/2+

29/2+

7/2-

67As 67As
67Se

3/2-3/2-

9/2+

exp

67Se
5/2-

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

FIG. 1: Comparison of calculated energy levels (JUN45) withexper-
imental data (exp) for67Se and67As.

harmonic oscillator single-particle wave function. Depend-
ing on proton or neutron orbit, the shift can have opposite
signs. It depends also on the spin-orbit coupling, as for in-
stance〈l̂ · ŝ〉 = l/2 when j = l + s and 〈l̂ · ŝ〉 = −(l + 1)/2
when j = l − s. As this term influences differently on neu-
trons and protons, its effect becomes very important for some
particular states. In67Se, the protong9/2 orbit is lowered by
about 66 keV, while thef5/2 orbit is raised by about 66 keV,
the effect being opposite for67As. Also the relative energy
gap between the protong9/2 and f5/2 orbits decreases roughly
by 132 keV, providing a large contribution to the MED. Since
the spin-orbit contribution leads to a reduction of the energy
gap between the protong9/2 and f5/2 orbits, excitations from
those orbits into theg9/2 orbit are enhanced. The opposite
effect is predicted to happen in67As for the neutron orbits.

With inclusion ofVCM, εll andεls, shell-model calculations
are carried out in thep f5/2g9/2 shell for theA = 67 mirror
nuclei. The isospin nonconserving term is neglected in the
upper half of f p shell region because thef7/2 orbit is almost
not active. The calculation uses the code MSHELL [29] and
the effective interaction JUN45. After solving the eigenvalue
problem, contribution of the Coulomb monopole radial term
VCr is included into the energyEJ obtained in the shell model
calculation, where the strength parameteram was fix to 280
keV so as to fit the MED of the postive-parity high-spin states,
and taken as 0.0 keV for the negative-parity states.

In Fig. 1, the calculated energy levels are shown, and com-
pared with the experimental data for67Se and67As. As one
can see, the calculation with the JUN45 interaction reproduces
well the experimental data. The energy differences of the ana-
logue states are in a reasonable agreement with experiment.
The structure of the negative-parity states at low-excitation
energies are mainly dominated by thef p shell configurations.
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FIG. 2: (Color online) The MED for states shown in Fig. 1. Upper
graph: Comparison of calculated MED with available data. Lower
graph: Decomposition of theoretical MED into four terms (see text
for explanation).

The positive-parity states built at higher spin strongly involve
the g9/2 orbit. The structural difference of such configura-
tions strongly reduces the transition strengths explaining the
isomeric character of the 9/2+ levels [19]. We note however
that the calculated level energy for the 19/2+ state lies lower
than the experimental value.

In the past few years, experimental data on mirror nuclei
above the doubly magic56Ni have become available. Ekman
et al. [13] discussed the MED of theA∼ 60 mass region based
on the results of the shell model calculations. It was reported
that for the MED the contribution of the electromagnetic spin-
orbit term εls is significant, but the monopole Coulombεll

term is not. Energy shifts due toεls increase the gap between
the p3/2, f5/2 and theg9/2 orbits for neutrons but reduce it for
protons. As a consequence excitations involving those orbits
have important contribution to MED.

In Fig. 2 (a), the experimental MED along the positive-
parity excited band with∆J = 2 built on the 9/2+ state and the
low-lying negative-parity states (3/2−,5/2−,7/2−) are com-
pared with the results of our JUN45 calculations as a function
of spin 2J. The agreement is excellent. In particular, the cal-
culation reproduces correctly the large negative value in the
MED at the high-spin 21/2+ and 25/2+ states. It is now in-
teresting to examine which terms contribute to such drastic
changes in the MED. In order to see this, the four different
contributions to MED have been plotted separately in Fig. 2
(b). The Coulomb multipole termVCM reflects the alignment
effects at high spin and follows the negative trend of the MED.
It is in fact well known that spin alignments affect the MED,
which is a behavior first suggested by Sheikhet al. [30] based
on results from the deformed cranked shell model. In the mir-
ror pair 49Mn and 49Cr the alignment process has been ex-

amined based on the shell-model calculations by counting the
number of proton pairs in the shellj coupled to the maximum
spinJ = 2 j−1 [5]. It was shown that this number is closely
correlated with the MED. For the present case of67Se, two
protons and one neutron jump up from thef p-shell tog9/2 at
spin of 25/2+ and 29/2+. The spin alignment of the two pro-
tons in theg9/2 orbit increases the spatial separation between
them, leading to a smaller Coulomb energy. Thus, the align-
ment effect for protons reduces the excitation energy in67Se
while the same does not happen in the analogue states in67As.
However, as can be seen in Fig. 2 (b), theVCM term alone un-
derestimates the MED by a factor of three. As already noticed
the contribution of theεll term is only marginal.VCr gives the
largest positive contribution in particular for the 25/2+ and
29/2+ states due to the increased occupation of theg9/2 orbit.
On the other hand, theεls contribution to the MED is strongly
negative for the 25/2+ and 29/2+ spin values. When theVCr,
VCM, εls andεll terms are all included, the theoretical MED
reproduce well the experimental data. We note, however, that
the strength ofVCr was fitted to data and not determined in
an independent way. Theεls andVCr terms contribute to the
MED from the opposite directions, causing a large cancela-
tion at the highest spins. For the 21/2+ state, all terms give
almost the same contribution of about 40 keV, providing in to-
tal large MED. Below 21/2, theεls term competes with theεll

term, while theVCr andVCM values are small. In our conclu-
sion therefore the observed MED behaviour in the67Se and
67As pair is characterized by a strong competition among the
different terms, dominated at high spin by the interferenceof
the spin orbit and radial contributions.

