arxiv:1011.3175v1 [hep-lat] 14 Nov 2010

PROCEEDINGS

OF SCIENCE

Poisson Statistics in the High Temperature QCD
Dirac Spectrum

Tamas G. Kovacs *

Department of Physics, University of Pécs
H-7624 Pécs, Ifjisag utja 6, Hungary
E-mail: kgt @i zi ka. tt k. pte. hy

Ferenc Pittler

Department of Physics, University of Pécs
H-7624 Pécs, Ifjusag u. 6, Hungary
E-mail: pi ttl erferenc@nuail.com

At low temperature in the epsilon regime of QCD the low-enthef Dirac spectrum is described
by random matrix theory. In contrast, there has been no &ilyilvell established staistical de-
scription in the high temperature, chirally symmetric phallsing lattice simulations we show
that at high temperature a band of extremely localized eigeles appear at the low-end of the
Dirac spectrum. The corresponding eigenvalues are gtatlgtindependent and obey a general-
ized Poisson distribution. Higher up in the spectrum thes&um distribution rapidly crosses over
into the bulk distribution predicted by the random matrisemble with the corresponding sym-
metry. Our results are based on quenched lattice simukatiath the overlap and the staggered
Dirac operator done well above the critical temperatureatial volumes and values Nf. We
also discuss the crucial role played by the fermionic bowndandition and the Polyakov-loop
in this phenomenon.

The XXVIII International Symposium on Lattice Field Thedsttice2010
June 14-19, 2010
Villasimius, Italy

*Speaker.
TSupported by OTKA Hungarian Science Fund grant 49652 and EtGFP7/2007-2013)/ERCI208740.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/


http://arxiv.org/abs/1011.3175v1
mailto:kgt@fizika.ttk.pte.hu
mailto:pittlerferenc@gmail.com

Poisson Statistics in the High-T QCD Dirac Spectrum Tamas G. Kovacs

1. Introduction

The lowest part of the spectrum of the QCD Dirac operator éesomportant physical in-
formation concerning the low energy behavior of stronglyeiacting systems. In the so called
epsilon regime of the low temperature phase the statistiteedowest Dirac operator eigenvalues
is described by chiral random matrix theory (RMT). This is e@llvestablished fact supported by
analytic calculations in the corresponding low energy signodel as well as extensive numerical
lattice studies (see e.d] [1] for a summary of results andtafioriginal references). In contrast,
above the finite temperature transitioiR)(there is no generally accepted statistical description of
the low end of the Dirac spectrum. Since in this regime therifirst principles analytic informa-
tion available, to a first approximation the Dirac operaterehcan be regarded as a large fluctuating
random matrix, with its size going to infinity in the thermaogdynic limit.

From this perspective there are two possible types of furddally different extreme behavior
the statistics of the lowest part of the spectrum can folléty,pical fluctuations cannot mix eigen-
modes nearby in the spectrum, eigenmodes have to be latalimecorresponding eigenvalues are
expected to be statistically independent and follow esanfoisson statistics. If on the other
hand, nearby eigenmodes in the spectrum can easily mixnegegssarily become delocalized and
the spectrum is expected to obey random matrix statistiedtice simulations can decide which
scenario is realized in nature.

Above T; chiral symmetry is restored and the density of eigenvaldid3, she order parame-
ter of chiral symmetry breaking, vanishes. Random matmoii has specific predictions for the
eigenvalue statistics around such a “soft eddf” [2]. Lattitnulations, however, failed to repro-
duce the RMT predictions for the spectral statistics at feesum edge[J3] 4]. On the other hand,
bulk random matrix statistics for full Dirac spectra abdvevere verified previously[]5]. Based on
lattice simulations around the critical temperature, fifsuggested that around the chiral transi-
tion atT; a gradual change of eigenvalue statistics at the edge oftommnsRMT towards Poisson.
Very recently, however, Ref[][7] argued that although lowadieigenmodes are localized, local-
ization appears to be a finite volume artifact disappearirthpeé thermodynamic limit. If true, this
would suggest RMT statistics for eigenvalues at the spectdge. Lattice results obtained so far
are thus rather controversial.

