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We discuss various sources of azimuthal correlations in relativistic heavy-ion collisions. The inte-
gral measure Φ is applied to quantify the correlations. We first consider separately the correlations
caused by the elliptic flow, resonance decays, jets and transverse momentum conservation. An ef-
fect of randomly lost particles is also discussed. Using the PYTHIA and HIJING event generators
we produce a sample of events which mimic experimental data. By means of kinematic cuts and
particle’s selection criteria, the data are analyzed to identify a dominant source of correlations.
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I. INTRODUCTION

Particles produced in relativistic heavy-ion collisions
are correlated in azimuthal angle due to various mecha-
nisms. One mentions here extensively studied jets and
minijets resulting from (semi-)hard parton-parton scat-
tering and collective flow due to the cylindrically asym-
metric pressure gradients, see the review articles [1] and
[2], respectively. More exotic sources of correlations are
also possible. As argued in [3], the plasma instabilities,
which occur at an early stage of collisions, can generate
the azimuthal fluctuations. Except the dynamically in-
teresting mechanisms, there are also rather trivial effects
caused by decays of hadronic resonances or by energy-
momentum conservation.

There is a variety of methods designed to study fluc-
tuations on event-by-event basis. In particular, the so-
called measure Φ proposed in [4] was used to measure
the transverse momentum [5, 6] and electric charge fluc-
tuations [7]. The measure proved to be very sensitive to
dynamical correlations and it was suggested to apply it
to study azimuthal ones [8]. Such an analysis is under-
way using experimental data accumulated by the NA49
and NA61 Collaborations and some preliminary results
are already published [9]. The aim of this paper is to
present model simulations to be used in interpretation of
the experimental data. The fact that the measure Φ is
sensitive to correlations of various origin is advantage and
disadvantage at the same time, as it is difficult to disen-
tangle different contributions. Therefore, we model the
azimuthal correlations driven by several processes and
we look how the correlations show up when quantified by
the measure Φ. We first consider separately in terms of
toy models, the elliptic flow, resonance decays, jets and
transverse momentum conservation. An effect of ran-
domly lost particles is also examined. Then, we analyze
the data provided by the PYTHIA and HIJING event
generators showing how to identify the main sources of

correlations by applying kinematic cuts and particle’s se-
lection criteria.

II. MEASURE Φ

Let us first introduce the correlation measure Φ. One

defines the variable z
def
= x − x, where x is a single par-

ticle’s characteristics such as the particle transverse mo-
mentum, electric charge or azimuthal angle. The over-
line denotes averaging over a single particle inclusive dis-
tribution. In the subsequent sections, x will be identi-
fied with the particle azimuthal angle φ and the fluctu-
ation measure will be denoted as Φφ. The event vari-
able Z, which is a multiparticle analog of z, is defined

as Z
def
=
∑N
i=1(xi − x), where the summation runs over

particles from a given event. By construction, 〈Z〉 = 0,
where 〈...〉 represents averaging over events (collisions).
The measure Φ is finally defined as

Φ
def
=

√
〈Z2〉
〈N〉

−
√
z2 . (1)

It is evident that Φ = 0, when no inter-particle corre-
lations are present. The measure also possesses a less
trivial property - it is independent of the distribution of
the number of particle sources if the sources are identi-
cal and independent from each other. Thus, the measure
Φ is ‘blind’ to the impact parameter variation as long as
the ‘physics’ does not change with the collision centrality.
In particular, Φ is independent of the impact parameter
if the nucleus-nucleus collision is a simple superposition
of nucleon-nucleon interactions. In the following sections
we discuss how various mechanisms responsible for az-
imuthal correlations contribute to Φφ. Then, using the
event generators we show how the dominant contribu-
tions can be identified.
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FIG. 1: (Color online) Φφ as a function of the second Fourier coefficient v2 for the Poisson (left panel) and NB (right panel)
multiplicity distributions. The lines represent the analytical formula (2). The insets show Φφ for small values of v2.

