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Figurel: Left: order of the quark hadron transition as a function aifumasses at = 0. Middle: for finite
U the critical lines turn into surfaces. The curvature is stiinet the chiral and deconfinement transitions are
weakened. Right: nature of ti3)-transition endpoint gtz /T = ir/3.

1. Introduction

Due to the sign problem prohibiting lattice simulations aité baryon density, the QCD phase
diagram in the space of temperatufeand chemical potential for baryon numbgs is largely
unknown. Employing indirect methods like reweighting, [Bayexpansions aboytg = 0 or sim-
ulations at imaginary chemical potentigls=iL;, i € R, followed by analytic continuation, con-
trolled calculations are only feasible as long as the quasaical potentialy = pg/3<T [1].
Using the latter two methods we previously calculated theatures of the chiral and deconfine-
ment critical surfaces, which bound the mass regions thab#xirst order chiral or deconfinement
transitions [2-5]. In both cases the curvature is such tiefitst order region shrinks, i.e. the chiral
and deconfinement phase transitions weaken with real chépotential, as shown schematically
in Fig. [l (left and middle).

In this contribution we propose to study the phase diagrammagiinary chemical potential,
without continuing the numerical results directly to real Since the fermion determinant is real
for imaginary chemical potentials, there is no sign problmd simulations are feasible without
additional systematic errors besides finite volume andfcetiects, and at no additional computa-
tional cost compared to simulationstat= 0. For specific critical values of the imaginary chemical
potential, there are rich critical structures like firstardriple points, critical points with 3d Ising
universality as well as tricritical points. We then arguattbseful information for the phase dia-
gram at realu can be inferred from the results. In particular, we demaistthat the weakening
of the deconfinement transition in the heavy quark regiomcigted by the tricritical scaling of the
deconfinement critical surface at imaginary chemical pgatbn with a similar weakening expected
for the chiral transition.

2. The QCD phase diagram at imaginary chemical potential

The QCD partition function exhibits two important exact syetries, reflection symmetry in
u andZ(3)-periodicity in i, which hold for quarks of any mass [6],

Z(1) = Z(—p), z(#):z<$+i%’”>, 2.1)
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Figure 2: Left: phase diagram for imaginagy. Vertical lines are first order transitions betwe2(8)-
sectors, arrows show the phase of the Polyakov loop.th€ chiral/deconfinement transition continues to
imaginaryy, its order depends dNs and the quark masses. Right: phase diagranNfoe 3 atu = imT.
Solid lines are lines of triple points ending in tricritiqgabints, connected by &(2) critical line.

for general complex values ¢f. Let us now consider imaginary chemical potentiak=iy;. The
symmetries imply transitions between adjacent centreosedf the theory at fixegi® = (2n+
1T /3,n=0,4+1,£2,.... TheZ(3)-sectors are distinguished by the Polyakov loop

1 N .
L(x) = 3Tr [ Yo(x, 7) = ILle? (2.2)
=1

whose phasé cycles through'¢) = n(2m1/3),n=0,1,2,... as the different sectors are traversed.
Moreover, the above also implies reflection symmetry ablee{3) phase boundarieZ, (1 +
Hi) = Z(UF — 1)

Transitions iny; between neighbouring sectors are of first order for Higland analytic
crossovers for lowl [6-8], as shown in Figl] 2 (left). Correspondingly, for fixpd= ¢, there
are transitions ifm between an ordered phase with two-state coexistence afThayhd a disor-
dered phase at low. An order parameter to distinguish these phases is theedhithase of the
Polyakov loop,@ = ¢ — /T [9]. At high temperature it fluctuates abo(p) = +71/3 on the
respective sides ofi°. The thermodynamic limit picks one of those states, thusitsp@ously
breaking the reflection symmetry abqut. At low temperaturesp fluctuates smoothly between
those values, with the symmetric ground stage = 0.

Away from 1 = pf, there is a chiral or deconfinement transition line sepagetigh and low
temperature regions. This line represents the analytitragation of the chiral or deconfinement
transition at realt. Its nature (1st, 2nd order or crossover) depends on the eunfilquark flavours
and masses. It has long been believed that this line mee&(#)dransition at its endpoint, and
early evidence [7, 8] is consistent with this. While a lot ahmerical work at imaginary chemical
potential was devoted to determining the chiral or decondfigré transition and continue it about
u = 0, here we are interested in the nature of the endpoint o (Betransition line as a function
of quark masses. Similar investigations have been cartuédoo N; = 4 [10] and more recently
for Ny = 2 [11]. We thus fix the chemical potential to an imaginaryicait value,u; = 7T, and
investigate the order of the transition by scanning veltida T for various masses.
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Figure 3: Finite size scaling oB4 for small and intermediate quark masses, fitted to E (BBkts show
data rescaled with fixed = 0.33,0.63, corresponding to a first/second order transition, retspsdy.

