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Microscopic calculation of the 3He(α,γ)7Be and 3H(α,γ)7Li capture cross sections using
realistic interactions
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The radiative capture cross sections for the 3He(α,γ)7Be and 3H(α,γ)7Li reactions are calculated
in the fully microscopic Fermionic Molecular Dynamics approach using a realistic effective interaction
that reproduces the nucleon-nucleon scattering data. At large distances bound and scattering states
are described by antisymmetrized products of 4He and 3He/3H ground states. At short distances the
many-body Hilbert space is extended with additional many-body wave functions needed to represent
polarized clusters and shell-model like configurations. Properties of the bound states like binding
energies, charge radii and quadrupole moments are described well, as are the scattering phase shifts.
The calculated S-factor for the 3He(α,γ)7Be reaction agrees very well with recent experimental
data both in absolute normalization and energy dependence. In case of the 3H(α,γ)7Li reaction the
calculated S-factor is larger than available experimental data by about 15%.

PACS numbers: 25.55.-e,21.60.De,27.20.+n,26.20.Cd

The 3He(α,γ)7Be reaction is one of the key reactions
in the solar proton-proton chains [1, 2]. It competes with
the 3He(3He,2p)4He reaction and therefore determines
the production of 7Be and 8B neutrinos in the ppII and
ppIII branches. For a long time the experimental situa-
tion regarding the capture cross section was not clear due
to conflicting experimental results [1]. In recent years the
capture cross section has been remeasured at the Weiz-
mann institute [3], by the LUNA collaboration [4], by the
Seattle group [5] and by the ERNA collaboration [6] now
providing consistent high precision data. Nevertheless
it is still not possible to reach the low energies relevant
in solar burning and the data have to be extrapolated
with the help of models. A careful analysis of the new
data sets and a discussion of the extrapolation and its
uncertainties is given in [2].

The first attempts to model the capture cross sections
were done using an external capture model [7, 8] where
only the asymptotic form of the bound and scattering
state wave functions enters, neglecting the behavior of
the wave function at short distances. In potential models
like e.g. [9] the wave functions are described by two point-
like clusters interacting via an effective nucleus-nucleus
potential which is adjusted to give reasonable proper-
ties for the bound states and the scattering phase shifts.
In the framework of the microscopic cluster model, e.g.
[10–13], the system is described by antisymmetrized wave
functions of two clusters. One has to solve for the rela-
tive motion of the clusters using resonating group (RGM)
or generator coordinate methods (GCM). In these mi-
croscopic models phenomenological nucleon-nucleon in-
teractions are used. Like in the potential models these
interactions are tuned to reproduce for the given reac-
tion at hand certain properties of bound and scattering
states within the restricted cluster model space. There
have been some attempts [12, 14] to go beyond the single-
channel approximation by including the 6Li+p channel,

but such enlarged model spaces require again modifica-
tions of the phenomenological interaction.

Predictive power is expected from ab initio meth-
ods which use realistic interactions that reproduce the
nucleon-nucleon scattering data and the deuteron prop-
erties. Solving the many-body problem with realistic
interactions is hard as very large model spaces are re-
quired and up to now consistent ab initio reaction cal-
culations have only been possible for single nucleon pro-
jectiles [15, 16]. The 3He(α,γ)7Be reaction was studied
in hybrid approaches, where asymptotic normalization
coefficients calculated from 7Be bound state wave func-
tions using Variational Monte Carlo [17] and the No-Core
Shell Model [18] were combined with conventional poten-
tial models. None of these calculations is successful in
describing both the normalization and the energy depen-
dence of the capture cross section data.

In this Letter we present the first ab initio type calcu-
lation of the 3He(α,γ)7Be and 3H(α,γ)7Li capture cross
sections. We describe consistently bound and scattering
states starting from a realistic effective interaction de-
rived in the Unitary Correlation Operator Method. The
Fermionic Molecular Dynamics approach is used to cre-
ate many-body wave functions that capture the relevant
physics in the interaction region. Frozen cluster configu-
rations with 4He and 3He/3H ground states are used at
large distances.

