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At low temperature in the epsilon regime of QCD the low-end ofthe Dirac spectrum is described

by random matrix theory. In contrast, there has been no similarly well established staistical de-

scription in the high temperature, chirally symmetric phase. Using lattice simulations we show

that at high temperature a band of extremely localized eigenmodes appear at the low-end of the

Dirac spectrum. The corresponding eigenvalues are statistically independent and obey a general-

ized Poisson distribution. Higher up in the spectrum the Poisson distribution rapidly crosses over

into the bulk distribution predicted by the random matrix ensemble with the corresponding sym-

metry. Our results are based on quenched lattice simulations with the overlap and the staggered

Dirac operator done well above the critical temperature at several volumes and values ofNt . We

also discuss the crucial role played by the fermionic boundary condition and the Polyakov-loop

in this phenomenon.
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1. Introduction

The lowest part of the spectrum of the QCD Dirac operator encodes important physical in-
formation concerning the low energy behavior of strongly interacting systems. In the so called
epsilon regime of the low temperature phase the statistics of the lowest Dirac operator eigenvalues
is described by chiral random matrix theory (RMT). This is a well established fact supported by
analytic calculations in the corresponding low energy sigma model as well as extensive numerical
lattice studies (see e.g. [1] for a summary of results and a list of original references). In contrast,
above the finite temperature transition (Tc) there is no generally accepted statistical description of
the low end of the Dirac spectrum. Since in this regime there is no first principles analytic informa-
tion available, to a first approximation the Dirac operator here can be regarded as a large fluctuating
random matrix, with its size going to infinity in the thermodynamic limit.

From this perspective there are two possible types of fundamentally different extreme behavior
the statistics of the lowest part of the spectrum can follow.If typical fluctuations cannot mix eigen-
modes nearby in the spectrum, eigenmodes have to be localized, the corresponding eigenvalues are
expected to be statistically independent and follow essentially Poisson statistics. If on the other
hand, nearby eigenmodes in the spectrum can easily mix, theynecessarily become delocalized and
the spectrum is expected to obey random matrix statistics. Lattice simulations can decide which
scenario is realized in nature.

AboveTc chiral symmetry is restored and the density of eigenvalues of D, the order parame-
ter of chiral symmetry breaking, vanishes. Random matrix theory has specific predictions for the
eigenvalue statistics around such a “soft edge” [2]. Lattice simulations, however, failed to repro-
duce the RMT predictions for the spectral statistics at the spectrum edge [3, 4]. On the other hand,
bulk random matrix statistics for full Dirac spectra aboveTc were verified previously [5]. Based on
lattice simulations around the critical temperature, Ref.[6] suggested that around the chiral transi-
tion atTc a gradual change of eigenvalue statistics at the edge occursfrom RMT towards Poisson.
Very recently, however, Ref. [7] argued that although low Dirac eigenmodes are localized, local-
ization appears to be a finite volume artifact disappearing in the thermodynamic limit. If true, this
would suggest RMT statistics for eigenvalues at the spectrum edge. Lattice results obtained so far
are thus rather controversial.

In the present paper we provide some explanations for these apparent controversies and draw
a clear picture of the eigenvalue statistics aboveTc. The new ingredient in our analysis is that
we study the eigenvalue statistics separately in differentregions of the spectrum starting with the
lowest eigenvalues and going upwards. Our main result is that the lowest part of the spectrum
consists of localized, independent eigenmodes obeying Poisson statistics. Eigenmodes higher up
in the spectrum gradually become more delocalized and at thesame time the eigenvalue statistics
crosses over to the bulk random matrix statistics that was previously seen in lattice simulations.
The phenomenon we report here is analogous to Anderson localization in conducting crystalline
solids with disorder. In that case disorder can render electronic states at the band edge localized
and non-conducting while states deep in the band can still remain conducting and delocalized.
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2. Simulation details

We performed simulations of the quenchedSU(2) gauge theory at a temperature well above
the critical temperature. Here the Polyakov loopZ(2) symmetry is spontaneously broken and for
the quenched theory the twoZ(2) sectors are equivalent. In contrast, the Dirac spectrum is known
to depend strongly on the Polyakov loop sector through the lowest Matsubara mode [8]. It is in
fact the combination of the Polyakov sector and the antiperiodic quark boundary condition (b.c.)
in the time direction that determines the lowest part of the Dirac spectrum. If this combination
corresponds effectively to periodic b.c. (no twist), the spectral density does not vanish at zero. If
on the other hand, the combined effective b.c. is antiperiodic (a twist of−1), the spectral density
vanishes at zero and there might even be a gap in the spectrum there.