3. Numerical resultsfor Ny =3

In this investigation we considé¥; = 3 QCD, using the standard staggered action and the
RHMC algorithm. In order to identify the order of the tramsi, we study the finite size scaling of
the Binder cumulant constructed from the imaginary parhefRolyakov loop,

B4(Im(L)) = ([Im(L) — (Im(L))])/{Im(L) — (Im(L))}%)? = (Im(L))*)/{(Im(L))?)? . (3.1)

For u/T =im, everyB-value represents a point on the phase boundary and thueudgsritical.

In the thermodynamic limitB4(3) =3,1.5,1.604, 2 for crossover, first order triple point, 3d Ising
and tricritical transitions, respectively. On finité volumes the steps between these values are
smeared out to continuous functions whose gradients iser@ith volume. The critical coupling

B for the endpoint is obtained as the intersection of curvems fdifferent volumes. In the scaling
region around3, B, is a function ofx = (8 — BC)Ll/" alone and can be expanded

Ba(B,L) = Ba(Bc, ) +arx+apxX + ..., (3.2)

up to corrections to scaling, with the critical exponentharacterising the approach to the ther-
modynamic limit. The relevant values for us are= 1/3,0.63,1/2 for a first order, 3d Ising or
tricritical transition, respectively.

For each quark mass, we simulated lattices of dizes8,12 16 (20 in a few cases), at typi-
cally 8-14 different-values, calculate®,(Im(L)) and filled in additional points by Ferrenberg-
Swendsen reweighting [12]. Fif] 3 shows examples for quaaksesam=0.04,0.3. B4 moves
from large values (crossover) at smgll(i.e. low T) towards 1 (first order transition) at large
(i.e. highT). In the neighbourhood of the intersection point, we thealfiturves simultaneously
to Eq. (3.R), thus extractingc, B4(Bc,»), v, a1, a. We observe that the value of the Binder cumu-
lant at the intersection can be far from the expected urdverues in the thermodynamic limit.
This is a common situation: large finite-size correctiores@rserved in simpler spin models even
when the transition is strongly first-order [13]. Moreovierpur case, logarithmic scaling correc-
tions will occur near a tricritical point sinag= 3 is the upper critical dimension in this case [14].
Fortunately, the critical exponemt which determines the approach to the thermodynamic limit,
less sensitive to finite-size corrections and in [fig. 3 «iest withv = 0.33,0.63, its values for
first and second order transitions, respectively. A chedh fix v to one of the universal values
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Figure 4: Left: Critical exponenv at u/T = im. Right: Im(L) distribution at theZ(3) transition endpoint.

and see whether the curves collapse under the appropréalirg, as in Fig[]3 insets. Note that
the critical coupling determined from the intersection feé B4 curves in Fig[]3 is consistent with
the one extracted from the peak of the specific heat or thalchisceptibility.

We have investigated quark mass values ranging from thal¢hithe pure gauge regime. The
exponents pertaining to each of them are shown in Hig. 4 (left). Thenenambiguous evidence
for a change from first order scaling to 3d Ising scaling, aackkto first order scaling. Note that,
in the infinite volume limit, the curve would be replaced byamranalytic step function, whereas
the smoothed-out rise and fall in F[d. 4 (left) corresporufirtite volume corrections.

The results from the finite size scaling Bf can be sharpened by the probability distribution
of Im(L) at the critical couplingg., corresponding to the crossing points. This is shown in ffig.
(right) for masseam=0.05,0.1,0.2,0.3 for L = 16. The lightest mass displays a clear three-peak
structure, indicating coexistence of three states at thplow (., which therefore corresponds to
a triple point. The same observation holds for heavy madsesam= 0.1,0.2 the central peak
is disappearing and faam= 0.3 we are left with the two peaks characteristic for the magnet
direction of 3d Ising universality. We have checked the eig@volume-scaling of all distributions.

Hence, for small and large masses, we have unambiguousneeidieat the boundary point
between a first ordeZ(3) transition and a crossover gt=inT corresponds to a triple point.
This implies that two additional first order lines branch tfé Z(3)-transition line as in Fig[]2
(left), which are to be identified as the chiral (for light gks) or deconfinement (for heavy quarks)
transition at imaginary chemical potential. This is expeobn theoretical grounds: fon= 0 or
~+oo, these transitions are first-order for any chemical paaéniihe fact that the endpoint of the
Z(3) transition line changes its nature from a triple point at kmd high masses to second order
for intermediate masses implies the existence of two tigati points.

