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Forschungszentrum Dresden-Rossendorf, PF 510119, D-01314 Dresden, Germany
TU Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany

Abstract

Employing QCD sum rules the in-medium modifications of scalar charm mesons in a cold nuclear matter environment
are estimated. The mass splitting ofD∗ − D̄∗ is quantified.
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1. Introduction

In-medium modifications of hadrons, embedded in
strongly interacting matter, are of considerable interest,
since they test the non-perturbative sector of QCD. As
density and temperature of the ambient medium can be
changed in a controllable manner, the changes of hadron
properties, compared to the vacuum, may serve as an in-
depth check of our understanding of hadron physics.

Previous investigations focussed on light vector
mesons and light pseudoscalar strange mesons [1, 2],
thus being essentially restricted to the light-flavor
SUf (3) sector of QCD. The starting FAIR project will
enable the extension to charm degrees of freedom. In
fact, two major collaborations [3, 4] plan to investi-
gate charm mesons and baryons in proton-nucleus, anti–
proton-nucleus and heavy-ion collisions. Given this
motivation, we are going to extend our recent study [5]
of the in-medium modifications of pseudoscalar open
charm mesons to the lowest excitations of scalar open
charm mesons. In doing so we employ QCD sum rules
[6, 7] and restrict ourselves to estimates of the mass
splitting of scalar exciations which can be related to the
currents jD∗ = d̄cand jD̄∗ = c̄d for small densities.

2. QCD sum rules

The Borel transformed in-medium sum rules
for the current-current correlatorΠ(q) =

i
∫

d4x eiqx〈〈T
[

j(x)j†(0)
]

〉〉 (here, T [· · ·] means the
time-ordered product and〈〈· · · 〉〉 stands for Gibbs

average) may be cast in the form (cf. [5] for details)












∫ ω+0

ω−0

+

∫ ω−0

−∞

+

∫ +∞

ω+0













dω∆Π(ω, ~q )ω je−ω
2/M2

= πBQ2→M2

[

Π
j′

OPE(Q2, ~q )
] (

M2
)

, (1)

where Q2 = −q2
0, ∆Π are the discontinuities along

the entire real axis,M is the Borel mass and the inte-
gral over the hadronic spectral functionΠ(s, ~q ) is split
into a part of the low-energy excitations (first term) and
the so-called continuum contributions (second and third
terms). The latter ones are mapped by a semi-local du-
ality hypothesis to expressions corresponding to the op-
erator product expansion (OPE) of the correlator which
yieldsB

[

Πn′
OPE

]

. Since particles and anti-particles be-
have differently in a nuclear medium at zero tempera-
ture, two sum rules emerge – an even one (j = 1, j′ = e)
and an odd one (j = 0, j′ = o). The OPE’s needed
here can be obtained by combining the OPE’s for pseu-
doscalarD mesons in [5] and the OPE’s for difference
sum rules in [8]:

BQ2→M2

[

Πe
OPE(Q2, ~q = 0 )

] (
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)

=
1
π
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ImΠper

D∗ (s, ~q = 0 )

+ e−m2
c/M

2

(

mc〈dd〉 −
1
2

(

m3
c

2M4
−

mc

M2
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1
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π
G2〉 +
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7
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π
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〉

+2
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〈d†iD0d〉
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−4

(

m3
c

2M4
−

mc

M2

) [

〈dD2
0d〉 −

1
8
〈dgσGd〉

])

, (2a)

BQ2→M2

[

Πo
OPE(Q2, ~q = 0 )

] (

M2
)

= e−m2
c/M

2

(

〈d†d〉 − 4

(

m2
c

2M4
−

1
M2

)

〈d†D2
0d〉

−
1

M2
〈d†gσGd〉

)

≡ e−m2
c/M

2
〈K(M)〉n, (2b)

where ImΠper
D∗ is given in [7] andmc = 1.3 GeV is the

charm quark mass. We definee ≡
∫ ω+0
ω−0

dωω∆Πe−ω
2/M2

ando ≡
∫ ω+0
ω−0

dω∆Πe−ω
2/M2

to obtain, with a pole ansatz

for the lowest excitations withinω− −ω+, which couple
with strenghtsF± to the above currents,

e= m+F+e
−m2
+/M

2
+m−F−e

−m2
−/M

2
, (3a)

o = F+e−m2
+/M

2
− F−e−m2

−/M
2
. (3b)

The mass splitting∆m and mass centerm are related by
m± = m±∆m. The following equations determine these
quantities:

∆m=
1
2

oe′ − eo′

e2 + oo′
, (4a)

m2 = ∆m2 −
ee′ + (o′ )2

e2 + oo′
, (4b)

where a prime denotes the derivative w.r.t.M−2 andeas
well aso are given by (2a) and (2b) minus the contin-
uum parts from (1).

3. Low-density expansion

An expansion in the densityn gives the leading term
for the mass splitting

∆m(n) ≈
1
2

do
dn

∣

∣

∣

0
e′(0)− e(0)do′

dn

∣

∣

∣

0

e(0)2
n ≡ α∆mn , (5)

sincee(n = 0) , 0 ando(n = 0) = 0.
The primary goal of the present sum rule analysis

is to find the dependence of∆m andm on changes of
the condensates entering (2). However, also the contin-
uum thresholdsω±0 can depend on the density. To study
this influence, we consider the asymmetric splitting of
the continuum thresholds∆ω2

0 = ((ω+0 )2 − (ω−0 )2)/2
and parameterize its density dependence by∆ω2

0(n) =
α∆ωn+ O(n2), which leads to

do
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∣

∣

∣

∣

0
=
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2
〈K(M)〉 , (6a)
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n=0
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2
〈K′(M) −m2

cK(M)〉 . (6b)

The perturbative terms stem from the continuum con-
tribution in case of unequal thresholds for particle and
antiparticle. In linear density approximation of the con-
densates the last terms becomeo/n and o′/n, respec-
tively. In this case,α∆m is given as

α∆m = −
1

2e(0)

(

o
n

m2(0)+
o′

n

+
e−ω

2
0/M

2

πω0
ImΠper

D∗ (ω
2
0)

[

m2(0)− ω2
0

]

α∆ω













,

(7)

which is dominated by the non-perturbative terms. We
choose the Borel mass range and the thresholds accord-
ing to [9].