In the present paper we provide some explanations for thgsgrent controversies and draw
a clear picture of the eigenvalue statistics ab®ye The new ingredient in our analysis is that
we study the eigenvalue statistics separately in differegions of the spectrum starting with the
lowest eigenvalues and going upwards. Our main result isttiealowest part of the spectrum
consists of localized, independent eigenmodes obeyingsBwistatistics. Eigenmodes higher up
in the spectrum gradually become more delocalized and aahme time the eigenvalue statistics
crosses over to the bulk random matrix statistics that wesiqusly seen in lattice simulations.
The phenomenon we report here is analogous to Andersorizaitah in conducting crystalline
solids with disorder. In that case disorder can render reeict states at the band edge localized
and non-conducting while states deep in the band can stikhire conducting and delocalized.
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2. Simulation details

We performed simulations of the quench®d(2) gauge theory at a temperature well above
the critical temperature. Here the Polyakov lao{2) symmetry is spontaneously broken and for
the quenched theory the twty2) sectors are equivalent. In contrast, the Dirac spectrumasvk
to depend strongly on the Polyakov loop sector through thedd Matsubara modé¢][8]. It is in
fact the combination of the Polyakov sector and the antipiiziquark boundary condition (b.c.)
in the time direction that determines the lowest part of tha®spectrum. If this combination
corresponds effectively to periodic b.c. (no twist), thedpal density does not vanish at zero. If
on the other hand, the combined effective b.c. is antipari@atwist of —1), the spectral density
vanishes at zero and there might even be a gap in the spedtenen t

In the presence of light dynamical quarks with antiperidalic the small modes in the twisted
sector would suppress the determinant and only the pos§itigakov loop sector survives for large
volumes. This is how the fermion action breaks the PolyakmpZ(2) symmetry above [F].
For this reason we used for our study only configurations éngbsitive Polyakov loop sector to
mimic the most important effect of dynamical quarks on theaDspectrum.

We analyzed spectra of both the staggered and the overlap Bperator o, =4 andN; = 6
configurations with spatial volumes betweer? £248°, all at the same physical temperat(re=
2.6T.. The configurations were generated with the Wilson gaugeraet f = 2.60 and 2725.
The staggered and the overlap Dirac operator gave quadikatsimilar results and both data sets
support our main findings. More details of this study can henébin [10] for the overlap and in
[LT] for the staggered Dirac operator. In the following welsipresent some results with both
types of lattice Dirac operator.

3. Localization of small modes

At first we directly measured the localization of the eigedemin different regions of the low
end of the spectrum. Instead of the most commonly used dquathie inverse participation ratio
(IPR), we used the quantity

Y= [gw*w(x))z] B 3.1)

for characterizing the localization of the normalized eig@dey. 7y can be thought of as an
approximate measure of the four-volume occupied by theneigele. This can be seen by consid-
ering an idealized eigenmode that is constant in a givenaduimev of the total volumé/ and zero
elsewhere. We assume that at very high temperatures thensigies are maximally spread in the
(short) time direction and define a length scale

7/11_1:| 1/3
dy = | = 3.2
Y |:Nt (3.2)
measuring the linear spatial extension of the eigenmjpde

In Fig.[J we plot how the average linear size of eigenmodesghas we go upwards in the
spectrum starting from the lowest modes. It is apparentithétte lowest part of the spectrum

the eigenmodes are very localized and their size is indeyeraf the box size. Higher up in the
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Figurel: The average linear extension (in lattice units) of staggjeigenvectorgy, as a function of the
corresponding eigenvalues. The different symbols cooedpo spatial box sizels = 16,24,32,48. All
the ensembles havé = 4.
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Figure 2: The cumulative volume fill fraction for the 34 4 staggered ensemble. The unfolded level
spacing distribution will be computed separately in ther fshiaded spectral regions marked by (a)-(d) (see
Fig. 4).

spectrum the eigenmodes spread out and they start to beaioest by the finite box. There is
a rather sharp transition point between the two types of\dehaanalogous to the mobility edge
separating conducting and non-conducting electron statgisordered conductors.

Besides spatial localization, the other quantity affegtine mixing of nearby modes in the
spectrum, is their density. These two effects togetherrniéte how much spatial overlap nearby
modes in the spectrum typically have. A useful quantity otiftg this can be defined by summing
the participation ratios of all modes up to a given padinth the spectrum. We call this theslume
fill fraction (VFF). It is essentially the fraction of the total four-vatie occupied by modes up to
a given eigenvalud. In Fig.[2 we show this as a function of the eigenvalueln the lowest part
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Figure3: The volume dependence of the smallest two eigenvalues afvtréap Dirac operator fdw, = 4
and Wilsonf = 2.6. The solid line is a two parameter fit (C) to the analytic prediction based on Poisson
statistics and power law spectral density. The dashed damet a fit, it is the prediction for the second
smallest eigenvalue based on the already fitted valuasawfdC.

of the spectrum where the spectral density is small and made®calized, the VFF is much less
than unity allowing for eigenmodes to occur without substduspatial overlap. If the eigenmodes
are really produced in independent subvolumes the leviidtata is expected to be Poissonian. In
contrast, higher up in the spectrum the VFF becomes muclkebtggn unity and eigenmodes there
must overlap. Here the eigenvalue statistics is expectbd tescribed by random matrix theory.