We are thus ready to discuss tfie,m) phase diagram oy = 3 QCD at fixed imaginary
chemical potentialy = i(2n+ 1)7iT /3. The qualitative situation is shown in Fig. 2 (right). For
high temperatures, we have a two-phase coexistence witbhtéege of the Polyakov loop flipping
between two possible values. At low temperatures, inst@adybserve phase averaging over the
possible phases of the Polyakov loop. Since the transittwden these regimes is associated with
a breaking of a global symmetry, it is always non-analytic.

An important question concerns cut-off effects. Thesengiisoaffect quark masses, and in
particular the tricritical points. However, universalityplies that critical behaviour is insensitive
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Figure5: Critical line mg(u?) in the 3-state Potts model [4] (left) and for QCD in a strongming expan-
sion [5] (middle). Right: deconfinement critical surfaceéedenined by tricritical scaling.

to the cut-off, as long as the global symmetries of the themeynot changed. Our calculation is
therefore sufficient to establish the qualitative pictuig B (right) in the continuum. The change
from first order to 3d Ising behaviour for low and intermediatasses has been observed earlier
for Ny = 2 [11] and we expect the correspondifig m)-diagram to look the same.

4. Ny =2+ 1 and connection toreal u

Combining our knowledge oN; = 2,3, the nature of th&(3) transition endpoint can be
characterised as a function of quark masses as iJFig. I)righcomplete analogy to the corre-
sponding plot at = 0 (left). Schematically, we have a first order region of &ipbints for both
heavy and light masses, which are separated from a regicgcofnd order points by a chiral and
deconfinement tricritical line, respectively. This entiliagram is computable by standard Monte
Carlo methods and constitutes a useful benchmark for magidies of the QCD phase diagram.

How is this diagram connected to the oneuat 0? Generally, a tricritical point represents
the confluence of two ordinary critical points. In the heavgss region the critical endpoints
of the deconfinement transition, representing the decanfn¢ critical surface, merge with the
endpoints of theZ(3) transition. Thus, the deconfinement tricritical line is haundary of the
deconfinement critical surface at=imT /3. This can be explicitly demonstrated by simulations
of the 3d three-state Potts model. It is well know that thiglelas in the same universality class
as QCD with heavy quarks and can therefore be used in thebwighood of the deconfinement
critical line. In particular, it has been used to calcul&be a fixed number of flavours, the change of
the critical mass with chemical potential, since the sigrbfgm is mild and manageable there [4].
The results, including a tricritical point, are shown in Hig(left), together with a QCD strong
coupling expansion result (right) [5]. The deviation frone tsymmetry plane(u/T)? + (11/3)?),
is analogous to an external field in a spin model, and the waijieat line leaves a tricritical point
in such a field is again universal [14],

m; Myic T\ 2 2%/°
Too- T (3 ()] @
Fig. B shows that the data from [4, 5] excellently fit this forfar into the real chemical potential
region. Thus for heavy quark masses, the form of the crisigeface of the deconfinement transition
is determined by tricritical scaling of th#&(3) transition at imaginary = inT /3.

Itis clear that the chiral critical surface will likewiseriginate on the chiral tricritical line at
u =imT /3. Unfortunately, for this surface no suitable effectivedmlds available and we presently
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do not know to which extent it is shaped by tricritical scglifEstimatingamyic1 ~ 0.1 and using
amy(0) ~ 0.0265 [3],K is fixed and expansion of Eq. (#.1) predicts a negative curea ~ —10
for the chiral critical surface, as compared to the directliculatedc; = —3.3(3) (in the notation
of [3]). Tricritical scaling thus predicts a weakening atsfothe chiral phase transition with real
chemical potential, independently confirming the finding§2i 3, 7].

5. Conclusions

We have clarified the nature of the endpoint of the Robergesa\Z(N) transition at imagi-
nary chemical potentials as a function of quark masses anti/festablished that it connects with
the (pseudo-) critical lines of the chiral or deconfinemeansition. For light and heavy quark
masses, the latter are of first order and the junction is ketgpint, while it is a critical endpoint
in the 3d universality class otherwise. We have generatisiedesult to arbitrary quark mass com-
binations and sketched a “Columbia plot” far=inT /3. The plot features two tricritical lines
bounding areas of triple points, which represent the boueslaf the chiral and deconfinement
critical surfaces, respectively. We further demonstrdted the curvature of the deconfinement
critical surface is determined by the associated triaitscaling and argued the same to hold qual-
itatively for the negative curvature of the chiral criticalrface.
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