III. COLLECTIVE FLOW

Particles produced in relativistic heavy-ion collisions
reveal a collective behavior which is naturally described
in terms of hydrodynamics where the collective flow is
caused by pressure gradients. The flow, which is trans-
verse to the collision beam axis, is usually decomposed
into Fourier harmonics with the amplitudes denoted as
v1, v2, v3, . . . The collective flow as quantified by the mea-
sure Φφ was studied in [8]. The azimuthal correlations
caused by the flow were found to give

Φφ =

√
π2

3
+

(
〈N2〉 − 〈N〉
〈N〉

)
S − π√

3
. (2)

where 〈Nm〉 is the m−th moment of multiplicity distri-
bution and

S ≡ 2
〈 ∞∑
n=1

(vn
n

)2〉
. (3)

We have first verified the effect of second Fourier co-
efficient v2 on Φφ by Monte Carlo simulations. For this
purpose we have generated events of particle multiplic-
ity given by either Poisson or Negative Binomial (NB)
distribution. The latter is defined as

PN =
Γ(N + k)

Γ(N + 1)Γ(k)

〈N〉Nkk(
〈N〉+ k

)N+k
, (4)

where Γ(k) is the Gamma function, which for positive
integer arguments equals Γ(k) = (k−1)!; the parameter k
can be expressed through the variance of the distribution
Var(N) ≡ 〈N2〉 − 〈N〉2 and the average value 〈N〉 as

k =
〈N〉2

Var(N)− 〈N〉
. (5)

The parameter k is chosen in such a way in our all sim-
ulations that

√
Var(N) = 〈N〉/2. Then, the multiplicity

distribution approximately obeys the Wróblewski’s for-
mula [10] which is known to hold for proton-proton in-
teractions in a wide collision energy range. The simula-
tions are performed for both the Negative Binomial and
Poisson distributions as the former distribution is much
broader than the latter one for 〈N〉 � 1. We note here
that the width of multiplicity distributions in relativis-
tic heavy-ion collisions strongly depends on centrality se-
lection criteria. Thus, it is important to see how the
correlation signal changes with the width of multiplicity
distribution.

The azimuthal angle of each particle has been gener-
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fluctuating and fixed v2.
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FIG. 3: (Color online) Φφ as a function of fraction of particles coming from the back-to-back resonance decays. The particle
multiplicity is distributed according to the Poisson (left panel) or NB (right panel) distribution. The dashed and solid lines
represent the analytical formulas (7) and (8), respectively.

ated from the distribution

P (φ) =
1

2π

(
1 + 2v2cos

(
2(φ− φR)

))
, (6)

where 0 ≤ φ ≤ 2π; the reaction plane angle φR of a given
event has been generated from the flat distribution. The
results of our simulations are shown in Fig. 1 for both
the Poisson (left panel) and NB (right panel) multiplicity
distributions. As seen, the analytical formula (2) works
perfectly well.

There are large (∼ 40%) event-by-event fluctuations of
v2 observed [2] at BNL RHIC. The v2 fluctuations are
dominated by the fluctuations of eccentricity of the over-
lap region of colliding nuclei, see e.g. [11]. We have in-
troduced the v2 fluctuations in our simulations in the fol-
lowing way. For each event the value of v2 has been gen-
erated from the Gaussian distribution of the dispersion
σv2 . The fluctuations have been restricted to vary within
2σv2 around the mean 〈v2〉 that is 〈v2〉 − 2σv2 ≤ v2 ≤
〈v2〉 + 2σv2 . Then, v2 remains positive unless σv2/〈v2〉
exceeds 0.5.

In Fig. 2 we demonstrate the effect of flow fluctua-
tions relative the effect of flow. Specifically, we show the
difference of the correlation measures computed for the
fluctuating v2 and fixed v2 = 〈v2〉. The particle multi-
plicity has been generated from the NB distribution with
〈N〉 = 400. As seen, the flow fluctuations of relative
magnitude of ∼ 40% noticeably increase the value of Φφ
if 〈v2〉 is not too small.

