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1. Introduction

Recently, there has been a lot of interest in gauge theories which are conformal or near confor-
mal. This is in particular due to their applications in beyond the Standard Model model building,
most notably Technicolor and unparticle physics. In particular, for non-supersymmetric Yang-Mills
theories with higher fermion representations it has been suggested [1] that an ideal candidate for a
walking technicolor theory would be the one with just two (techni)quark flavours in two-index sym-
metric representation of SU(2) or SU(3). The former of these two is called the Minimal Walking
Technicolor (MWT) model, and is the subject of the study presented in this paper. Initial studies of
both of these theories have been performed on the lattice already [2, 3, 4, 5, 6, 7, 8]. For a related
study of a QCD-like theory with fundamental representation fermions see ref. [9].

The initial lattice studies of MWT using the Schrödinger functional method to measure the
evolution of the coupling suggest that the theory has an infrared stable fixed point [7, 10]. However,
the initial investigations with Wilson fermions used unimproved actions and are therefore subject to
large O(a) discretization errors. These can be removed using Wilson-clover action with a suitably
tuned clover (Sheikholeslami-Wohlert) coefficient and introducing a set of Schrödinger functional
boundary counterterms, following the methods introduced in refs. [11, 12, 13, 14, 15] for QCD.

We improve the theory in two distinct stages: first, the Sheikholeslami-Wohlert coefficient
is evaluated with non-perturbative methods. This computation is described in ref. [16]. In this
paper we present the results of the perturbative computation of the coefficients of the boundary
improvement terms. The results of the physics simulations will be presented elsewhere.

2. Model and O(a) improvement

We use the basic Wilson lattice action

S0 = SG +SF , (2.1)

where the standard Wilson plaquette action is

SG =
βL

4 ∑
p

tr(1−U(p)), (2.2)

for the gauge part. The sum runs over all oriented plaquettes p, and U(p) is the parallel transporter
around the plaquette p written in terms of the link matrices Uµ(x).

The Wilson fermion action, SF , for N f (degenerate) Dirac fermions in the fundamental or
adjoint representation of the gauge group is

SF = a4
∑
x

ψ̄(x)(D+mq,01)ψ(x), (2.3)

where the usual Wilson-Dirac operator is

D =
1
2
(γµ(∇

∗
µ +∇µ)−a∇

∗
µ∇µ), (2.4)
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involving the gauge covariant lattice derivatives ∇µ and ∇∗µ defined as

∇µψ(x) =
1
a
[Ũµ(x)ψ(x+aµ̂)−ψ(x)], (2.5)

∇
∗
µψ(x) =

1
a
[ψ(x)−Ũ−1

µ (x−aµ̂)ψ(x−aµ̂)]. (2.6)

Here Ũ is the parallel trasporter in the appropriate fermion representation.
It is well known that this action suffers from O(a) discretization errors. These errors can be

removed by introducing the Sheikholeslami-Wohlert -term [17] in the action

Simpr = S0 +δSsw, (2.7)

δSsw = a5
∑
x

cswψ̄(x)
i
4

σµνFµν(x)ψ(x), (2.8)

and tuning the coefficient csw so that the O(a) effects in on-shell quantities cancel. To the lowest
order in perturbation theory csw = 1 [18]. Here σµν = i[γµ ,γν ]/2 and Fµν(x) is the symmetrised
lattice field strength tensor.

In the Schrödinger functional scheme the fixed spatially constant boundary conditions at times
t = 0 and t = T will introduce further O(a) errors. These errors can also be removed by introducing
new terms to the action and fine tuning the corresponding coefficients so that the O(a) contributions
cancel. Complete analysis of all necessary counterterms has been presented in [19]. Here we only
list the needed counterterms, which are

δSV =
ia5

4
csw

L−a

∑
x0=a

∑
~x

ψ̄(x)σµν F̂µν(x)ψ(x), (2.9)

δSG,b =
1

2g2
0
(cs−1)∑

ps

Tr[1−U(ps)]+
1
g2

0
(ct −1)∑

pt

Tr[1−U(pt)], (2.10)

δSF,b = a4(c̃s−1)∑
~x
[Ôs(~x)+ Ô′s(~x)]+a4(c̃t −1)∑

~x
[Ôt(~x)− Ô′t(~x)]. (2.11)

Here we have introduced the operators

Ôs(~x) =
1
2

ψ̄(0,~x)P−γk(∇
∗
k +∇k)P+ψ(0,~x), (2.12)

Ô′s(~x) =
1
2

ψ̄(L,~x)P+γk(∇
∗
k +∇k)P−ψ(L,~x), (2.13)

Ôt(~x) =
{

ψ̄(y)P+∇
∗
0ψ(y)+ ψ̄(y)

←−
∇
∗
0P−ψ(y)

}
y=(a,~x)

, (2.14)

Ô′t(~x) =
{

ψ̄(y)P−∇0ψ(y)+ ψ̄(y)
←−
∇ 0P+ψ(y)

}
y=(T−a,~x)

, (2.15)

where the projection operators are P± = (1± γ0)/2. By tuning the coefficients csw,cs,ct , c̃s, c̃t to
their proper values we can remove all the O(a) errors from our action.