In the presence of light dynamical quarks with antiperiodicb.c. the small modes in the twisted
sector would suppress the determinant and only the positivePolyakov loop sector survives for large
volumes. This is how the fermion action breaks the Polyakov loop Z(2) symmetry aboveTc [9].
For this reason we used for our study only configurations in the positive Polyakov loop sector to
mimic the most important effect of dynamical quarks on the Dirac spectrum.

We analyzed spectra of both the staggered and the overlap Dirac operator onNt = 4 andNt = 6
configurations with spatial volumes between 123

−483, all at the same physical temperatureT =

2.6Tc. The configurations were generated with the Wilson gauge action at β = 2.60 and 2.725.
The staggered and the overlap Dirac operator gave qualitatively similar results and both data sets
support our main findings. More details of this study can be found in [10] for the overlap and in
[11] for the staggered Dirac operator. In the following we shall present some results with both
types of lattice Dirac operator.

3. Localization of small modes

At first we directly measured the localization of the eigenmodes in different regions of the low
end of the spectrum. Instead of the most commonly used quantity, the inverse participation ratio
(IPR), we used the quantity

Vψ =

[

∑
x
(ψ†ψ(x))2

]

−1

(3.1)

for characterizing the localization of the normalized eigenmodeψ . Vψ can be thought of as an
approximate measure of the four-volume occupied by the eigenmode. This can be seen by consid-
ering an idealized eigenmode that is constant in a given subvolumev of the total volumeV and zero
elsewhere. We assume that at very high temperatures the eigenmodes are maximally spread in the
(short) time direction and define a length scale

dψ =

[

Vψ

Nt

]1/3

(3.2)

measuring the linear spatial extension of the eigenmodeψ .
In Fig. 1 we plot how the average linear size of eigenmodes change as we go upwards in the

spectrum starting from the lowest modes. It is apparent thatin the lowest part of the spectrum
the eigenmodes are very localized and their size is independent of the box size. Higher up in the
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Figure 1: The average linear extension (in lattice units) of staggered eigenvectors,dψ , as a function of the
corresponding eigenvalues. The different symbols correspond to spatial box sizesNs = 16,24,32,48. All
the ensembles haveNt = 4.

(a) (b) (c) (d)

Figure 2: The cumulative volume fill fraction for the 243
× 4 staggered ensemble. The unfolded level

spacing distribution will be computed separately in the four shaded spectral regions marked by (a)-(d) (see
Fig. 4).

spectrum the eigenmodes spread out and they start to be constrained by the finite box. There is
a rather sharp transition point between the two types of behavior, analogous to the mobility edge
separating conducting and non-conducting electron statesin disordered conductors.

Besides spatial localization, the other quantity affecting the mixing of nearby modes in the
spectrum, is their density. These two effects together determine how much spatial overlap nearby
modes in the spectrum typically have. A useful quantity reflecting this can be defined by summing
the participation ratios of all modes up to a given pointλ in the spectrum. We call this thevolume
fill fraction (VFF). It is essentially the fraction of the total four-volume occupied by modes up to
a given eigenvalueλ . In Fig. 2 we show this as a function of the eigenvalueλ . In the lowest part
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Figure 3: The volume dependence of the smallest two eigenvalues of theoverlap Dirac operator forNt = 4
and Wilsonβ = 2.6. The solid line is a two parameter fit (α,C) to the analytic prediction based on Poisson
statistics and power law spectral density. The dashed curveis not a fit, it is the prediction for the second
smallest eigenvalue based on the already fitted values ofα andC.

of the spectrum where the spectral density is small and modesare localized, the VFF is much less
than unity allowing for eigenmodes to occur without substantial spatial overlap. If the eigenmodes
are really produced in independent subvolumes the level statistics is expected to be Poissonian. In
contrast, higher up in the spectrum the VFF becomes much bigger than unity and eigenmodes there
must overlap. Here the eigenvalue statistics is expected tobe described by random matrix theory.