IV. RESONANCE DECAYS

Let us start the discussion of effects of resonance decays
with the toy model where all produced particles come
from heavy resonances which have vanishing transverse
velocity and decay back to back into pairs of particles.

The particle multiplicity is arbitrary but fixed even num-
ber. Then, as shown in Appendix, we have

Φφ =
1−
√

2√
6

π ≈ −0.531. (7)

When only a fraction f of all produced particles comes
from the back-to-back decays of resonances while the re-
maining particles are produced independently from each
other, the calculations presented in Appendix lead to

Φφ =

√
2− f −

√
2√

6
π . (8)
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FIG. 4: (Color online) Φφ as a function of the correlation
angle ∆φ for varying fraction f of particles emitted in pairs.
The particle multiplicity is given by the NB distribution.
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FIG. 5: (Color online) Φφ resulting from the combined effect of elliptic flow and resonance decays. The particle multiplicity is
distributed according to the Poisson (left panel) or NB (right panel) distribution.

As seen, for f = 0 the formula (8) gives, as expected,
Φ = 0 and for f = 1 we get the value (7).

We have checked the formula (8) by Monte Carlo simu-
lations and then we have considered the model where the
particle multiplicity is not fixed but it is given by either
Poisson or NB distribution with the average multiplicity
equal 50, 400, or 700 particles. For a given fraction f
of particles coming from the back-to-back decays of res-
onances, the number of particles coming from the decays
in the event of multiplicity N has been the even number
which is the nearest to fN . The measure Φφ as a func-
tion of f is shown in Fig. 3. As seen, the formula (8) still
works very well.

When a resonance, which is at rest, decays back to
back, the difference of azimuthal angles of the decay
products is ∆φ = π. When the resonance has a finite
velocity, the difference of azimuthal angles of the decay
products is smaller than π. When the resonance’s kinetic
energy is much larger than the energy released in its de-
cay, ∆φ is zero. Therefore, we consider a model where
a fraction of particles comes from the resonance decays
and the particles are emitted in pairs with the difference
of their azimuthal angles ∆φ varying from 0 to π. We
first assume that all particles are emitted in pairs and
the relative azimuthal angle of two correlated particles
equals ∆φ. As shown in Appendix, we then have

Φφ =

√
2

3
π2 −∆φπ +

1

2
(∆φ)2 − π√

3
. (9)

As seen that Φφ changes its sign from positive to negative
with growing ∆φ; Φφ vanishes when

∆φ = π
(

1− 1√
3

)
≈ 1.328 (10)

and for ∆φ = π we deal with the model described by
the formula (7). Further on, we have considered a model

where only a fraction f of particles is emitted in corre-
lated pairs. Then, as explained in Appendix, Eq. (9) gets
the form

Φφ =

√
π2

3
+ f

(π2

3
−∆φπ +

1

2
(∆φ)2

)
− π√

3
. (11)

As previously, Φφ changes its sign and Φφ = 0 for ∆φ
given by Eq. (10).

In Fig. 4 we compare the formula (11) with the results
of Monte Carlo simulation of Φφ as a function of ∆φ. The
fraction of particles emitted in pairs equals 0.3, 0.5, 0.7
or 1.0. The remaining particles, which are not emitted
in pairs, carry no correlations. The particle multiplicity
is generated from the NB distribution with

√
Var(N) =

〈N〉/2 = 50. As seen, the formula (11) works perfectly
well.
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transverse momentum conservation.

We next discuss the combined effect of resonance de-
cays and elliptic flow. The multiplicity of events is gener-
ated from the Poisson or NB binomial distribution. For
each event 30% of particles is assumed to originate from
heavy resonances which decay back to back into pairs of
particles. Neither resonances nor their decay products
experience any flow, but the remaining 70% of particles
manifest the collective elliptic flow according to Eq. (6).
The results of the simulation are shown in Fig. 5. When
the particle multiplicity or v2 are sufficiently small, the
effects of resonance decays dominates and Φφ is nega-
tive. It becomes positive when the effect elliptic flow
takes over.