A question that we now address concerns the importance
of the isospin nonconserving term of the NN interaction. The
good results shown in Fig. 2 have been obtained through the
inclusion of theVCr term whose strength is however fitted to
the experimental data. As seen in Fig. 2, calculations without
VCr cannot reproduce the data in the high-spin region. In the
f7/2 shell nuclei the isospin nonconserving NN term is impor-
tant mainly at the low spin region [1]. If one speculates thata
similar behavior occurs also in theg9/2 shell, this would im-
ply a limited contribution of the isospin nonconserving term
to the high spin region in the current discussion. The calcu-
lation presented in this work indeed shows that we can obtain
a good agreement with the experimental data for the MED
without including an explicit isospin breaking NN term. All
these seem to suggest that the isospin nonconserving NN term
is not important. However, since we have normalised a part of
the interaction by fitting to the experimental data, we cannot
make a strong conclusion about the role of the isospin non-
conserving part that in principle contributes to the MED.

To support the above picture, Fig. 3 shows the calculated
occupancies of the excited band with∆J = 2 built on the 9/2+

state in67Se. The upper and lower graphs are for protons and
neutrons, respectively. From the upper graph, one can see
that for the 9/2+ state, protons occupy mainly thef p-shell
and partially theg9/2 orbit. The occupations change gradu-
ally such that thef p occupancies increase but theg9/2 one
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FIG. 3: (Color online) Calculated occupation numbers for proton
orbits (upper graph) and neutron orbits (lower graph) in67Se.

decreases as a function of 2J. However, it is notable that
the protong9/2 occupation increase suddenly at spin 25/2,
and the protonp3/2 and f5/2 occupations decrease at the same
spin. This means that two protons and one neutron jump up
from the f p-shell to theg9/2 orbit at spin 25/2. This drastic
change of occupations is in clear contrast to that of thef7/2-
shell nuclei, where the occupations ofp3/2 and f7/2 orbits
change gradually with increasing spin [1]. The lower graph
indicates a similar pattern for neutrons, but the variationis not
so large. As already mentioned above, the change in occu-
pancy of thep3/2 orbit affects strongly the MED through the
Coulomb monopole radial termVCr. Since thep3/2 orbit has
larger radius than theg9/2 orbit, when at high spin nucleons
are filling theg9/2 shell the Coulomb monopole contribution
is larger than that at low spins.

We finally show the calculated spin alignment and spectro-
scopic quadrupole moment in67Se. In Fig. 4 (a), the spin

distribution of the expectation valueJa =
√

〈~ja〉2 is plotted

as a function of spin 2J, where~ja is angular momentum op-
erator for each orbita. As the neutron orbits are blocked for
this odd-neutron nucleus, the first alignment will be that ofa
pair of g9/2 protons which brings additional 8 units of angu-
lar momentum. It is clearly visible that the proton pair and
one neutron alignment in67Se occur at spin 25/2. The 29/2+

state also shows a large aligned spin value. This alignment is
interpreted as five-quasiparticle configuration involvingtwo
protons and three neutrons. Figure 4 (b) shows the calculated
spectroscopic quadrupole momentQs (in efm2) for the excited
states built on the 9/2+ level in 67Se. TheQs absolute value
has sudden increase at spin 25/2 corresponding to the sudden
increase in spin alignment (see the upper graph). This sug-
gests that the quadrupole moment is closely related to the spin
alignment of theg9/2 proton pair, which correlates with the
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multipole termVCM of the MED. Therefore, change in defor-
mation seems to affect the MED, but its influence is not large.
It should be noted that the presentVCr calculation and the dis-
cussion on occupation of the single-particle orbits are carried
out in a spherical basis, and therefore, the deformation effects
(such as changes of single-particle levels by the shape-driving
effect) are not explicitly seen. To study the deformation ef-
fects in the MED, a shell model based on deformed single-
particle states [31, 32] would have to be employed.

In conclusion, we investigated the MED between high-spin
states in the mirror pair67Se and67As using large-scale shell
model calculations. The calculations reproduce well the ex-
perimental level schemes, and confirm the suitableness of
the JUN45 effective interaction for this mass region. The
need for inclusion of theg9/2 orbit in the description for the
MED in the upperf p shell nuclei was demonstrated. In this
mass region, the electromagnetic spin-orbit interaction and the
Coulomb monopole radial term are responsible for producing
the large MED at high-spin states, while the contribution from
the Coulomb multipole term is small. The occupations of the
relevant orbits and the spin alignment in theg9/2 orbit affect
the variation of the MED along the band built on the 9/2+

state. We obtained a good agreement with the experimental
data for the MED without involving the isospin nonconserv-
ing part. However, it cannot be concluded that the isospin
nonconserving NN term is not important. This remains an
open question.
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