The coefficient csw can be determined non-perturbatively and its computation for SU(2) and
adjoint fermions is described in ref. [16]. For the electric background field which we consider,
the terms proportional to cs do not contribute. Also, we set the fermionic fields to zero on the
boundaries, and then the counterterm proportional to c̃s vanishes.
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3. Perturbative analysis of the boundary improvement

All boundary coefficients have a perturbative expansion of the form

cx = 1+ c(1)x g2
0 +O(g4

0). (3.1)

Here we will determine the coefficients c̃t and ct to one-loop order in perturbation theory.

3.1 Coefficient c̃(1)t

We follow the analysis performed in [15] for the fundamental representation. The result of
[15] is

c̃(1)t =−0.0135(1)CF , (3.2)

and this generalises to other fermion representations simply by replacing the fundamental represen-
tation Casimir operator CF with Casimir operator CR of the representation R under consideration.
In the case of MWT we have fermions transforming in the adjoint representation of SU(2), hence
CR = CA = 2. The results for different gauge groups and fermion representations are shown in
table 1.

3.2 Coefficient c(1)t

The coefficient c(1)t can be split into gauge and fermionic parts

c(1)t = c(1,0)t + c(1,1)t N f . (3.3)

The contribution c(1,0)t is entirely due to gauge fields and has been evaluated in [12] for SU(2) and in
[13] for SU(3). The fermionic contribution c(1,1)t to ct has been evaluated for fundamental fermions
in [14] both for SU(2) and SU(3). We have extended these computations for SU(2) and SU(3)
gauge theory with higher representation fermions and for SU(4) gauge theory with fundamental
representation fermions. The results for the nonzero improvement coefficients are tabulated in table
1. The numbers beyond the fundamental representation are new, while those for the fundamental
representation provide a good check on our computations. For the application to MWT, the relevant
numbers are the ones on the second line of table 1.

Our results are consistent with the generic formula

c(1,1)t ≈ 0.019141(2T (R)), (3.4)

where T (R) is the normalization of the representation R, defined as Tr(T a
R T b

R ) = T (R)δ ab. For
the details of the numerical method used to determine coefficient c(1,1)t , we refer to the original
literature where the method was developed and applied first for the pure gauge theory case in [12],
and later for fundamental representation fermions in [12, 14].

We have also plotted our results of c(1,1)t scaled with 1/(2T (R)) against (3.4) in figure 1.
Although we were unable to achieve the accuracy of the original work [14], our results are fully
compatible for fundamental representation fermions. The figure also clearly indicates that c(1,1)t

scales with 2T (R).
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Nc rep. c(1,0)t c(1,1)t c̃(1)t

2 2 −0.0543(5) 0.0192(2) −0.0101(3)
2 3 −0.0543(5) 0.075(1) −0.0270(2)
3 3 −0.08900(5) 0.0192(4) −0.0180(1)
3 8 −0.08900(5) 0.113(1) −0.0405(3)
3 6 −0.08900(5) 0.0946(9) −0.0450(3)
4 4 0.0192(5) −0.0253(2)

Table 1: The nonzero improvement coefficients for Schrödinger functional boundary conditions with electric
background field for various gauge groups and fermion representations.

Figure 1: Our results of c(1,1)t scaled with 2T (R) compared with conjectured value of c(1,1)t /(2T (R)).

4. Conclusions and outlook

The search for conformal or near conformal gauge theories is phenomenologically motivated
by the applications in model building beyond the Standard Model. Gauge theories with gauge
groups SU(2) or SU(3) and with two Dirac fermions transforming under the two index symmetric
representation are investigated by several lattice collaborations. When using Wilson fermions, the
use of O(a) improved actions is desired. We have carried out this program for SU(2) gauge theory
with two Wilson fermions in the adjoint representation, i.e. the MWT model. In this paper we
presented the perturbative results for the improvement coefficients.
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