V. ‘DIJETS’

We call a dijet the two groups (jets) of particles flying
in exactly opposite directions. Particles from each jet are
distributed within a cone of the azimutal angle σφ. We
have considered the dijets of 2+2, 5+5 and 10+10 parti-
cles. The total particle multiplicity is correspondingly 4,
10, 20 as there is exactly one dijet per event and there
are no other particles. The results of dijet simulation are
shown in Fig. 6.

We have here two sources of azimuthal correlations
which counteract each other. As we already know, the
back-to-back emission of particles generates negative cor-
relations while the collinear emission leads to positive
ones. When the particle’s multiplicity of dijets is suf-
ficiently high and σφ is sufficiently small, the effect of
collinear emission wins and Φφ is positive.

VI. MOMENTUM CONSERVATION

The momentum conservation obviously leads to inter-
particle correlations. We have studied the effect on Φφ,

generating the sets of particles of multiplicity N . The az-
imuthal angle distribution of a single particle is assumed
to be flat while the transverse momentum distribution is
chosen in the form

P (pT ) = β2pT e
−βpT (12)

with the slope parameter β−1 = 200 MeV. For each par-
ticle the x and y components of its momentum have been
computed as px = pT cosφ and py = pT sinφ. To make the
total transverse momentum of N particles vanish, the x
and y component of momentum of each particle has been
shifted as

px → px −
1

N

N∑
i=1

pix , py → py −
1

N

N∑
i=1

piy . (13)

The simulation showing the effect of transverse mo-
mentum conservation is illustrated in Fig. 7. The parti-
cle multiplicity has been generated according to NB dis-
tribution with

√
Var(N) = 〈N〉/2. As seen, the effect

of momentum conservation is sizable and it survives to
large multiplicities.

In real experiments only a fraction of all produced par-
ticles is observed due to a finite detector efficiency and
acceptance. We model the effect of detector efficiency
by randomly loosing particles independently of their az-
imuthal angle. In Fig. 8 we show how the effect of de-
tector efficiency modifies the correlations caused by the
transverse momentum conservation. As seen, the random
losses of particles lead to the dilution of the correlation
that is Φφ monotonically goes to zero as the fraction of
registered particles freg → 0.

VII. PROTON-PROTON COLLISIONS IN
PYTHIA

After the discussion of various mechanisms respon-
sible for azimuthal correlations, let us now consider
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more realistic situation where several mechanisms of
azimuthal correlations are present at the same time.
We used the PYTHIA generator [12] to simulate p-p
collisions at several collision energies accessible at
SPS (

√
sNN = 6.27, 7.62, 8.73, 12.3, 17.3 GeV)

and RHIC (
√
sNN = 19.6, 62.4, 130, 200 GeV).

For every energy a set of minimum bias events was
collected. We treated as stable the following particles:
µ−, π0, π+, K0, K+, K0

L, K
0
S , Λ, Σ+, Σ−, Ξ0, Ξ−, Ω−

and their antiparticles. No acceptance cuts were applied.
For every energy we computed Φφ separately for pos-

itive, negative and all charged particles. The results are
shown in Fig. 9. As seen, Φφ is negative and weakly de-
pends on collision energy. To understand why Φφ is so
different for negative and for positive particles, we ex-
cluded protons from all charged and from positive parti-
cles. The corresponding values of Φφ are also shown in
Fig. 9. After excluding protons, the correlations among
negative particles and among positive are very similar to
each other.

What is the mechanism responsible for negative values
of Φφ? We first checked that high pT particles play no
role here, as Φφ does not significantly change when par-
ticles with pT > 1.5 GeV are excluded. The correlations
among charged particles can be caused by the effect res-
onance decays but the effect is certainly very minor for
same-sign particles, as there are very a few resonances
decaying into two positive or two negative particles.