The effective interaction is derived from the realis-
tic Argonne V18 interaction [19], that reproduces the
deuteron properties and the nucleon-nucleon scattering
phase shifts. The interaction is transformed into a phase-
shift equivalent low-momentum interaction using the
Unitary Correlation Operator Method (UCOM) [20, 21]
where short-range central and tensor correlations are in-
corporated explicitly. In this work we use UCOM cor-
relation functions that are derived from a SRG-evolved
Hamiltonian as described in [21] with a flow parameter
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α=0.20 fm4, corresponding to a soft cut-off λ=1.5 fm−1.
As shown in [21] No-Core Shell Model calculations us-
ing the two-body UCOM(SRG) interaction are able to
reproduce the binding energies of triton, 4He and 7Li.
Fermionic Molecular Dynamics (FMD) is a microscopic

many-body approach that has been used successfully for
nuclear structure studies of nuclei in the p- and sd-shell.
See [22–24] for some recent applications and [25] for a
general discussion. FMD is based on intrinsic many-body
basis states that are Slater determinants
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The complex parameters bk encode the mean positions
and momenta of the wave packets. The width parameters
ak are variational and can be different for each nucleon.
The spin can assume any direction, isospin ξk is ±1/2.
The wave packet basis is very flexible and contains har-
monic oscillator shell model and Brink-type cluster states
as special cases.
To restore the symmetries of the Hamiltonian under

parity, rotations and translations the intrinsic basis states
∣
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are projected on parity, angular momentum and total
linear momentum
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so that the wave function factorizes into the internal part
and the center-of-mass motion given by a plane wave.
In general the intrinsic states have no axial symmetry

and K is not a good quantum number. Linear dependent
combinations among the different K-projections have to
be removed. This is done numerically and introduces a
small ambiguity in the size of the model space. We will
exploit this ambiguity later to fine-tune the 7Be and 7Li
binding energies.
All bound and scattering states are represented using

a set of intrinsic states
∣
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Proper boundary conditions for bound and scattering
states are imposed using the microscopic R-matrix ap-
proach developed by the Brussels group [26, 27].
At large distances the 7Be and 7Li wave functions con-

sist of 4He and 3He/3H clusters in their ground states
interacting via the Coulomb interaction only. The rela-
tive motion of these frozen clusters is therefore given by
Whittaker and Coulomb functions for bound and scat-
tering states, respectively. Microscopically we describe
these cluster configurations with FMD Slater determi-
nants where the clusters are put at a distance R. The

R
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FIG. 1. (Color online). Cuts through the density distributions
of intrinsic basis states. Top: frozen configurations where only
the cluster distance is varied. Bottom: selected polarized
configurations obtained in variation after angular momentum
and parity projection for 3/2−, 7/2− and 1/2− states.

wave functions of the individual clusters are obtained by
variation in the FMD model space.

In the interaction region the nuclear interaction will
polarize the clusters. To include these polarization ef-
fects we extend the model space with additional FMD
basis states obtained by variation after projection (VAP)
on spin-parity 3/2−, 1/2−, 7/2−, 5/2− as well as on 1/2+,
3/2+ and 5/2+. The square radius of the intrinsic state
is used as a constraint to generate configurations corre-
sponding to cluster distances from 1 to 5 fm. Together
with the frozen configurations, that extend to distances
slightly beyond the channel radius a = 12 fm, we have
about 50 intrinsic basis states to represent the inner part
of the wave function. Density distributions of typical
frozen and polarized basis states are shown in Fig. 1.

When the model space is restricted to frozen configura-
tions the 3/2− and 1/2− states in 7Be are only bound by
240 keV and 10 keV respectively. The FMD VAP config-
urations are therefore essential to a get a good description
of the bound states. As mentioned the numerical elimi-
nation of linear dependent states in the K-mixing proce-
dure introduces a small ambiguity in the model space size
that translates into an ambiguity in the binding energy
of about 150 keV. As the reaction cross section depends
very sensitively on phase space we exploit this ambiguity

TABLE I. Calculated and experimental bound state proper-
ties. Energies with respect to the 4He-3He and 4He-3H thresh-
olds respectively. Experimental charge radii are from [28, 29],
the 7Li quadrupole moment from [30].

7Be 7Li

FMD Exp FMD Exp

E3/2− [MeV] -1.49 -1.586 -2.39 -2.467

E1/2− [MeV] -1.31 -1.157 -2.17 -1.989

rch [fm] 2.67 2.647(17) 2.46 2.390(30)

Q [e fm2] -6.83 -3.91 -4.00(3)
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FIG. 2. (Color online). 4He-3He scattering phase shifts.
Dashed lines show results using only frozen configurations,
solid lines are obtained with the full FMD model space. Ex-
perimental results are from [31] and [32].

to tune the centroid of the 3/2− and 1/2− bound state
energies to the experimental value. The calculated split-
ting between the bound states is too small compared to
data. However, the total cross section essentially only
depends on the centroid energy, whereas the branching
ratio slightly changes with the splitting. We checked this
by artificially modifying the strength of the spin-orbit
force. The bound state properties for 7Be and 7Li are
summarized in Tab. I. The charge radii and quadrupole
moments test the tail of the wave functions and agree
reasonable well with experiment.