As an estimate for the order ofα∆ω we rely on the
splitting of the thresholds for the pseudoscalar channel
in [5] and obtainα∆ω ≈ 0.25 · 103 GeV−1. It is an
overestimation of the pseudoscalarO(n) threshold split-
ting as it would correspond to a linear interpolation of
∆ω2

0 from the vacuum to nuclear saturation density and,
hence, includes higher order terms in the density. We
chooseα∆ω ≈ 102 . . .103 GeV−1.

The results are depicted in Fig. 1 forα∆ω = ±102

GeV−1 and forα∆ω = ±103 GeV−1 in Fig. 2. In Fig. 3
α∆m as a function ofα∆ω for M = 1.37 GeV, the mini-
mum of the vacuum Borel curve for the scalar D meson,
is displayed.
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Figure 1: α∆m as a function of the Borel mass for
α∆ω from −102 (lower bundle of curves) GeV−1 to
+102 (upper bundle of curves) GeV−1 and for threshold values
ω2

0 = 6.0 GeV2 (solid black), 7.5 GeV2 (dashed red) and 9.0 GeV2

(dotted blue).

Considering the results for the mass splitting of
heavy-light pseudoscalar mesons, e.g.D and B, one
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Figure 2: α∆m as a function of the Borel mass for
α∆ω from −103 (lower bundle of curves) GeV−1 to
+103 (upper bundle of curves) GeV−1. For line code see Fig. 1.
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Figure 3:α∆m as a function ofα∆ω for M = 1.37 GeV. For line code
see Fig. 1.

could raise the question if the splitting is mainly caused
by a splitting of the thresholds and, hence, might be an
artifact of the method which determines∆ω2

0. From the
above study we find thatα∆ω indeed influences the mass
splitting. A direct correlation in the sense of a correla-
tion in sign can not be confirmed. Furthermore, the re-
sults forDs mesons [5] allow for a positive mass split-
ting if the net strange quark density falls below a critical
value. As the strange quark density enters through the
vector quark condensate, this already points to a sup-
pressed influence of the threshold splitting on the mass
splitting.

4. Beyond low-density approximation

In [5], the threshold splitting is not considered as a
free parameter but determined by the requirement that
the minima of the Borel curves for particle and antipar-
ticle are at the same Borel mass.
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Figure 4: Mass splitting parameter∆m of scalarD∗ − D̄∗ mesons
with the pole+ continuum ansatz as a function of density at zero
temperature. For a charm quark mass parameter ofmc = 1.3 GeV
and mean threshold valueω2

0(0) = 7.5 GeV2. The curves are for
ω2

0(n) = ω2
0(0) + ξn/n0 with ξ = 0 (solid),ξ = 1 GeV2 (dotted) and

ξ = −1 GeV2 (dashed).
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Figure 5: As in Fig. 4 but for the mean massm.

Following the same analysis strategy of [5] and em-
ploying the condensates listed in [5], one obtains the
results exhibited in Figs. 4 and 5. This analysis goes
beyond the strict linear density expansion ofm and∆m
and also takes into account quadratic terms in the den-
sity. The medium dependent part of the chiral conden-
sate (the density dependence of which is only in linear
density approximation, as the other condensates too) en-
ters the mass splitting next to leading order of the den-
sity. The determination of the mass centerm depends
strongly on the chosen center of continuum thresholds
ω2

0 = ((ω+0)2 + (ω−0 )2)/2 as indicated by the broad range
in Fig. 5 when varying their medium dependence. In
contrast, the splitting is fairly robust as evidenced by
Fig. 1, where the difference between curves of different
thresholds is negligible.

A linear interpolation of the threshold splitting from
vacuum to a density ofn = 0.01f m−3 gives an estimate
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for theO(n) termα∆ω ≈ 7 · 102 GeV−1, which justifies
the range chosen in the previous section.

5. Conclusions

In summary we extend the recent analysis [5] of the
QCD sum rules to lowest scalarD∗ mesons. The im-
portance of the density dependence of the continuum
thresholds is exposed. Going beyond the strict linear
approximation in density one obtains a robust pattern
of the splitting of scalarD∗ − D̄∗ mesons which resem-
bles the one for pseudoscalars. A firm prediction of the
absolute values of the respective scalar mesons is ham-
pered by uncertainties in the determination of the mean
mass. With the employed values of the condensates en-
tering the truncated sum rule and within the employed
analysis strategy a tendency of a ”mass drop” may be
deduced.
For the sake of simplicity we restricted our analysis to
a pole+ continuum ansatz. One can go beyond such
simplified treatment of the hadronic spectral functions
by considering moments. The latter ones do not longer
allow for a simple interpretation but seem more appro-
priate for broad resonances. With respect to the re-
search programme at FAIR, where precision measure-
ments of various charm hadrons are envisaged, more
model-independent studies are required.
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