The transverse momentum conservation, which is dis-
cussed in Sec. VI, is another possible source of neg-
ative values of Φφ. We checked that the PHYTHIA
events indeed obey the transverse momentum conserva-
tion. Specifically, we proved vanishing of the total mo-
mentum in x and in y directions of all particles (charged
and neutral) form every event. To quantitatively study

the effect of transverse momentum conservation we pro-
ceeded as follows. For every collision energy we deter-
mined the average multiplicity of positive, negative and
neutral particles. Then, we performed the simple simu-
lations described in Sec. VI, generating events of a given
total multiplicity which satisfy the transverse momen-
tum conservation. Then, a fraction of particles was ran-
domly eliminated to get the multiplicity of charged, pos-
itive or negative particles. The values of Φφ computed
for such events are shown in Fig. 10. As seen, the val-
ues of Φφ for the PYTHIA events agree quite well with
the results of our toy-model simulations which take into
account only the effect of transverse momentum conser-
vation. It is somewhat surprising that the agreement for
same-sign particles is not much better that that for all
charged particles. It means that the resonance decays do
not generate strong correlations in the PYTHIA events.
We note, however, that the effect of transverse momen-
tum conservation overshoots the correlations of the like-
sign particles and it undershoots the correlations of all
charged particles. The latter results presumably signals
presence of resonances decaying into pairs of one positive
and one negative particle.

VIII. NUCLEUS-NUCLEUS COLLISIONS IN
HIJING

We have also performed simulations of nucleus-nucleus
collisions using the HIJING [13] event generator. We
have simulated the collisions of p-p, C-C, Si-Si and Pb-
Pb at

√
sNN = 17.3 GeV and Φφ has been computed

separately for positive, negative and all charged particles
coming from minimum bias events. The results are shown
in Fig. 11. As seen, Φφ is almost independent of the mass
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number of colliding nuclei and the values of Φφ are very
close to those found using PYTHIA. It is by no means
accidental. When a nucleus-nucleus collision is a simple
superposition of nucleon-nucleon interactions, the value
of Φ is exactly the same for p-p interactions and nucleus-
nucleus collisions at any centrality. In the HIJING model
a nucleus-nucleus collision is not exactly a superposition
of nucleon-nucleon collisions but it is almost so. And
the treatment of proton-proton interactions is essentially
the same in PYTHIA and HIJING. For these reasons
our analysis of PYTHIA events presented in the previous
section fully applies here.

IX. SUMMARY AND OUTLOOK

Azimuthal correlations of final state particles from
high-energy collisions carry valuable information on the
collision dynamics. It motivates the analysis of exper-
imental data collected by the NA49 and NA61 Collab-
orations which is in progress with some preliminary re-
sults already published [9]. The integral measure Φφ,
which proved to be very sensitive to various dynamical
correlations, is used in the analysis. To interpret the ex-
perimental results it should be understood how different
sources of correlations manifest themselves when mea-
sured by means of Φφ. This was the aim of our study.
We performed several simulations to analyze separately
the azimuthal correlations caused by the elliptic flow,
resonance decays, jets and transverse momentum con-
servation. We also discussed how the correlations are
diluted due to randomly lost particles. Finally we used
the PYTHIA and HIJING event generators to produce a
big sample of events which mimic experimental data from
p-p and nucleus-nucleus collisions at the SPS and RHIC
collision energies. Φφ appeared to be surprisingly inde-
pendent of the collision energy and of the size of collid-
ing systems. Applying some kinematic cuts and selection
criteria of particles, we showed that the azimuthal cor-

relations present are dominated by rather trivial effect
of transverse momentum conservation which appeared
to be almost independent of particle’s multiplicity which
changes dramatically for collision energies and system’s
sizes under consideration.