There are several ways of explicitly checking these exgiecis on lattice Dirac spectra. The
Poisson and random matrix statistics pertain to two diffetmiversal ways the eigenvalue fluctua-
tions can be correlated locally in the spectrum. An additipnon-universal feature of the spectrum
is the spectral density(A ). In the case of the overlap operator the spectral densityedbiv modes
is numerically found to be well described by a simple power tgA ) = CA 9. Using this and as-
suming statistically independent spectral fluctuatiomgtie lowest eigenvalues (Poisson statistics)
we can derive detailed predictions for the distributionha towest first, second, etc. eigenvalues
and their dependence on the spatial volume of the latticeanABustration, in Fig[]3 we compare
the spatial volume dependence of the lowest two eigenvalithsthe analytic predictions based
on Poisson statistics and the power law spectral densitge sbkid line is a two-parameter fit of
this analytic form to the average lowest eigenvalue. Thaeddine is a parameter-free prediction
for the average of the second smallest using the alreadd fithleameters. Both the fit and the
parameter-free prediction describe the data correctiygesting that the smallest two eigenvalues
indeed obey Poisson statistics.

For the staggered Dirac operator we did not find a simple &oalgscription of the spectral
density, but we had much more eigenvalues per configuralibis allowed us to compute the so
called unfolded level spacing distribution. Unfolding istandard way in random matrix theory
to locally rescale the spectrum in order to get rid of the delpace on the non-universal spectral
density. If the eigenvalues are statistically independafiter unfolding the levels are described by
a simple Poisson distribution with exponentially disttdmilevel spacings. If on the other hand, the
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Figure4: The panels show the unfolded level spacing distributioriffei@nt regions of the spectrum. The
labeling (a)-(d) corresponds to the regions indicated ¢n Eiwith the shaded areas. The curved lines are the

exponential distribution and the Wigner surmise.

original spectrum follows random matrix statistics, thsetdbution of the unfolded level spacings
is described by the so called Wigner surmise of the givenaanchatrix ensembld][1]. In the case
of the staggered Dirac operator the corresponding ensemttie chiral symplectic ensemble.

In Fig.[4 we show the unfolded level spacing distributiontaf eigenvalues in four different
regimes of the spectrum. Also shown in each figure is the wadparameter-free) prediction
based on Poisson and random matrix statistics respectivéyapparent that the lowest part of the
spectrum obeys Poisson statistics and that going up in #agtrsion this gradually crosses over to
random matrix statistics.

An important question is whether this phenomenon survikreghiermodynamic and the con-
tinuum limit. When scaling up the spatial volume one exp#wsthe number of “modes of a given
statistics” scales proportionally to the volume. This camtost simply checked for the eigenval-
ues of intermediate statistics. In F[¢. 5(a) we plotted ehel spacing distribution of eigenvalues
10-20 in a spatial volume of 24nd that of the scaled up percentage of eigenvalues 24-4Voh a
ume of 32. The distributions on the two volumes appear to be the satagmediate distribution
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Figure5: The unfolded level spacing distribution for two differepisial volumes at fixedl (a) and for
two differentN;’s at fixed physical temperature and physical volumes (b).

demonstrating that the number of eigenvalues of the saristista scales with the volume.

To assess what happens in the continuum limit, in[fig. 5(b§hesv level spacing statistics for
the same physical temperature and three-volume with twerdiit lattice spacings corresponding
toN; = 4 andN; = 6. For both cases we plotted the statistics based on eiges/aD-20. Although
the difference in lattice volumes in lattice units is morartha factor of 3, the two distributions
seem to be identical. This shows that the number of eigeesalith a given statistics depends
on the physical volume, not on the volume in lattice unitse Tdwest, Poisson distributed modes
might thus be associated with some physical objects in thgeaéeld background, the physical
density of which is constant in the continuum limit.
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