There are several ways of explicitly checking these expectations on lattice Dirac spectra. The
Poisson and random matrix statistics pertain to two different universal ways the eigenvalue fluctua-
tions can be correlated locally in the spectrum. An additional, non-universal feature of the spectrum
is the spectral densityρ(λ ). In the case of the overlap operator the spectral density of the low modes
is numerically found to be well described by a simple power law ρ(λ ) =Cλ α . Using this and as-
suming statistically independent spectral fluctuations for the lowest eigenvalues (Poisson statistics)
we can derive detailed predictions for the distribution of the lowest first, second, etc. eigenvalues
and their dependence on the spatial volume of the lattice. Asan illustration, in Fig. 3 we compare
the spatial volume dependence of the lowest two eigenvalueswith the analytic predictions based
on Poisson statistics and the power law spectral density. The solid line is a two-parameter fit of
this analytic form to the average lowest eigenvalue. The dashed line is a parameter-free prediction
for the average of the second smallest using the already fitted parameters. Both the fit and the
parameter-free prediction describe the data correctly, suggesting that the smallest two eigenvalues
indeed obey Poisson statistics.

For the staggered Dirac operator we did not find a simple analytic description of the spectral
density, but we had much more eigenvalues per configuration.This allowed us to compute the so
called unfolded level spacing distribution. Unfolding is astandard way in random matrix theory
to locally rescale the spectrum in order to get rid of the dependence on the non-universal spectral
density. If the eigenvalues are statistically independent, after unfolding the levels are described by
a simple Poisson distribution with exponentially distributed level spacings. If on the other hand, the
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Figure 4: The panels show the unfolded level spacing distribution in different regions of the spectrum. The
labeling (a)-(d) corresponds to the regions indicated in Fig. 2 with the shaded areas. The curved lines are the
exponential distribution and the Wigner surmise.

original spectrum follows random matrix statistics, the distribution of the unfolded level spacings
is described by the so called Wigner surmise of the given random matrix ensemble [1]. In the case
of the staggered Dirac operator the corresponding ensembleis the chiral symplectic ensemble.

In Fig. 4 we show the unfolded level spacing distribution of the eigenvalues in four different
regimes of the spectrum. Also shown in each figure is the universal (parameter-free) prediction
based on Poisson and random matrix statistics respectively. It is apparent that the lowest part of the
spectrum obeys Poisson statistics and that going up in the spectrum this gradually crosses over to
random matrix statistics.

An important question is whether this phenomenon survives the thermodynamic and the con-
tinuum limit. When scaling up the spatial volume one expectsthat the number of “modes of a given
statistics” scales proportionally to the volume. This can be most simply checked for the eigenval-
ues of intermediate statistics. In Fig. 5(a) we plotted the level spacing distribution of eigenvalues
10-20 in a spatial volume of 243 and that of the scaled up percentage of eigenvalues 24-47 in avol-
ume of 323. The distributions on the two volumes appear to be the same intermediate distribution
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Figure 5: The unfolded level spacing distribution for two different spatial volumes at fixedNt (a) and for
two differentNt ’s at fixed physical temperature and physical volumes (b).

demonstrating that the number of eigenvalues of the same statistics scales with the volume.
To assess what happens in the continuum limit, in Fig. 5(b) weshow level spacing statistics for

the same physical temperature and three-volume with two different lattice spacings corresponding
to Nt = 4 andNt = 6. For both cases we plotted the statistics based on eigenvalues 10-20. Although
the difference in lattice volumes in lattice units is more than a factor of 3, the two distributions
seem to be identical. This shows that the number of eigenvalues with a given statistics depends
on the physical volume, not on the volume in lattice units. The lowest, Poisson distributed modes
might thus be associated with some physical objects in the gauge field background, the physical
density of which is constant in the continuum limit.
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