The experience gathered in the course of this theoreti-
cal study will be used to better understand experimental
data. Quantitative analysis of several simple mechanisms
of azimuthal correlations we discussed will facilitate an
observation of possible new phenomena like critical fluc-
tuations at phase boundaries of strongly interacting mat-
ter or plasma instabilities from the early stage of rela-
tivistic heavy-ion collisions.
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Appendix: Toy model of resonance decays

The inclusive distribution of azimuthal angle is as-
sumed to be flat that is

Pinc(φ) =
1

2π
Θ(φ) Θ(2π − φ) , (A.1)

which gives φ̄ = π and φ̄2 = 4π2/3. Consequently, z̄2 =
π2/3.

Let us first assume that all produced particles come
from heavy resonances which are at rest and decay back
to back into two particles. When one particle is emitted
at the azimuthal angle φ1 and 0 ≤ φ1 < π, the second
particle is emitted at φ2 = φ1 + π. When π ≤ φ1 < 2π,
then φ2 = φ1−π. Therefore, the two-particle distribution
of azimuthal angles reads

P2(φ1, φ2) =
1

2π
Θ(π − φ1) δ(φ1 − φ2 + π) (A.2)

+
1

2π
Θ(φ1 − π) δ(φ1 − φ2 − π) .

One observes that∫
dφ1P2(φ1, φ) =

∫
dφ2P2(φ, φ2) = Pinc(φ) , (A.3)

and computes∫
dφ1dφ2φ1φ2P2(φ1, φ2) =

5

6
π2 . (A.4)
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We further assume that the particle multiplicity is arbitrary but fixed even number N . Then, the N−particle
distribution of azimuthal angles is

PN (φ1, φ2, . . . , φN ) = P2(φ1, φ2) P2(φ3, φ4) · · · P2(φN−1, φN ) . (A.5)

The variable Z is defined as Z = φ1 + φ2 + . . .+ φN −Nπ and one computes 〈Z2〉 in the following way

〈Z2〉 =

∫
dφ1dφ2 . . . dφN (φ1 + φ2 + . . .+ φN −Nπ)2PN (φ1, φ2, . . . , φN ) (A.6)

= Nφ̄2 +N

∫
dφ1dφ2φ1φ2P2(φ1, φ2) +N(N − 2)φ̄2 − 2N2φ̄π +N2π2 =

N

6
π2 .

Using the result (A.6) and keeping in mind that z̄2 = π2/3, we find the formula (7) from the definition (1).
Let us now assume that N1 particles come from resonances and additional N2 particles are produced independently

from each other and from resonances. Then, we still have z̄2 = π2/3 and 〈Z2〉 is computed as

〈Z2〉 = Nφ̄2 +N1

∫
dφ1dφ2φ1φ2P2(φ1, φ2) +N1(N1 − 2)φ̄2 (A.7)

+ 2N1N2φ̄
2 +N2(N2 − 1)φ̄2 − 2N2φ̄π +N2π2 =

π2

6
(2N −N1) ,

where N ≡ N1 +N2. The result (A.7) with f ≡ N1/N gives the formula (8).
The model can be easily generalized to the situation when the particles from a correlated pair are not emitted back

to back but their relative azimuthal angle is fixed and equal ∆φ. Then, the two-particle distribution of azimuthal
angles is

P2(φ1, φ2) =
1

2π
Θ(2π −∆φ− φ1) δ(φ1 − φ2 + ∆φ) +

1

2π
Θ(φ1 − 2π + ∆φ) δ(φ1 − φ2 + ∆φ− 2π) , (A.8)

and instead of Eq. (A.4) we have∫
dφ1dφ2φ1φ2P2(φ1, φ2) =

4

3
π2 −∆φπ +

1

2
(∆φ)2 .

(A.9)

Substituting the result (A.9) to Eq. (A.6) or Eq. (A.7),
one finds 〈Z2〉 which finally gives the formula (9) or (11),
respectively.
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