In Fig. 2 we show the phase shifts for scattering in the
S- and D-wave channels. As for the bound states the ad-
dition of polarized configurations to the model space sig-
nificantly changes the results and leads to a good agree-
ment with the available data [31, 32].

The capture cross section for the 3He(α,γ)7Be reaction
is calculated using the many-body scattering and bound
eigenstates of the Hamiltonian. In the energy range up
to 2.5 MeV it has been shown [17] that only dipole tran-
sitions from the S- and D-wave scattering states have to
be considered. The obtained cross section is shown in
Fig. 3 together with the experimental data. Our results
are in good agreement with the recent measurements re-
garding both the absolute normalization and the energy
dependence. The extrapolated zero-energy S-factor is
S34(0)=0.593 keVb.

As our model successfully describes the 3He(α,γ)7Be
reaction, it should also do well for the isospin mirror re-
action 3H(α,γ)7Li. As shown in Fig. 4 we observe a good
agreement for the energy dependence of the S-factor but
find that the absolute normalization is about 15% larger
than the data by Brune et al. [33].

In summary our calculations are able to describe con-
sistently the bound state properties, the scattering phase
shifts as well as the normalization and energy depen-
dence of the 3He(α,γ)7Be capture cross section. Our
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FIG. 3. (Color online). The astrophysical S-factor for the
3He(α,γ)7Be reaction. The FMD result is given by the solid
line. Recent experimental data [3–6] are shown as dark col-
ored symbols, older data [1] as light symbols.
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FIG. 4. (Color online). The astrophysical S-factor for the
3H(α,γ)7Li reaction. The FMD result is given by the solid
line. Most recent experimental data are shown as dark sym-
bols, older data as light symbols ([33] and references therein).

results deviate from the correlation between ground
state quadrupole moment and zero-energy S-factor found
in cluster models using phenomenological interactions
[13, 14]. Our approach differs in two main aspects from
those earlier studies. First, we use a well defined effective
interaction that describes the nucleon nucleon scattering
data. In contrast to phenomenological effective interac-
tions used in cluster model studies the UCOM interaction
has a pronounced momentum dependence and a longer
range due to the explicitly included pion exchange, a fea-
ture that turns out to be important for the low energy
scattering solutions. Second, our model space is larger
than in the cluster model. Additional FMD basis states
in the interaction region describe polarized clusters and
shell-model like configurations. Although they are only
a small admixture in the full wave functions they are es-
sential to describe the bound state properties as well as
the scattering phase shifts.

The results can also be studied in terms of overlap
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FIG. 5. (Color online). On the left: 7Be overlap functions
for a low energy 1/2+ scattering state and the 3/2− bound
state (solid lines). Coulomb andWhittaker functions matched
at the channel radius (dashed lines). On the right: dipole
strength calculated with overlap functions (solid line) and
with Coulomb and Whittaker functions (dashed line).

functions that are obtained by mapping the microscopic
many-body wave functions onto the relative wave func-
tion of two point-like nuclei in the RGM formalism. In
Fig. 5 we show the overlap functions for the 1/2+ scat-
tering state at Ecm =50 keV and the 3/2− bound state.
The nodes in the overlap functions reflect the antisym-
metrization between the clusters. We also show the
dipole strength calculated with these overlap functions.
It reproduces the dipole matrix element calculated with
the microscopic wave functions within a few percent.
Comparing with the dipole strength obtained from the
Coulomb and Whittaker functions matched at the chan-
nel radius we observe sizable differences up to distances
of about 9 fm. This indicates that the assumption of
predominant external capture at low energies is not that
well satisfied.
Future calculations should investigate the role of three-

body forces. It is expected that low-momentum three
body forces would increase the splitting between the 3/2−

and 1/2− states but would have a minor effect on the
centroid energy. Furthermore more detailed wave func-
tions could be used. In the FMD approach it is difficult
to describe long-range tensor correlations explicitly, so
that the absolute binding energies are underestimated,
although the binding energy with respect to the clus-
ter threshold is in very good agreement with NCSM re-
sults. Nevertheless we expect that such improvements
will not change the capture cross sections significantly as
important properties like phase shifts of the scattering
states, binding energy with respect to the cluster thresh-
old, asymptotic behavior of the bound state wave func-
tions as tested by charge radius and quadrupole moment
and proper treatment of antisymmetrization are already
well described in the present calculation.
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